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Abstract: The study of orders is a constantly evolving topic, not only for its interest from a theoretical
point of view, but also for its possible applications. Recently, one of the hot lines of research has
been the construction of admissible orders in different frameworks. Following this direction, this
paper presents a new representation theorem in the field of discrete fuzzy numbers that enables
the construction of two families of admissible orders in the set of discrete fuzzy numbers whose
support is a closed interval of a finite chain, leading to the first admissible orders introduced in this
framework.
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1. Introduction

It is well-established in the scientific community that the traditional scheme for the
solution of a linguistic decision analysis in a Multi-criteria Decision Making Problem
(MCDM) consists of three parts [1]:

1. The choice of the linguistic terms and/or their semantics.
2. The choice of the aggregation operator of the linguistic information.
3. The choice of the best alternatives. This step is further divided into two phases:

i. Aggregation phase of linguistic information.
ii. Exploitation phase, in which a hierarchical order is established among the

alternatives according to the value of the collective (or aggregated) linguistic
interpretation in order to choose the best alternatives.

From this scheme, the need to study and develop computational linguistic models
emerges that allow for representing, aggregating, and ordering such linguistic information
as a support tool to help the experts to express their preferences in the most flexible way.
In the last few decades, Fuzzy Sets theory [2–4] has shown its potential to design linguistic
models which allow for adequately describing the assessments of experts in a decision-
making problem. Among the Fuzzy Linguistic Models (FLM), we want to highlight the
one based on hesitant fuzzy linguistic term sets [5,6], the one based on Type-2 fuzzy sets [7]
and the six categories of fuzzy multi-granular language models established in [8], namely,
(1) the traditional multi-granular FLM based on fuzzy membership functions [9,10]; (2)
the ordinal multi-granular FLM based on a basic Linguistic Term Set (LTS) [11,12]; (3) the
ordinal multi-granular FLM based on 2-tuple FLM [13,14]; (4) the ordinal multi-granular
FLM based on hierarchical trees [15]; (5) the multi-granular FLM based on qualitative
description spaces [16]; and (6) the ordinal multi-granular FLM based on discrete fuzzy
numbers [17,18].
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As it has been aforementioned, when making a final decision on a decision-making
problem, it is necessary to choose the best alternative or set of alternatives among all the
available alternatives and therefore it is necessary to establish a hierarchical ordering of the
alternatives based on the preferences given by the experts. The study of orders is not only
an important topic from a theoretical point of view, but also for its relevance in many fields
such as: decision-making problems, artificial intelligence, optimization problems, etc. It is
obvious that the ordering will depend on the fuzzy linguistic computational model and the
order considered in each particular decision-making problem. For this reason, the study of
orders in the framework of fuzzy sets has been, and still is, a very hot topic. In this direction,
many methods have been proposed in the literature to order fuzzy numbers [19,20]. In 2014,
Wang and Wang [21] studied total orders in the set of fuzzy numbers using upper dense
sequences in the interval (0, 1] and in [22] the concept of admissible order is introduced in
the set Π[0, 1] = {[a, b] ⊆ [0, 1]}, understood as a total (linear) order that refines the product
order ≤2 in Π[0, 1] where [a, b] ≤2 [c, d] if and only if a ≤ c and b ≤ d. Moreover, in [22],
a method to generate new admissible orders using aggregation functions is presented.
The idea of admissible orders has also been adapted to the frameworks of interval-valued
Atanassov intuitionistic fuzzy sets being used in decision-making problems [23] and of
hesitant sets [24,25].

Discrete fuzzy numbers [26] and, specifically, discrete fuzzy numbers whose support
is a closed interval of a finite chain Ln = {0, 1, · · · , n} have been thoroughly analyzed
in the literature [27–30]. The main reason is that these operators have provided the the-
oretical foundations of (i) the multigranular linguistic model based on discrete fuzzy
numbers [17,18,31] and (ii) the adaptation of the linguistic model based on Z-numbers [32]
called mixed-discrete Z-numbers, recently published in [33]. Among the main advantages
of this linguistic model, the following properties stand out [8,18]: (i) they allow experts
to elicit their preferences in a very flexible way by using different types of granularity, (ii)
there is no need to make any transformations to the linguistic expressions before being
aggregated, and (iii) there is no loss of information during the aggregation process.

In the framework of discrete fuzzy numbers, as far as we know, orders have been
scarcely investigated and the only serious proposals are based on different adaptations
of orders among fuzzy numbers. These papers mostly consider ranking indices [34–38],
which, from our point of view, present some undesirable behaviors in some applications.
Therefore, in this paper, the main goal will be the construction of two different families of
admissible orders in the set of discrete fuzzy numbers whose support is a closed interval of
a finite chain Ln which are not based on any index function.

After this introduction, in Section 2, the basic concepts and results related to orders
and discrete fuzzy numbers are presented to make the work self-contained. Section 3
discusses the problems derived from the use orders based on ranking indices when used in
the exploitation phase in a decision-making problem. In particular, this problem is studied
in detail with the order presented in [35]. Section 4 constitutes the main core of the paper.
A new decomposition theorem in the set of discrete fuzzy numbers is presented that allows
for defining two families of admissible orders in A1

Ln
. The last section is devoted to some

conclusions and possible lines of future work.

2. Preliminaries

In this section, we will present the main concepts related to orders and discrete fuzzy
numbers that will be used later.

Definition 1 ([22]). Given a non-empty set A, a partial order � on the set A is a binary relation
on A which is reflexive, antisymmetric, and transitive, i.e., the following properties hold:

• for each a ∈ A, a � a (reflexivity),
• all a, b ∈ L, if a � b and b � a, then a = b (antisymmetry),
• for all a, b, c ∈ A, if a � b and b � c, then a � c (transitivity).
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We will write a ≺ b if a � b but a 6= b. A set A with a partial order � is called a partially
ordered set (poset, for short) and denoted by (A,�). If in a poset (A,�) any two elements a, b are
comparable, i.e., either a � b or b � a hold, the partial order � is called a linear (or total) order (in
this case, A is called a chain).

Let us denote by L([0, 1]) the set of all closed subintervals of the unit interval,
L([0, 1]) = {[a, b] | 0 ≤ a ≤ b ≤ 1}.

Definition 2 ([22]). Let (L([0, 1]),�) be a poset. The order � is called an admissible order, if

(i) � is a total (linear) order on L([0, 1]),
(ii) for all [a, b], [c, d] ∈ L([0, 1]), [a, b] � [c, d] whenever [a, b] ≤2 [c, d] where ≤2 denotes the

classical partial order of intervals [a, b] ≤2 [c, d] ⇐⇒ (a ≤ c) ∧ (b ≤ d).

Three classical examples of admissible orders on L([0, 1]) are the lexicographic order,
the antilexicographic order and the order proposed by Xu and Yager in [39]. This last order
is defined through the following binary relation in the set of all closed subintervals of the
unit interval:

[a, b] ≤XY [c, d]⇔ (a + b < c + d) ∨ [(a + b = c + d) ∧ (b− a ≤ d− c)]. (1)

By a fuzzy subset of R, we mean a function A : R→ [0, 1]. For each fuzzy subset A,
let Aα = {x ∈ R : A(x) ≥ α} for any α ∈ (0, 1] be its α-level set (or α-cut). By supp(A) or
A0, we mean the support of A, i.e., the set {x ∈ R : A(x) > 0}.

Let us recall the definition of a discrete fuzzy number.

Definition 3 ([26]). A fuzzy subset A of R with membership mapping A : R→ [0, 1] is called a
discrete fuzzy number, or dfn for short, if its support is finite, i.e., there exist x1, ..., xn ∈ R with
x1 < x2 < ... < xn such that supp(A) = {x1, ..., xn}, and there are natural numbers s, t with
1 ≤ s ≤ t ≤ n such that:

1. A(xi)=1 for all i with s ≤ i ≤ t. (core)
2. A(xi) ≤ A(xj) for all i, j with 1 ≤ i ≤ j ≤ s.
3. A(xi) ≥ A(xj) for all i, j with t ≤ i ≤ j ≤ n.

A dfn A with supp(A) = {x1, ..., xn} will be denoted for short as A = {A(x1)/x1, . . . ,
A(xn)/xn}.

The following theorem allows us to identify when a discrete fuzzy subset verifies the
discrete fuzzy number conditions established in the previous definition.

Theorem 1 ([40]). (Representation of discrete fuzzy numbers) Let A be a discrete fuzzy number.
Then, the following statements (1)–(4) hold:

1. Aα is a nonempty finite subset of R, for any α ∈ [0, 1].
2. Aα2 ⊆ Aα1 for any α1, α2 ∈ [0, 1] with 0 ≤ α1 ≤ α2 ≤ 1
3. For any α1, α2 ∈ [0, 1] with 0 ≤ α1 ≤ α2 ≤ 1, if x ∈ Aα1 \ Aα2 , then either x < y for all

y ∈ Aα2 or x > y for all y ∈ Aα2 .
4. For any α0 ∈ (0, 1], there exist α

′
0 ∈ (0, α0) such that Aα = Aα0 for any α ∈ [α′0, α0].

Conversely, if for any α ∈ [0, 1], there exists Aα ⊂ R satisfying analogous conditions to
the (1)–(4), then there exists a unique dfn A such that its α-cuts are exactly the sets Aα for any
α ∈ [0, 1].

Next, we provide the definition of the so-called relevant α-levels.

Definition 4. Let A be a discrete fuzzy number such that supp(A) = {x1, ..., xn}. Then, α ∈
(0, 1] is called a relevant α-level for A if there exists xi ∈ supp(A) such that A(xi) = α.
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Note that 1 is always a relevant α-level for any discrete fuzzy number A. Indeed,
from a functional point of view, the set of relevant α-levels for A is given by the image of
the membership function of A, excluding 0.

From now on, we will denote by Ln the finite chain Ln = {0, 1, . . . , n}, by DLn the
set of all discrete fuzzy numbers whose support is contained in Ln and by ALn

1 the set of
discrete fuzzy numbers whose support is a subinterval of the finite chain Ln. The interest
in the study of ALn

1 lies in the fact that this class of discrete fuzzy sets can be used as
linguistic expressions that adequately model the opinions of an expert in a problem of
decision-making (for more details, see [17,18]).

Let A, B ∈ ALn
1 be two discrete fuzzy numbers. Note that the supports of A and B and

their α-cuts are subintervals of Ln. Let Aα = [xα
1 , xα

p], Bα = [yα
1 , yα

k ] be the α-level cuts for

A and B, respectively. The following result holds for ALn
1 , but it is not true for the set of

discrete fuzzy numbers in general (see [27]).

Theorem 2 ([27]). The triplet (ALn
1 , MIN, MAX) is a bounded distributive lattice, where 1n ∈

ALn
1 (the unique discrete fuzzy number whose support is the singleton {n}) and 10 ∈ ALn

1 (the
unique discrete fuzzy number whose support is the singleton {0}) are the maximum and the
minimum, respectively, and where MIN(A, B) and MAX(A, B) are the discrete fuzzy numbers
belonging to the set ALn

1 such that they have the sets

MIN(A, B)α ={z ∈ Ln | min(xα
1 , yα

1) ≤ z ≤ min(xα
p, yα

k )} and

MAX(A, B)α ={z ∈ Ln | max(xα
1 , yα

1) ≤ z ≤ max(xα
p, yα

k )}
(2)

as α-cuts respectively for each α ∈ [0, 1] and A, B ∈ ALn
1 .

Remark 1 ([27]). Using these operations, we can define a partial order on ALn
1 in the usual way:

A � B if and only if MIN(A, B) = A, or equivalently, A � B if and only if MAX(A, B) = B
for any A, B ∈ ALn

1 . Equivalently, we can also define the partial order in terms of α-cuts:

A � B if and only if min(Aα, Bα) = Aα,

A � B if and only if max(Aα, Bα) = Bα,

where the minimum is defined through the classical partial order of intervals ≤2 (introduced in
Definition 2), and the maximum is defined analogously.

3. Total Orders on the Set ALn
1

In the literature, few total orders on the set of discrete fuzzy numbers have been
proposed. The common denominator of all these orderings is that they are based on the use
of the so-called ranking indices, that is, functions f : ALn

1 → R. In other words, the order
relies on the standard order of real numbers after mapping the discrete fuzzy numbers to
some real numbers in such a way that, given A, B ∈ ALn

1 , then

A � f B if and only if f (A) < f (B),
A ≺ f B if and only if f (A) > f (B),
A ∼ f B if and only if f (A) = f (B),
A � f B if and only if f (A) ≤ f (B),
A � f B if and only if f (A) ≥ f (B).

Namely, the total orders presented in [34–38] are embedded in this strategy. However,
the use of ranking indices has an undesired behavior from our point of view when they
are considered in the exploitation phase in a multi-criteria decision-making problem.
Since function f is not one-to-one, each discrete fuzzy number A is similar (∼) to a set of
discrete fuzzy numbers B, those satisfying that f (A) = f (B) but not necessarily satisfying
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B = A. Therefore, depending on the values of the collective (or aggregated) linguistic
assessments of the alternatives, it is possible that the total order does not provide a unique
best alternative but a subset of the alternatives.

In order to illustrate the previous fact, let us analyze for instance the total order
presented in [35]. This order is firstly proposed in the set of fuzzy numbers and then
adapted to the set of discrete fuzzy numbers. It relies on the use of the so-called left and
right dominance. Let us recall these concepts. For each discrete fuzzy number A, the lower
and upper limits of the kth α-cut (with α > 0) for A are defined as

lA,k = min
x∈R
{x | A(x) ≥ αk}, (3)

rA,k = max
x∈R
{x | A(x) ≥ αk}, (4)

respectively. From these values, the left (right) dominance DL
A,B(DR

A,B) of A over B is
defined as the average difference of the lower (upper) limits at some α-levels given by

DL
A,B =

1
n + 1

n

∑
k=0

(lA,k − lB,k), and DR
A,B =

1
n + 1

n

∑
k=0

(rA,k − rB,k)

where n + 1 α-cuts are used to calculate the dominance. Finally, the total dominance of A
over B with the index of optimism β ∈ [0, 1] is defined as the convex combination of DL

A,B
and DR

A,B by

DA,B(β) = βDR
A,B + (1− β)DL

A,B

= β
[

1
n+1 ∑n

k=0(rA,k − rB,k)
]
+ (1− β)

[
1

n+1 ∑n
k=0(lA,k − lB,k)

]
.

(5)

The above ranking index indicates that the total dominance is actually a comparison
function. The larger the index of optimism β is, the more important is the right dominance.
Herein, the index of optimism is used to reflect a decision maker’s degree of optimism.
A more optimistic decision maker generally takes a larger value of the index, for example,
a situation in which β = 1 (or 0) represents an optimistic (pessimistic) decision maker’s
perspective, and only right (left) dominance is considered.

According to [35], fixing the parameter value β ∈ [0, 1], a decision maker can rank a
pair of fuzzy numbers, A and B, using DA,B(β) according to the following rules:

1. If DA,B(β) > 0 then A > B;
2. If DA,B(β) = 0 then A = B;
3. If DA,B(β) < 0 then A < B.

These rules hide the aforementioned problem of the total orders based on ranking
indices. Although they infer that, if DA,B(β) = 0, then A = B, this is actually not true
since there exist discrete fuzzy numbers A 6= B such that DA,B(β) = 0. Let us provide
some counterexamples.

First, note that, given A, B ∈ ALn
1 , it holds that ∑n

k=0(lA,k − lB,k) and ∑n
k=0(rA,k − rB,k)

are integer numbers. On the other hand, it is evident that DA,B(β) = 0 if and only if
βDR

A,B = (β− 1)DL
A,B. Three different cases arise depending on the value of β:

• If β = 0, then

DA,B(0) = 0 if and only if
n

∑
k=0

(lA,k − lB,k) = 0

but this does not imply that A = B as the following example shows.

Example 1. Let A, B ∈ AL4
1 be such that A = {0.5/1, 1/2, 0.5/3} and

B = {0.5/1, 1/2, 1/3, 0.5/4}. It is straightforward to check that A 6= B, but, when we
consider the α-cuts {0.5, 1}, then DA,B(0) = 0. This contradicts the equality rule introduced
in [35].
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• If β = 1, then

DA,B(1) = 0 if and only if
1

n + 1

n

∑
k=0

(ri,k − rj,k) = 0

but again this does not imply that A = B as the following example shows.

Example 2. Let A, B ∈ AL4
1 be such that A = {0.5/2, 1/3, 0.5/4} and

B = {0.5/1, 1/2, 1/3, 0.5/4}. It holds that A 6= B but when the α-cuts {0.5, 1} are
considered, we obtain DA,B(1) = 0, obtaining a contradiction with the equality rule.

• Finally, consider β ∈ (0, 1). It holds that

DA,B(β) = 0 if and only if
n

∑
k=0

(rA,k − rB,k) =
β− 1

β

n

∑
k=0

(lA,k − lB,k).

Let us consider different cases depending on the fraction β−1
β :

– If β−1
β ∈ Z−, note that a sufficient condition to guarantee that DA,B(β) = 0 is

rA,k − rB,k =
β−1

β (lA,k − lB,k) for each chosen k as the following example shows.

Example 3. Let β = 0.5 and A, B ∈ AL4
1 be such that A = {0.5/1, 1/2, 0.5/3} and

B = {0.5/0, 0.5/1, 1/2, 0.5/3, 0.5/4}. Considering the α-cuts {0.5, 1}, we have that
DA,B(β) = 0 but A 6= B.

– If β−1
β 6∈ Z−, then

DA,B(β) = 0 if and only if
n

∑
k=0

(rA,k − rB,k) =
n

∑
k=0

(lA,k − lB,k) = 0.

Example 4. Let A, B ∈ AL6
1 be such that A = {(2/3)/1, 1/2, 1/3, (2/3)/4, (1/3)/5,

(1/3)/6} and B = {(1/3)/0, (1/3)/1, (2/3)/2, 1/3, 1/4, (2/3)/5}. It holds that
DA,B(β) = 0 but A 6= B.

To sum up, we have proved that, for any β ∈ [0, 1], there exist discrete fuzzy numbers
A, B such that DA,B(β) = 0 but A 6= B. It is evident that the second rule must be modified.
Indeed, DA,B(β) may be used to define an equivalence relation ∼ as follows:

A ∼ B if DA,B(β) = 0

but, of course, this means that we can not properly distinguish those fuzzy numbers which
belong to the same equivalence class. Namely, these total orders based on ranking indices
are not able to discriminate between discrete fuzzy numbers which are very different in
terms of core or support. Indeed, consider the chain L6 which can be used to represent the
linguistic chain

{Very Bad, Bad, Somewhat Bad, Normal, Somewhat Good, Good, Very Good}.

Then, the discrete fuzzy numbers A and B considered in Example 4 can be understood
as generalizations of the linguistic evaluations “Between Bad and Somewhat Bad” and
“Between Normal and Somewhat Good”, respectively. Consequently, a total order that
establishes that these two linguistic evaluations are similar may be questionable.
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4. Novel Total Orders on the Set of Discrete Fuzzy Numbers

In this section, two novel families of total orders on the set of discrete fuzzy numbers
whose support is a subinterval of the finite chain Ln are introduced. These orders will
satisfy the desirable property that given A, B ∈ ALn

1 , if A � B and B � A, then A = B.
Thus, for each set of different discrete fuzzy numbers, only one discrete fuzzy number will
be preferred among the others according to these total orders. The underlying idea of these
total orders is similar to the one used in [21] to construct a total order on the set of fuzzy
numbers by using upper dense sequences.

Before proposing the total orders, let us prove the following result related to the
decomposition of two discrete fuzzy numbers in terms of α-cuts but using those levels
belonging to the union of the relevant levels of both discrete fuzzy numbers.

Theorem 3. Let A, B ∈ ALn
1 be two discrete fuzzy numbers whose sets of relevant α-levels are

SA = {α1 < · · · < αk = 1} with k ≤ n + 1, SB = {β1 < · · · < βm = 1} with m ≤ n + 1,
respectively, and S = SA ∪ SB = {γ1 < γ2 < · · · < γt = 1} with 1 ≤ t ≤ k + m− 1. Then,

A =
⋃

γ∈S
γ · χAγ , B =

⋃
γ∈S

γ · χBγ

where
⋃

denotes the standard fuzzy union and χX denotes the indicator function given by

χX(x) =
{

1 if x ∈ supp(X),
0 otherwise,

for all x ∈ Ln.

Proof. We will prove only the first equality, the proof of the second one is analogous. Let
us consider x ∈ supp(A). Then, on the one hand, there exists γi ∈ SA such that A(x) = γi.
On the other hand, we have that⋃

γ∈S
γ · χAγ

(x) = max
γ∈S

γ · χAγ(x) = max{ max
γ∈{γ1,...,γi}

γ · χAγ(x), max
γ∈{γi+1,...,1}

γ · χAγ(x)}.

Since A(x) = γi < γ for all γ ∈ {γi+1, . . . , 1}, it holds that

max
γ∈{γi+1,...,1}

γ · χAγ(x) = 0.

Consequently,⋃
γ∈S

γ · χAγ

(x) = max
γ∈{γ1,...,γi}

γ · χAγ(x) = max
γ∈{γ1,...,γi}

γ = γi.

The previous theorem allows for expressing two discrete fuzzy numbers belonging to
ALn

1 by using the same number of α-cuts, which is obviously a finite number. This fact will
be the key to defining binary relations on the set of discrete fuzzy numbers in ALn

1 which
will define the pursued total orders.

4.1. First Family of Total Orders on ALn
1

Let us introduce the following binary relation on ALn
1 , which we will later prove

that constitutes an admissible order on ALn
1 . This first total order relies on applying an

admissible order on the set of all closed intervals of Ln to the α-cuts of A and B from the
support to the core.
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Definition 5. Let A, B ∈ ALn
1 be two discrete fuzzy numbers whose sets of relevant α-levels are

SA = {α1 < · · · < αk = 1} with k ≤ n + 1, SB = {β1 < · · · < βm = 1} with m ≤ n + 1
respectively, and SAB = SA ∪ SB = {γ1 < γ2 < · · · < γt = 1} with 1 ≤ t ≤ k + m − 1.
Let us consider an admissible order ≺δ on Π[Ln] = {[a, b] : 0 ≤ a ≤ b ≤ n, a, b ∈ Ln}.
We will say A = B if and only if all their level sets in SAB are equal, that is, Aγi = Bγi for all
i ∈ I = {1, . . . , t}. We will say A ≺

∆↑δ
B if and only if A 6= B and there exists a natural number

j ∈ I such that Aγj ≺δ Bγj and Aγi = Bγi for all i < j. We will say A �
∆↑δ

B if and only if

A = B or A ≺
∆↑δ

B.

Before proving that this binary relation is a total order, let us show an example to
understand the underlying idea. Indeed, this total order scans the two discrete fuzzy
numbers from the support to the core comparing the α-cuts of both discrete fuzzy numbers
until the α-cuts at some level are different. If all the α-cuts are equal, then both discrete
fuzzy numbers are equal. Let us illustrate this with the following example.

Example 5. Let A, B ∈ AL6
1 be such that A = {(2/3)/1, 1/2, 1/3, (2/3)/4, (1/3)/5, (1/3)/6}

and B = {(1/3)/0, (1/3)/1, (2/3)/2, 1/3, 1/4, (2/3)/5}, the same discrete fuzzy numbers
considered in Example 4. We will consider the binary relation�

∆↑δ
with the Xu and Yager admissible

order on Π[L6]. In this case, the relevant α-levels of A and B coincide and are {1/3, 2/3, 1}. Let
us compare first the 1/3-cuts:

B
1
3 = [0, 5] ≺XY [1, 6] = A

1
3 .

It holds that B ≺
∆↑XY

A. Note that we have established the ordering by comparing only the 1/3-cuts.

If the 1/3-cuts had been equal, then it would have been necessary to compare the 2/3-cuts.

Remark 2. Note that this binary relation depends on the choice of the admissible order ≺δ on
Π[Ln] = {[a, b] : 0 ≤ a ≤ b ≤ n, a, b ∈ Ln}. This fact will lead to a whole family of total orders
in ALn

1 . Indeed, consider the Xu and Yager admissible order on Π[L6] and the lexicographic order.
Let A, B ∈ AL6

1 be such that

A = {0.8/1, 0.8/2, 0.8/3, 1/4, 0.8/5, 0.8/6}

and B = {0.7/1, 0.8/2, 1/3, 0.7/4, 0.7/5, 0.7/6}. In this case, SAB = {0.7, 0.8, 1}. While
A0.7 = [1, 6] = B0.7 independently of the chosen admissible order on Π[L6], on the one hand,
B0.8 = [2, 3] ≺XY [1, 6] = A0.8 and, on the other hand, A0.8 = [1, 6] ≺lex [2, 3] = B0.8. This
implies that B ≺

∆↑XY
A but A ≺

∆↑lex
B.

On the path to prove that �
∆↑δ

is a total order on ALn
1 , let us first prove that this binary

relation fulfills the transitivity property.

Proposition 4. Let A, B, C ∈ ALn
1 . If A ≺

∆↑δ
B and B ≺

∆↑δ
C, then A ≺

∆↑δ
C.

Moreover, let SA, SB, and SC be the sets of relevant α-levels of A, B, C, respectively and
SAB = SA ∪ SB, SBC = SB ∪ SC and SAC = SA ∪ SC. Let αj ∈ SAB be such that Aαj ≺δ Bαj and
Aα = Bα for all α ∈ SAB with α < αj. Let βl ∈ SBC be such that Bβl ≺δ Cβl and Bβ = Cβ for all
β ∈ SBC with β < βl . In this case, there exists γs ∈ SAC such that Aγs ≺δ Cγs and Aγ = Cγ for
all γ ∈ SAC with γ < γs, where

γs = min{γ ∈ SAC | γ ≥ min{αj, βl} or(
γ < min{αj, βl}, γ ∈ SA \ SBC and min{β ∈ SBC | β > γ} = βl

)
or(

γ < min{αj, βl}, γ ∈ SC \ SAB and min{α ∈ SAB | α > γ} = αj
)
}.
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Proof. First of all, note that the set which defines γs is not empty since 1 ∈ SAC and
1 ≥ min{αj, βl}.

The methodology will be as follows: (i) to prove that Aγs ≺δ Cγs , (ii) to prove that
Aγ = Cγ for all γ ∈ SAC with γ < γs. We will study three different cases under the
hypothesis that αj ≤ βl (the case that βl > αj is analogous):

1. Let us suppose that γs ≥ min{αj, βl} = αj. In this case, either γs = αj or γs > αj.
In any case, by the representation theorem and the definition of γs, we have that
Aγs = Aαj . Then, Aγs = Aαj ≺δ Bαj . Now, two cases arise:

(a) If αj ∈ SC, then, by the definition of γs, it must be γs = αj. Since αj ≤ βl ,
it holds that Bαj �δ Cαj . Finally, Cαj = Cγs . Thus, we have proved that
Aγs ≺δ Cγs .

(b) If αj /∈ SC, let us define

t = min{β ∈ SBC | β ≥ αj}.

By the representation theorem, it is clear that Bαj = Bt. Now,

i. if t = βl , then it is clear that αj ∈ SA and, consequently, by the definition
of γs, it must be γs = αj. Now, by the definition of the binary relation,
Bt = Bβl ≺δ Cβl and by the representation theorem, Cβl = Cαj = Cγs .

ii. If t < βl , then Bt = Ct. By the representation theorem, Ct = Cαj .
If αj = γs, we get Cαj = Cγs trivially. Otherwise, if αj > γs, since
αj /∈ SC it must be αj /∈ SB and, consequently, t = αj. In this case,
by the definition of γs, it holds that Cαj = Cγs .

In all cases, we have proved that Aγs ≺δ Cγs .

As a second step, we must prove that Aγ = Cγ for all γ ∈ SAC with γ < γs. For such
γ, clearly γ < min{αj, βl}. Two cases must be analyzed:

(a) If γ ∈ SA, the other two cases arise:

i. If γ ∈ SBC, then since γ < min{αj, βl}, it holds that Aγ = Bγ = Cγ.
ii. If γ /∈ SBC, let us define

t = min{β ∈ SBC | β > γ}.

First, note that t < βl , otherwise this γ < min{αj, βl} would be a
candidate to become γs, contradicting with the fact that γs ≥ min{αj, βl},
which is the case we are considering. Now, since γ < αj and γ ∈ SA,
Aγ = Bγ. By the representation theorem, Bγ = Bt and since t < βl and
t ∈ SBC, Bt = Ct and again by the representation theorem, Ct = Cγ.
To sum up, Aγ = Cγ.

(b) The case γ ∈ SC is analogous to the previous case.

2. Let us suppose now that γs < min{αj, βl}with γs ∈ SA \ SBC and min{β ∈ SBC | β >
γs} = βl . In this case, first, since γs ∈ SAB and γs < αj, then by the definition of the
binary relation, Aγs = Bγs . Now, since γs /∈ SBC and min{β ∈ SBC | β > γs} = βl ,
by the representation theorem, we get that Bγs = Bβl and Cγs = Cβl . Finally, by the
definition of the binary relation, Bγs = Bβl ≺δ Cβl = Cγs . Thus, we have proved that
Aγs ≺δ Cγs .
As a second step, we must prove that Aγ = Cγ for all γ ∈ SAC with γ < γs. For such
γ, clearly γ < min{αj, βl}. Two cases must be analyzed:

(a) If γ ∈ SA, the other two cases arise:

i. If γ ∈ SBC, then since γ < min{αj, βl}, it holds that Aγ = Bγ = Cγ.
ii. If γ /∈ SBC, let us define

t = min{β ∈ SBC | β > γ}.
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First, note that t < βl , otherwise this γ < min{αj, βl} would be a
candidate to become γs, contradicting with the fact that γs > γ. Now,
since γ < αj and γ ∈ SA, Aγ = Bγ. By the representation theorem,
Bγ = Bt and, since t < βl and t ∈ SBC, Bt = Ct and again by the
representation theorem, Ct = Cγ. To sum up, Aγ = Cγ.

(b) The case γ ∈ SC is analogous to the previous case.

3. The third case which is that γs < min{αj, βl} with γs ∈ SC \ SAB and min{α ∈
SAB | α > γs} = αj is analogous to Case 2.

Example 6. Let A, B, C ∈ AL6
1 be such that A = {1/1, 0.7/2, 0.3/3}, B = {0.7/1, 1/2, 0.3/3}

and C = {0.2/3, 0.5/4, 0.8/5, 1/6}. Consider the binary relation �
∆↑δ

with the Xu and Yager

admissible order on Π[L6]. It is straightforward to check that A ≺
∆↑XY

B with αj = 1 and

B ≺
∆↑XY

C, where βl = 0.2. Let us compute the value of γs which ensures that A ≺
∆↑XY

C. In this
case,

SAC = {0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 1},

and
γs = min{γ ∈ SAC | γ ≥ min{αj, βl} = 0.2} = 0.2.

Note that there is no γ ∈ SAC such that γ < 0.2 and, moreover,

A0.2 = [1, 3] ≺XY [3, 6] = C0.2

and the strict transitivity follows.

Example 7. Let A, B, C ∈ AL6
1 be such that A = {0.6/1, 1/2, 0.3/3, 0.3/4},

B = {0.2/1, 0.5/2, 1/3, 0.5/4} and C = {0.2/1, 0.4/2, 1/3, 1/4}. Consider the binary re-
lation �

∆↑δ
with the Xu and Yager admissible order on Π[L6]. It is clear that A ≺

∆↑XY
B with

αj = 0.5 and B ≺
∆↑XY

C where βl = 0.5. In this case,

SAC = {0.2, 0.3, 0.4, 0.6, 1}, SAB = {0.2, 0.3, 0.5, 0.6, 1}, SBC = {0.2, 0.4, 0.5, 1},

and

γs = min{γ ∈ SAC | γ ≥ min{αj, βl} = 0.5 or(
γ < min{αj, βl} = 0.5, γ ∈ SA \ SBC = {0.3, 0.6} and min{β ∈ SBC | β > γ} = 0.5

)
or(

γ < min{αj, βl} = 0.5, γ ∈ SC \ SAB = {0.4} and min{α ∈ SAB | α > γ} = 0.5
)
}

= min{0.3, 0.4, 0.6, 1} = 0.3.

From Proposition 4, which proves the strict transitivity of the binary relation �
∆↑δ

,

the transitivity property follows.

Corollary 5. Let A, B, C ∈ ALn
1 . If A �

∆↑δ
B and B �

∆↑δ
C, then A �

∆↑δ
C.

Proof. The result is straightforward from Proposition 4 and the definition of the binary
relation �

∆↑δ
.

At this point, we are able to prove that the binary relation �
∆↑δ

is a total order.

Theorem 6. The binary relation �
∆↑δ

is a total order on ALn
1 .
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Proof. We want to prove that the binary relation �
∆↑δ

fulfills the following four properties:

reflexivity, antisymmetry, transitivity, and connexity. Let us consider A, B and C ∈ ALn
1

discrete fuzzy numbers whose sets of relevant α-levels are SA = {α1 < · · · < αk = 1}
with k ≤ n + 1, SB = {β1 < . . . < βm = 1} with m ≤ n + 1, SC = {γ1 < . . . < γt = 1}
with t ≤ n + 1, respectively, and SAB = SA ∪ SB = {ζ1 < ζ2 < . . . < ζp = 1} with
1 ≤ p ≤ k + m− 1.

Reflexivity: It follows trivially from Definition 5.
Antisymmetry: Let us consider A, B ∈ ALn

1 fulfilling A �
∆↑δ

B and B �
∆↑δ

A. We want

to see that A = B. We will only consider the case A ≺
∆↑δ

B and B ≺
∆↑δ

A.

(i) If A ≺
∆↑δ

B, then according to Definition 5 there exists ζ j ∈ SAB such that Aζ j ≺δ Bζ j

and Aζ = Bζ for all ζ < ζ j with ζ ∈ SAB.

(ii) If B ≺
∆↑δ

A, then, according to Definition 5, there exists ζ j′ ∈ SAB such that Bζ j′ ≺δ Aζ j′

and Bζ = Aζ for all ζ < ζ j′ with ζ ∈ SAB. Now, three cases arise:

1. If ζ j = ζ j′ , we get a contradiction from the fact that Aζ j ≺δ Bζ j = Bζ j′ ≺δ Aζ j′ =

Aζ j .
2. If ζ j < ζ j′ , we also get a contradiction because from i) Aζ j ≺δ Bζ j but from ii),

since ζ j < ζ j′ , Aζ j = Bζ j .
3. If ζ j > ζ j′ , it is analogous to the previous case.

Anyway, the antisymmetry follows.

Transitivity: Follows from Corollary 5.
Connexity: Let us consider A, B ∈ ALn

1 . We wish to show that A = B or A ≺
∆↑δ

B

or B ≺
∆↑δ

A that is all the elements of the set ALn
1 are comparable. When A 6= B, there

exist ζ ∈ SAB such that Aζ 6= Bζ . Let us consider Z = {ζ ∈ SAB | Aζ 6= Bζ}. It is obvious
that Z is a finite set and there exists a minimum. Let ζ∗ be this minimum. Then, we have
that Aζ = Bζ for all ζ < ζ∗ and therefore necessarily either A ≺

∆↑δ
B when Aζ∗ ≺δ Bζ∗ or

B ≺
∆↑δ

A when Bζ∗ ≺δ Aζ∗ .

Once we have proved that �
∆↑δ

is a total order, let us discuss the concept of admissible

order in the set ofALn
1 . As it has been recalled in Definition 2, admissible orders on L([0, 1])

are those orders that refine the standard order ≤2 in L([0, 1]). In this way, this idea can be
translated to the set ALn

1 as follows. We know that ALn
1 is a bounded distributive lattice

(see Theorem 2) with one of the two following partial orders (which are equivalent):

A � B if and only if MIN(A, B) = B (or equivalently MAX(A, B) = A),

where MAX(A, B) and MIN(A, B) are the discrete fuzzy numbers defined in Theorem 2.
It is clear that these orders coincide with ≤2 when the support of the involved discrete
fuzzy numbers coincide with their core. The next definition illustrates this idea.

Definition 6. Let (ALn
1 ,�∗) be a poset. The order �∗ is called an admissible order, if

(i) �∗ is a total order on ALn
1 ,

(ii) for all A, B ∈ ALn
1 , A �∗ B whenever A � B where � denotes the partial MIN(MAX)

order defined in Theorem 2.

The following result ensures that �
∆↑δ

is an admissible order in the sense of the

previous definition.

Theorem 7. ≺
∆↑δ

is an admissible order on ALn
1 .
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Proof. First, by Theorem 6,�
∆↑δ

is a total order. Now, consider A, B ∈ ALn
1 such that A � B

where � denotes the partial MIN order. In this case, it holds that min(Aα, Bα) = Aα,
or, equivalently Aα ≤2 Bα, for all α ∈ (0, 1]. Let SAB be the set of relevant α-levels of A or
B. For all α ∈ SAB, since δ is an admissible order in L([0, 1]) and Aα ≤2 Bα, it holds that
Aα �δ Bα. Consequently, it is clear that A �

∆↑δ
B.

4.2. Second Family of Total Orders on ALn
1

The second total order that we want to introduce follows a similar pattern as the first
one, but the comparison of the α-cuts is made from the top (core) to the bottom. Let us
define formally this idea.

Definition 7. Let A, B ∈ ALn
1 be two discrete fuzzy numbers whose sets of relevant α-levels are

SA = {α1 < · · · < αk = 1} with k ≤ n + 1, SB = {β1 < · · · < βm = 1} with m ≤ n + 1,
respectively, and SAB = SA ∪ SB = {γ1 < γ2 < · · · < γt = 1} with 1 ≤ t ≤ k + m − 1.
Let us consider an admissible order ≺δ on Π[Ln] = {[a, b] : 0 ≤ a ≤ b ≤ n, a, b ∈ Ln}.
We will say A = B if and only if all their level sets in SAB are equal, that is, Aγi = Bγi for all
i ∈ I = {1, . . . , t}. We will say A ≺

∆↓δ
B if and only if A 6= B and there exists a natural number

j ∈ I such that Aγj ≺δ Bγj and Aγi = Bγi for all i > j. We will say A �
∆↓δ

B if and only if

A = B or A ≺
∆↓δ

B.

Let us show an example to understand the idea behind this definition. In this case,
this binary relation scans the two discrete fuzzy numbers from the core to the support
comparing the α-cuts of both discrete fuzzy numbers until the α-cuts at some level are
different. If all the α-cuts are equal, then both discrete fuzzy numbers are equal. Let us
illustrate this with the following example.

Example 8. Let A, B ∈ AL6
1 be such that A = {(2/3)/1, 1/2, 1/3, (2/3)/4, (1/3)/5, (1/3)/6}

and B = {(1/3)/0, (1/3)/1, (2/3)/2, 1/3, 1/4, (2/3)/5}, the same discrete fuzzy numbers
considered in Example 5. We will consider the binary relation�

∆↓δ
with the Xu and Yager admissible

order on Π[L6]. In this case, the relevant α-levels of A and B are {1/3, 2/3, 1}. Let us compare
first the 1-cuts (the cores):

A1 = [2, 3] ≺XY [3, 4] = B1

and it holds that A ≺
∆↓XY

B. Note that we have established the ordering by comparing only the

1-cuts. If the 1-cuts had been equal, then it would have been necessary to compare the 2/3-cuts.
The result provided by this binary relation �

∆↓δ
is different from the result given by the first

admissible order �
∆↑XY

.

Let us prove that �
∆↓δ

is a total order on ALn
1 , let us first prove again that this binary

relation �
∆↓δ

fulfills the transitivity property.

Proposition 8. Let A, B, C ∈ ALn
1 . If A ≺

∆↓δ
B and B ≺

∆↓δ
C, then A ≺

∆↓δ
C.

Moreover, let SA, SB and SC be the sets of relevant α-levels of A, B, C, respectively and
SAB = SA ∪ SB, SBC = SB ∪ SC and SAC = SA ∪ SC. Let αj ∈ SAB be such that Aαj ≺δ Bαj and
Aα = Bα for all α ∈ SAB with α > αj. Let βl ∈ SBC be such that Bβl ≺δ Cβl and Bβ = Cβ for all
β ∈ SBC with β > βl . In this case, there exists γs ∈ SAC such that Aγs ≺δ Cγs and Aγ = Cγ for
all γ ∈ SAC with γ > γs, where

γs = min{γ ∈ SAC | γ ≥ max{αj, βl}}.
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Proof. First of all, note that the set which defines γs is not empty since again 1 ∈ SAC and
1 ≥ max{αj, βl}.

The methodology will be as follows: (i) to prove that Aγs ≺δ Cγs , (ii) to prove that
Aγ = Cγ for all γ ∈ SAC with γ > γs.

Let us start with (i). We know that γs ≥ max{αj, βl}, and we will suppose that αj ≥ βl ;
the other case is analogous.

By the representation theorem and the definition of γs, we have that Aγs = Aαj . Then,
by the definition of �

∆↓δ
, Aγs = Aαj ≺δ Bαj . Now, two cases arise:

1. If αj ∈ SC, then, by the definition of γs, it must be γs = αj. Since αj ≥ βl , it holds that
Bαj �δ Cαj . Finally, Cαj = Cγs . Thus, we have proved that Aγs ≺δ Cγs .

2. If αj /∈ SC, let us define
t = min{β ∈ SBC | β ≥ αj}.

By the representation theorem, it is clear that Bαj = Bt. Now,

(a) If t = αj, then it is clear that αj ∈ SB and, consequently, by the definition
of �

∆↓δ
and the fact that αj ≥ βl , it holds that Bt �δ Ct = Cαj and, by the

representation theorem, Cαj = Cγs .
(b) If t > αj, then αj /∈ SBC and αj ∈ SA. Now, by the definition of �

∆↓δ
and the

fact that t > βl , it holds that B=Ct and then, by the representation theorem,
Ct = Cαj = Cγs .

In all cases, we have proved that Aγs ≺δ Cγs .

As a second step, we must prove that Aγ = Cγ for all γ ∈ SAC with γ > γs. For such γ,
clearly γ > max{αj, βl}. Two cases must be analyzed:

1. If γ ∈ SB, then γ ∈ SAB ∩ SBC and, by the definition of the binary relation �
∆↓δ

, it

holds that Aγ = Bγ = Cγ.
2. If γ /∈ SB, then two cases must be analyzed:

(a) If γ ∈ SA, then since γ > αj, it holds that Aγ = Bγ. Let us define

t = min{β ∈ SBC | β ≥ γ}.

By the representation theorem, Bγ = Bt and since t > βl and t ∈ SBC, Bt = Ct

and again by the representation theorem, Ct = Cγ. To sum up, Aγ = Cγ.

3. The case γ /∈ SA is analogous to the previous case.

The following example illustrates the strict transitivity.

Example 9. Let A, B, C ∈ AL6
1 be such that A = {0.4/0, 0.9/1, 0.9/2, 0.9/3, 1/4, 0.9/5},

B = {0.5/1, 0.8/2, 0.8/3, 1/4, 0.8/5, 0.5/6} and C = {0.7/1, 0.7/2, 0.7/3, 1/4, 0.7/5, 0.3/6}.
Consider the binary relation �

∆↑δ
with the Xu and Yager admissible order on Π[L6]. It is straight-

forward to check that A ≺
∆↓XY

B with αj = 0.9 and B ≺
∆↓XY

C where βl = 0.8. Let us compute the

value of γs which ensures that A ≺
∆↓XY

C. In this case,

SAC = {0.3, 0.4, 0.7, 0.9, 1},

and
γs = min{γ ∈ SAC | γ ≥ max{αj, βl} = 0.9} = 0.9.

Note that A0.9 = [1, 5] ≺XY [4, 4] = C0.9 while A1 = [4, 4] = B1.

Similarly to the case of the first family of orders presented in Section 4.1, the transitivity
property follows.



Mathematics 2021, 9, 95 14 of 16

Corollary 9. Let A, B, C ∈ ALn
1 . If A �

∆↓δ
B and B �

∆↓δ
C, then A �

∆↓δ
C.

Proof. Follows directly from Proposition 8 and the definition of the binary relation�
∆↓δ

.

Now, we can show that the binary relation �
∆↓δ

is a total order.

Theorem 10. The binary relation �
∆↓δ

is a total order on ALn
1 .

Proof. We skip the proof that is analogous to the proof of Theorem 6.

Finally, by the same reasoning considered in Section 4.1, �
∆↓δ

is an admissible order.

Theorem 11. ≺
∆↓δ

is an admissible order on ALn
1 .

4.3. Some Reflections about These Two Families of Admissible Orders

In this section, we have introduced two families of admissible orders on ALn
1 . While

both orders have a quite similar definition and are based on the sequential comparison of
the α-cuts, their interpretation from the decision-making point of view is very different.

In the first family ≺
∆↑δ

, the comparison is made from the support to the core and,

therefore, the order prioritizes lower α-cuts. If the discrete fuzzy numbers represent
linguistic evaluations provided by experts in a decision-making problem, the order takes
into account first the support, which includes all the possible linguistic labels considered
by the expert. Therefore, this order could be understood as a conservative assessment, any
value within the support is considered to take the decision. This is a common strategy to
generate orders in the set of fuzzy numbers.

On the other hand, the second family ≺
∆↓δ

decides the ordering comparing the α-cuts

from the core to the support prioritizing higher α-cuts. In a decision-making problem,
the order takes into account first the core, which includes only the linguistic labels expressed
by the expert as those ones with a highest membership value. Therefore, this order could
be understood as a more optimistic assessment, excluding first any linguistic labels not
included in the core.

Consequently, the choice of one of the families will depend on the attitude of the
group of experts.

5. Conclusions and Future Work

In the existing literature, the amount of total orders in the set of discrete fuzzy num-
bers whose support is a closed interval in the finite chain Ln is scarce, and they always
depend on a ranking index. Specifically, the orders in the set of discrete fuzzy numbers
proposed in [34–38] follow this strategy. The use of this kind of orders may have undesired
consequences when they are applied to decision-making problems. Indeed, these total
orders based on ranking indices are not able to distinguish between discrete fuzzy numbers
(and, therefore, between experts’ opinions) which are very different in terms of core and
support as it has been explained in detail in Section 3. This inability to distinguish between
different discrete fuzzy numbers can jeopardize the results in any decision-making appli-
cation, where a final alternative must be chosen or a consensus between experts must be
reached. For this reason, in this paper, we have presented two families of total orders on
ALn

1 designed from an admissible order on Π[Ln] = {[a, b] : 0 ≤ a ≤ b ≤ n, a, b ∈ Ln}.
These two orders, which have different behaviors depending on the chosen admissible
order on Π[Ln] and the attitude of the group of experts, are also admissible.

As a future work, we want to embed these admissible orders onALn
1 in decision-making,

consensus-reaching, and image processing algorithms based on discrete fuzzy numbers.
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