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Abstract: A flexible attribute-set group decision-making (FAST-GDM) problem consists in finding
the most suitable option(s) out of the options under consideration, with a general agreement among
a heterogeneous group of experts who can focus on different attributes to evaluate those options.
An open challenge in FAST-GDM problems is to design consensus reaching processes (CRPs) by
which the participants can perform evaluations with a high level of consensus. To address this chal-
lenge, a novel algorithm for reaching consensus is proposed in this paper. By means of the algorithm,
called FAST-CR-XMIS, a participant can reconsider his/her evaluations after studying the most influ-
ential samples that have been shared by others through contextualized evaluations. Since exchanging
those samples may make participants’ understandings more like each other, an increase of the level
of consensus is expected. A simulation of a CRP where contextualized evaluations of newswire
stories are characterized as augmented intuitionistic fuzzy sets (AIFS) shows how FAST-CR-XMIS
can increase the level of consensus among the participants during the CRP.

Keywords: augmented intuitionistic fuzzy sets; contextualized evaluations; group decision-making;
recurrent evaluations; consensus reaching process; computational intelligence; explainable artificial
intelligence; explainable support vector machine classification

1. Introduction

Group decision-making (GDM) is concerned with choosing the most adequate option
among several potential options. While a straightforward strategy for solving a GDM
problem is to reach a decision without the agreement of the participants, a more inclusive
one consists in making a decision with a general agreement among them [1]. Since a
unanimous agreement might be difficult to reach, a partial agreement may be preferable
to make a decision [2–4]. The level of agreement is expected to be higher in cooperative
environments. Scientific or medical decisions where participants are willing to share their
knowledge are examples of such environments [5–7]. In contrast, lower levels of agreement
are expected in non-cooperative environments where participants are reluctant to share
their knowledge (e.g., political or economical decisions) [5,8,9]. In situations where some
participants have more expertise than others, the agreement on the decision might be
highly influenced by the expertise of such participants [10–12].

Bearing in mind that participants of a GDM problem might have access to multiple
sources of information [1,13–15], models that manage homogeneous [16–18] and hetero-
geneous information [13,19–21] in GDM can be found in the literature. Models handling
homogeneous information often represent the attribute values characterizing the options
through a single domain (e.g., numerical, interval-valued or linguistic domain). In contrast,
models handling heterogeneous information usually transform different domains into
one to handle those values [19]. Nevertheless, a single domain does not guarantee an
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agreement on which aspects or attributes of the options should be considered in their evalu-
ation. This is the case when a heterogeneous group of participants, i.e., participants having
different levels of knowledge, areas of expertise and personal backgrounds, differ in
their opinions [22]. For instance, consider an editorial team, consisting of an agronomist,
an economist and an editor, trying to reach an agreement on the articles (potential options)
to be published in a special issue on ecological and safe transport of agricultural products.
The agronomist might focus on aspects (attributes) like agricultural crop categories (‘soil’,
‘wheat’, ‘corn’, etc.) during the evaluation of the articles. The economist might pay attention
to aspects like ‘costs’ and ‘delivery time’. Finally, the editor might focus on aspects like
‘originality’, ‘relevance’ and ‘linguistic quality’.

A modular approach to handle heterogeneous information has been proposed in [23].
In that approach, the participants may carry out their own selection of attributes to per-
form their evaluations. However, this approach does not consider situations where the
participants share their attributes to solve a GDM problem. Such a situation has been
studied in [24]. In that work, the authors define a flexible attribute-set group decision-
making (FAST-GDM) problem in which the participants may be suggested to refocus their
attention on a shared collection of attributes that were initially observed by some persons,
but unobserved by others.

In FAST-GDM two processes can be identified: a consensus reaching process (CRP)
and a selection process (SP). During the CRP, the participants try to agree on the most
suitable option(s) with a satisfactory level of consensus [1,25,26]. If a satisfactory level of
consensus is reached, a SP starts by selecting the option(s) according to the preferences
of the participants [14,16]. To quantify the level of consensus in a CRP, a moderator can
be supported by indices, e.g., a concordance index between the evaluations given by the
participants [27]. In the case of FAST-GDM, the usability of several theoretical concordance
indices has been studied in [28].

Designing CRPs for the participants to perform evaluations with a high level of con-
sensus in FAST-GDM is a key challenge. To address this challenge, a novel variant of the
CRP proposed in [24] is described in this paper. The variant, called flexible attribute-set
consensus reaching by exchange of the most influential samples (FAST-CR-XMIS), aims
at increasing the level of consensus by additionally exchanging the most influential sam-
ples identified by the participants (experts or non-experts) during the evaluation process.
Such samples are well-known by the participants according to their individual experiences
and are regarded as relevant cases to put the evaluated options in context. For instance,
if the above-mentioned agronomist might recall an old article included in a previous spe-
cial issue on ecological and safe transport of agricultural products, which is intrinsically
connected to a new article. The agronomist might then use the old article to contextualize
the evaluation of the new article. In this regard, the idea behind FAST-CR-XMIS is that,
after exchanging the most influential samples, the participants’ understandings about
the problem will become better attuned to each other and, thus, the collective level of
consensus will be increased.

To model and handle the previous idea, a mathematical framework based on aug-
mented intuitionistic fuzzy sets (AIFSs) [29] is used within FAST-CR-XMIS. As will be
shown in the next section, the FAST-GDM problem is mathematically modeled using this
framework. Thus, FAST-CR-XMIS makes use of this framework to, e.g., quantify the level
of consensus among the evaluations performed during a CRP.

In addition to increasing the level of consensus, a key advantage of FAST-CR-XMIS
is that it may be used to perform recurrent CRPs, where a particular group (or panel) of
participants is established to carry out periodic evaluations in a given GDM problem. In this
case, since the participants’ understanding about the problem will become better attuned
to each other after the first CRP, forthcoming CRPs are expected to be even more efficient.

To show how FAST-CR-XMIS works, a computerized simulation of a CRP in which
a given number of participants try to reach an agreement on the category of newswire
stories is presented in Section 4. Before, in Section 2 the definitions and formal notations
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that are used throughout the paper are introduced. Next, a comprehensive explanation of
the novel FAST-CR-XMIS algorithm is presented in Section 3. The results of the simulation
are presented in Section 5 and a discussion about these is presented in Section 6. Finally,
the paper concludes in Section 7 with some future research directions.

2. Preliminaries

As has been mentioned above, group decision-making is usually understood as a
process by which a group of experts (Since participants in GDM are considered to have
some expertise on the subject under discussion, hereafter the term ‘experts’ is used for
referring to them.) try to reach a collective decision about potential solutions for a particular
problem. During that process, each expert evaluates the potential solutions, called options,
according to his/her knowledge or experience. Mathematically, such evaluations can be
described as follows:

Consider a discrete collection X = {x1,⋯, xn} consisting of the potential solutions for
a given problem, as well as a collection A ⊆ X consisting of the suitable options for this
problem. Consider also a collection E = {E1,⋯, Em} representing a group of experts who
have been asked to evaluate the level to which each option xi ∈ X satisfies a proposition p
having the canonical form ‘xi IS A’ meaning xi is member of A and hence is considered a
suitable option.

In the framework of fuzzy set theory [30], the evaluation of the level to which xi
satisfies p performed by an expert Ej ∈ E can be characterized by a membership grade
µA@Ej(xi), which is a number in the unit interval [0, 1] where 0 and 1 respectively represent
the lowest and the highest membership level. Hence, the evaluations of the options
performed by Ej can be denoted by a fuzzy set of suitable options, say A@Ej , such that

A@Ej ={⟨xi, µA@Ej(xi)⟩ ∣ (xi ∈ X) ∧ (0 < µA@Ej(xi) ≤ 1)}. (1)

Notice that, in this framework the evaluation of p is considered as being a matter of
degree, i.e., the evaluation of p is not limited to the lowest and the highest membership
levels, but all the values in between.

In circumstances where Ej hesitates about the level to which xi satisfies p, such an evalu-
ation can be better described in the framework of intuitionistic fuzzy sets (IFSs) [31,32]. In this
framework, the evaluation can be characterized by an IFS element ⟨xi, µA@Ej(xi), νA@Ej(xi)⟩, in
which the components µA@Ej(xi) and νA@Ej(xi) respectively represent the levels of mem-
bership and nonmembership of xi to the IFS A@Ej . Thus, the evaluations performed by Ej
can be denoted by an IFS, say A@Ej , such that

A@Ej ={⟨xi, µA@Ej(xi), νA@Ej(xi)⟩ ∣ (xi ∈ X) ∧ (0 ≤ µA@Ej(xi) + νA@Ej(xi) ≤ 1)}, (2)

where 0 ≤ µA@Ej(xi) + νA@Ej(xi) ≤ 1 represents the consistency condition. A hesitation
margin defined by hA@Ej(xi) = 1 − (µA@Ej(xi) + νA@Ej(xi)) has been proposed to repre-
sent the hesitation of Ej during the evaluation of the membership and nonmembership
levels [31,32].

In situations where a heterogeneous group of experts try to find a collective decision,
experts might like to express not only the level to which xi satisfies p, but also the reasons
justifying that level. That is, experts might like to perform contextualized evaluations of p.
Such contextualized evaluations can be described in the augmented framework proposed
in [29]. In this framework, a contextualized evaluation of the level to which xi satisfies p
carried out by an expert Ej can be characterized by an augmented appraisal degree (AAD).
An AAD, say µ̂A@Ej(xi), is a pair ⟨µA@Ej(xi), FµA@Ej

(xi)⟩, whose components denote the

level µA@Ej(xi) to which xi satisfies p, as well as the particular collection (More specifically
this collection might be represented by a list, a set, a multi-set, among others.) FµA@Ej

(xi)

of the xi’s features that have been relevant to the evaluation according to the knowledge
about A possessed by Ej, further denoted by KA@Ej .
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The augmentation of IFS elements by means of AADs has also been proposed in [29].
An augmented IFS element ⟨xi, µ̂A@Ej(xi), ν̂A@Ej(xi)⟩ consists of both a membership AAD
µ̂A@Ej(xi) and a nonmembership AAD ν̂A@Ej(xi). While the meaning of µ̂A@Ej(xi) is the
same as described above, ν̂A@Ej(xi) is a pair ⟨νA@Ej(xi), FνA@Ej

(xi)⟩ whose components

denote the level νA@Ej(xi) to which xi dissatisfies p and the collection FνA@Ej
(xi) of the xi’s

features considered by Ej for quantifying the nonmembership level. Hence, the contextual-
ized evaluations performed by Ej can be denoted by an augmented IFS (AIFS) (The terms
Atanassov insuitionistic fuzzy set (AIFS) and augmented Atanassov intuitionistic fuzzy set
(AAIFS) are also found in the literature. ), say Â@Ej , such that

Â@Ej ={⟨xi, µ̂A@Ej(xi), ν̂A@Ej(xi)⟩ ∣ (xi ∈ X) ∧ (0 ≤ µA@Ej(xi) + νA@Ej(xi) ≤ 1)}. (3)

As can be noticed, the condition 0 ≤ µA@Ej(xi) + νA@Ej(xi) ≤ 1 has been inherited from
the original definition of an IFS. A depiction of the contextualized evaluations performed
by Ej characterized as an AIFS is shown in Figure 1.

...

...
evaluation

process

Figure 1. Contextualized evaluations Â@Ej of the options X = {x1,⋯, xn} satisfying the proposition
‘xi IS A’ performed by Expert Ej according to the expert’s knowledge KA@Ej .

In [24], the authors make use of the above-mentioned characterization to define a
FAST-GDM problem as follows:

Let Â@Ej be an AIFS representing the contextualized evaluations given by an expert
Ej ∈ E, and let

Â ={⟨xi, µ̂A(xi), ν̂A(xi)⟩ ∣ (xi ∈ X) ∧ (0 ≤ µA(xi) + νA(xi) ≤ 1)} (4)

be an AIFS representing the computed overall collective evaluation of the group of experts.
Let also cix(⋅, ⋅) be a function, named concordance index, that is used for computing the
level of concordance between Â@Ej and Â such that it obtains a maximum value when
the concordance between them is the highest. Under these considerations, a FAST-GDM
problem runs into finding the most suitable option(s) with a general agreement among
the experts. That is, finding the most suitable option(s) in such a way that the aggregation
of the concordance indices (e.g., the average 1

m ∑Ej∈E cix(Â@Ej , Â) where m denotes the
number of experts) is maximized.

A way to compute a concordance index between the individual and collective evalua-
tions is by means of a function S(⋅, ⋅) that computes the similarity between the AIFSs that
represent those evaluations [28], i.e., the concordance index between Â@Ej and Â can be
computed through the expression cix(Â@Ej , Â) = S(Â@Ej , Â).
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Functions that compute the similarity between two IFSs, say J and A, have been
proposed in [28] to compute the concordance index between the individual and collective
evaluations. Among those functions, one can find the following proposed in [33]:

SSK1(J, A) = 1− f (l(J, A), l(J, Ac
)), (5)

SSK2(J, A) =
1− f (l(J, A), l(J, Ac))

1+ f (l(J, A), l(J, Ac))
, (6)

SSK3(J, A) =
(1− f (l(J, A), l(J, Ac)))

2

(1+ f (l(J, A), l(J, Ac)))
2 (7)

and

SSK4(J, A) =
e− f(l(J,A),l(J,Ac)) − e−1

1− e−1 , (8)

where Ac is the complement of A, i.e.,

Ac
= {⟨xi, νA(xi), µA(xi)⟩∣(xi ∈ X) ∧ (0 ≤ µA(xi) + νA(xi) ≤ 1)}, (9)

l(J, A) represents the Hamming distance between A and J, i.e.,

l(J, A)=
1

2n

n
∑
i=1

(∣µA(xi)−µJ(xi)∣ + ∣νA(xi)−νJ(xi)∣+∣hA(xi)−hJ(xi)∣), (10)

and
f (l(J, A), l(J, Ac

)) =
l(J, A)

l(J, A) + l(J, Ac)
. (11)

It is worth mentioning that the flat operator, ê ⋅ ⊩, which turns an AIFS into an IFS
by excluding the feature collections contained in each of its elements [28], can be used for
converting Â@Ej and Â into IFSs J and A respectively.

The above-mentioned concepts are used in the next section to describe a novel variant
of the method for reaching consensus in FAST-GDM problems proposed in [24].

3. Increasing the Concordance by Exchanging the Most Influential Samples

As indicated in Section 1, a CRP and a SP are commonly used for solving a FAST-GDM
problem [24]. During the CRP, each expert is first asked to evaluate the options. Then,
the collective evaluations and the level of consensus are computed. If the computed level
is not enough and asking the experts to perform a new round of evaluations is possible,
the experts are given feedback on their evaluations and the CRP starts all over again.
If the computed level is enough, the selection of the best suitable option(s) based on the
computed collective evaluations is performed during the SP. Otherwise, the experts are
notified that no consensus has been reached. The novel FAST-CR-XMIS, which aims at
increasing the level of consensus in a CRP, is described in this section.

3.1. Idea behind FAST-CR-XMIS

During the evaluation of an option, an expert can recall one or more samples that
show what he/she understands as suitable (or unsuitable) options for a given problem.
Since such samples have an influence on his/her evaluation, the expert can use them to
put the evaluation in context –cf. [34,35] where similar ideas have been used to handle
subjective evaluations carried out by persons with different background. For instance,
Figure 2 depicts a case in which an expert, say Ej, considers sµ@Ej(xi) as a good sample to
put the evaluation of xi satisfying the proposition ‘xi IS A’ in context, which is reflected
in the AAD µ̂A@Ej(xi). In this case, Ej also considers that sν@Ej(xi) is a good sample to
contextualize the evaluation of the level to which xi dissatisfies ‘xi IS A’, which is reflected
in the AAD ν̂A@Ej(xi). Notice that sµ@Ej(xi) and sν@Ej(xi) are part of the training collection
X0@Ej used by Ej to acquire the knowledge KA@Ej about the (collection A of) suitable
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options. This knowledge is then used during the evaluation of the potential options
included in a collection X = {x1,⋯, xn}.

evaluation

process

learning

process

Figure 2. Expert Ej makes use of the most influential samples, sµ@Ej(xi) and sν@Ej(xi), to contextual-
ize his/her evaluation of the option xi. These samples are part of the training collection X0@Ej used
by Ej to learn about the (collection A of) suitable options.

The samples sµ@Ej(xi) and sν@Ej(xi) detected by Ej are included into two collections,
MµA and MνA , along with the samples detected by other experts. These collections of
influential samples can be shared among the experts in such a way that the experts can
study those samples and choose some of them to update their knowledge models.

In that regard, the idea behind FAST-CRP-XMIS is for experts to use their updated
knowledge models to perform a new round of evaluations. Since the updated knowledge
models of all the experts might be more aligned to each other after the exchange of the
influential samples, an increment of the level of consensus among the new evaluations is
expected. This idea is depicted in Figure 3. Notice that, after a round of contextualized
evaluations, each expert Ej can use the collections M∗

µA
and M∗

νA
, which are subsets of

MµA and MνA respectively, along with the training collection X0@Ej to update his/her
knowledge KA@Ej –here, the use of M∗

µA
and M∗

νA
reflect the fact that Ej might put his/her

attention only on some of the samples included in MµA and MνA for updating his/her
knowledge. After that, Ej can use the updated knowledge to perform a new evaluation of
the level to which xi satisfies ‘xi IS A’.

evaluation

process

learning

process

...

...

Figure 3. Expert Ej studies the samples in MµA and MνA and uses M∗
µA ⊆ MµA and M∗

νA ⊆ MνA along
with the training collection X0@Ej to update his/her knowledge KA@Ej about the (collection A of)
suitable options.
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3.2. FAST-CR-XMIS Algorithm

The above-mentioned idea is implemented in Algorithm 1. The algorithm takes the
same inputs used by the algorithm FAST-CR proposed in [24], i.e., a collection of experts
(E), a collection of potential solutions (X), a consensus threshold (τ) and the maximum
number of iterations (η) that is allowed while trying to reach consensus. Like FAST-CR,
FAST-CR-XMIS tries to obtain (a collection of) contextualized evaluations (Â) so that the
computed level of consensus is greater than or equal to the required consensus threshold
(τ). FAST-CR-XMIS returns a collection of collective evaluations and a flag that indicates
whether a consensus has been reached or not.

Like in FAST-CR, four logical phases are identified in FAST-CR-XMIS: characterization,
aggregation, quantification and feedback. In the characterization phase the evaluations
performed by the experts (see Line 6) are characterized as AIFSs (see Lines 7–8). Such evalu-
ations are aggregated and, then, included into the collection of collective evaluations during
the aggregation phase (see Lines 10–15). The collective level of consensus is computed
during the quantification phase (see Line 16). The experts are given feedback on their
evaluations through the feedback phase (see Lines 26–30).

In addition to those four phases, a fifth assembling phase is considered in FAST-
CR-XMIS (see Lines 18–25). During this phase, the most influential samples sµ@Ej(xi)

and sν@Ej(xi) detected by each expert are included into the collections MµA and MνA

respectively.
Even though the main difference between FAST-CR-XMIS and FAST-CR is the assem-

bling phase, another difference exists in the feedback phase. In FAST-CR, each expert is
notified with a suggestion on how to modify the evaluation of xi taking into account the
collection of xi’s attributes FµA(xi) and FνA(xi), which are respectively part of the AADs
µ̂A(xi) and ν̂A(xi) of the AIFS element ⟨xi, µ̂A(xi), ν̂A(xi)⟩. In contrast, in FAST-CR-XMIS
each expert is additionally notified with a suggestion on how to modify the evaluation
of xi considering the most influential samples detected for xi: while MµA(xi) is offered in
the case of the level to which xi is a suitable option (see Line 29), MνA(xi) is offered in the
case of the level to which xi is an unsuitable option (see Line 30). It is worth mentioning
that the suggestions to modify the evaluations of xi in FAST-CR-XMIS are based on the
most influential samples included in MµA(xi) and MνA(xi), which complement to the
aggregated collections of attributes included in FµA(xi) and FνA(xi). Thus, the experts can
choose between selecting the samples to update their understandings or using the values
of the attributes to modify a specific evaluation.

Regarding the interpretation of the notification, while µA(xi) − µA@Ej(xi) > 0 suggests
that Ej should increase µA@Ej(xi) to an extent ∣µA(xi) − µA@Ej(xi)∣, the expression µA(xi) −

µA@Ej(xi) < 0 suggests that Ej should decrease µA@Ej(xi) to the same extent. Likewise,
while νA(xi)−νA@Ej(xi) > 0 suggests that Ej should increase νA@Ej(xi) to an extent ∣νA(xi)−

νA@Ej(xi)∣, the expression νA(xi)− νA@Ej(xi) < 0 indicates that Ej should decrease νA@Ej(xi)

to the same extent.
Even though it is not explicitly mentioned in Algorithm 1, the study of the most

influential samples and the update of the knowledge models carried out by each expert are
expected to happen before a new round of evaluations. As previously stated, each expert
might use the samples in M∗

µA
and M∗

νA
, which are subsets of of MµA and MνA respectively,

for updating the knowledge models. In this regard, since different knowledge models exist,
each of them having specific update mechanisms, handling them all is outside the scope of
this paper. However, an example that illustrates how those knowledge models work and
can be updated is provided in the simulation presented in the next section.
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Algorithm 1: FAST-CR-XMIS.

/* E: Experts; X: Options; τ: Consensus threshold; η: Maximum
number of rounds */

Data: E, X, τ, η
/* consensusReached: true or false, Â: collective evaluations */
Result: consensusReached, Â

1 τ∗ ← 0 /* Current level of consensus */
2 η∗ ← 0 /* Current number of rounds */
3 n ← ∣X∣ /* Number of options */
4 m ← ∣E∣ /* Number of experts */
5 repeat
6 waitForAllEvaluations (E, X)

/* Characterize the evaluations as AIFSs */
7 foreach Ej ∈ E do
8 Â@Ej ← readEvaluationFrom (Ej)

9 Â ← {}

/* Aggregate the evaluations for each option */
10 foreach xi ∈ X do
11 µA(xi) ←

1
n ∑Ej∈E µA@Ej(xi)

12 FµA(xi) ← ⋃Ej∈E FµA@Ej
(xi)

13 νA(xi) ←
1
n ∑Ej∈E νA@Ej(xi)

14 FνA(xi) ← ⋃Ej∈E FνA@Ej
(xi)

15 Â ← Â ∪ {⟨xi, ⟨µA(xi), FµA(xi)⟩, ⟨νA(xi), FνA(xi)⟩)⟩}

/* Compute the collective concordance index */
16 τ∗ ← 1

m ∑Ej∈E cix(Â@Ej , Â)

17 if τ∗ < τ then
/* Assemble the most influential samples for each option. */

18 foreach xi ∈ X do
19 MµA(xi) ← {}

20 MνA(xi) ← {}

21 foreach Ej ∈ E do
22 sµ@Ej(xi) ← mostInfluentialPositive(Â@Ej(xi))

23 sν@Ej(xi) ← mostInfluentialNegative(Â@Ej(xi))

24 MµA(xi) ← MµA(xi) ∪ {sµ@Ej(xi)}

25 MνA(xi) ← MνA(xi) ∪ {sν@Ej(xi)}

/* Give the experts feedback on their evaluations */
26 foreach Ej ∈ E do
27 notify(Ej, ‘Level of consensus:’,cix(Â@Ej , Â))

28 foreach xi ∈ X do
/* Adapt µA@Ej(xi) according to MµA(xi) or FµA(xi) */

29 notify(Ej, ‘Suggested action:’, xi, µA(xi) −

µA@Ej(xi), MµA(xi), FµA(xi))

/* Adapt νA@Ej(xi) according to MνA(xi) or FνA(xi) */
30 notify(Ej, ‘Suggested action:’, xi, νA(xi) −

νA@Ej(xi), MνA(xi), FνA(xi))

31 η∗ ← η∗ + 1
32 until (τ∗ ≥ τ) or (η∗ > η)
33 consensusReached ← (τ∗ ≥ τ)

34 return consensusReached, Â
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4. Simulation

In this section, a computerized simulation of a CRP in which a configurable number
of experts try to reach consensus on the category of newswire stories is described. This sim-
ulation has been created to show how the novel FAST-CR-XMIS can help to increase the
level of consensus among the participants in FAST-GDM problems.

As mentioned in Section 2, an AIFS Â@Ej can be used for denoting the contextualized
evaluations of a collection X = {x1,⋯, xn} of potential options (newswire stories) satisfying
the proposition ‘xi belongs to category A’, which are performed by an expert Ej according
to the knowledge KA@Ej that the expert has on how a typical story in category A looks
like (see Figure 1). Since such an AIFS is used inside Algorithm 1, a learning process
and an evaluation process are needed to obtain KA@Ej and Â@Ej respectively. For the
sake of illustration, the learning process and the augmented evaluation process applied in
explainable support vector machine classification (XSVMC) [36] have been used for this
simulation–other techniques like those proposed in [37] can also be applied.

To develop the simulation, a collection consisting of 21578 newswire stories provided
by Reuters, Ltd., named Reuters-21578 [38], has been used. Among those newswire stories,
5108 stories related to one or more categories in C = {acq, corn, earn, grain, ship, wheat}
were distributed among a configurable number of m experts (m ≥ 2) to build a training
collection X0@Ej for each expert Ej where j ≤ m. For instance, Table 1 shows the distribution
of newswire stories among experts E1, E2 and E3 (i.e., m = 3). Notice that the number of
stories assigned to E3 differs from E1 and E2 to imitate by some means the heterogeneity of
this group.

Table 1. Example of the distribution of newswire stories among experts E1, E2 and E3.

Category E1 E2 E3

acq 551 551 386
corn 61 61 37
earn 960 960 789
grain 145 145 104
ship 66 66 59
wheat 71 71 56

To obtain a knowledge model KA@Ej , the XSVMC learning process requires each of
the stories in X0@Ej being associated with a label that indicates whether the story belongs
to the category A. Thus, to obtain, e.g., Kcorn@Ej , which represents the knowledge about the
category corn possessed by Ej, the articles in X0@Ej were labeled following an ‘one-versus-
the-rest’ strategy, i.e., the stories belonging to corn were labeled as positive examples,
while the stories that do not belong to this category were labeled as negative examples.

To obtain a collection of contextualized evaluations Â@Ej , the XSVMC evaluation
process requires a knowledge model KA@Ej and a collection X consisting of the stories
subject to evaluation. Hence, to simulate the evaluations of the level to which the stories in
X belong to the category corn performed by Ej, Kcorn@Ej along with X were used as input
in the XSVMC evaluation process. The main advantage of using XSVMC for the simulation
is that the XSVMC evaluation process makes use of the most influential support vectors
to contextualize the evaluations and, thus, it makes the obtention of the most influential
samples (i.e., newswire stories) easier (see Lines 21–25 in Algorithm 1).

To compute the concordance index between the collection Â@Ej consisting of the
evaluations performed by Ej and the collection Â consisting of the collective evaluations,
Equations (5)–(8) have been used in the simulation–the interested reader is referred to [39]
for an open-source implementation of these concordance indices in FAST-GDM problems.
If the computed collective concordance index is less than the required level of consensus in a
particular round (see Line 16 in Algorithm 1), the most influential samples are incorporated
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into the training collections and a new XSVMC learning process is performed for each
expert before the next round of evaluations is initiated (see Figure 3).

To measure the effect of the updated (knowledge) models on the level of consensus,
the collective concordance indices τ∗f irst and τ∗last, corresponding to the first and last rounds
respectively, were computed in 420 simulated FAST-CR-XMIS processes. Each category
A ∈ C, each number of experts m ∈ {2,⋯, 8} and 10 different test collections, say X1,⋯, X10,
each containing between 15 and 19 newswire stories, were used as input of these FAST-CR-
XMIS processes. The results are presented in the next section.

5. Experimental Results

The averages τ̄∗f irst and τ̄∗last of the computed collective concordance indices τ∗f irst
and τ∗last per category corresponding to the FAST-CR-XMIS processes simulated with
m = 3 and m = 8 experts are shown in Tables 2 and 3 respectively – the tables corre-
sponding to the FAST-CR-XMIS processes simulated with 2, 4, 5, 6 and 7 experts are
shown in Appendix A. In these tables, the collective concordance computed with SK1
(cf. Equation (5)), SK2 (cf. Equation (6)), SK3 (cf. Equation (7)), and SK4 (cf. Equation (8))
are listed. For example, the average of the collective concordance indices computed
with SK1 after completing the first and last rounds of the FAST-CR-XMIS process sim-
ulated to reach consensus on the category corn with m = 3 experts are τ̄∗f irst = 0.87 and
τ̄∗last = 0.95 respectively (see Table 2). In this case, the percent variance is computed by
(τ̄∗last − τ̄∗f irst)/τ̄∗f irst = 10%. Notice that, independently of the function used to compute the
concordance indices, the percent variance is positive for each category.

Table 2. Average of the computed collective concordance indices per category (m = 3).

Category
SK1 SK2 SK3 SK4

τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var

acq 0.85 0.94 11 0.75 0.89 20 0.57 0.81 41 0.78 0.91 16
corn 0.87 0.95 10 0.77 0.91 18 0.60 0.83 38 0.81 0.92 15
earn 0.85 0.94 11 0.74 0.89 20 0.57 0.80 42 0.78 0.91 17
grain 0.87 0.95 10 0.77 0.91 18 0.60 0.83 38 0.80 0.92 15
ship 0.87 0.95 10 0.77 0.91 18 0.60 0.83 38 0.81 0.93 15

wheat 0.87 0.95 10 0.77 0.91 18 0.60 0.83 38 0.80 0.92 15

Table 3. Average of the computed collective concordance indices per category (m = 8).

Category
SK1 SK2 SK3 SK4

τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var

acq 0.83 0.94 13 0.72 0.90 24 0.53 0.81 51 0.76 0.91 20
corn 0.85 0.95 12 0.74 0.91 22 0.56 0.83 47 0.78 0.93 19
earn 0.83 0.94 14 0.72 0.89 25 0.53 0.80 52 0.76 0.91 21
grain 0.84 0.95 12 0.74 0.91 23 0.56 0.82 48 0.78 0.92 19
ship 0.85 0.95 12 0.74 0.91 22 0.56 0.83 47 0.78 0.93 19

wheat 0.85 0.95 12 0.74 0.91 22 0.56 0.82 47 0.78 0.92 19

Such positive increments of the concordance indices are also depicted in Figure 4.
Notice that the increments of the concordance indices in FAST-CR-XMIS processes simu-
lated with 8 experts are greater than the increments of the concordance indices in FAST-CR-
XMIS processes simulated with 3 experts. Bear in mind that the higher the concordance the
higher the consensus.
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Figure 4. Average of the variance of the computed collective concordance indices per category (m = 3
and m = 8).

Figures 5–8 show, in that order, the variation of the concordance indices τ∗f irst and τ∗last
computed with SK1, SK2, SK3 and SK4 in FAST-CR-XMIS processes about the category
corn simulated with different numbers of experts (2 ≤ m ≤ 8). Notice that, regardless the
function used to compute the concordance indices, in general the variation of τ∗last is less
than the variation of τ∗f irst.
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Figure 5. Variation of the concordance indices τ∗f irst and τ∗last computed by SK1 according to number
of experts m (Category corn).
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Figure 6. Variation of the concordance indices τ∗f irst and τ∗last computed by SK2 according to number
of experts m (Category corn).
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Figure 7. Variation of the concordance indices τ∗f irst and τ∗last computed by SK3 according to number
of experts m (Category corn).
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Figure 8. Variation of the concordance indices τ∗f irst and τ∗last computed by SK4 according to number
of experts m (Category corn).

Table 4 shows the results of the t-test for the null hypothesis “the average of the
collective concordance indices is the same after performing a simulated FAST-CR-XMIS
process.” Notice that the t-values are statistically significant (p < 0.05). This indicates
that the concordance indices τ∗f irst and τ∗last are significantly different from each other after
performing the simulated FAST-CR-XMIS processes.
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Table 4. Average of the computed collective concordance indices per category (m = 3).

SK1 SK2 SK3 SK4

τ̄∗f irst τ̄∗last τ̄∗f irst τ̄∗last τ̄∗f irst τ̄∗last τ̄∗f irst τ̄∗last

Mean 0.847 0.951 0.742 0.908 0.561 0.828 0.780 0.925
Variance 0.004 0.001 0.007 0.002 0.013 0.007 0.006 0.002

Observations 420 420 420 420 420 420 420 420
df 419 419 419 419

t-value −51.165 −61.712 -72.570 −57.207
p-value 0.0 0.0 0.0 0.0

6. Discussion

The results suggest that the collective concordance indices increase significantly after
performing simulated FAST-CR-XMIS processes. Such increments are independent of the
function that is used for computing the concordance indices, as well as the number of
experts that participate in a FAST-CR-XMIS process. This means that exchanging the most
influential samples during such simulated CRPs can increase the level of consensus.

Nevertheless, the results should be interpreted with caution since all the samples
deemed to be the most influential were used for updating the experts’ knowledge models
during the simulated CRPs, i.e., during the simulation, the collections M∗

µA
and M∗

νA
have been deemed to be equal to the collections MµA and MνA respectively (see Figure 3).
In addition, each contextualized evaluation has been associated with the most influential
sample in the simulations. In a real scenario, the experts might partially share the samples
that influence their evaluations. Also, the experts might only consider a few of the shared
samples to update their understandings of the suitable options for a given problem.

Another note of caution is the assumption of a cooperative environment where all
the experts are willing to share their samples. In this regard, situations where participants
might be reluctant to share their experiences are subject to further study.

7. Conclusions

A novel algorithm for reaching consensus in FAST-GDM problems has been proposed
in this paper. The algorithm, named FAST-CR-XMIS, aims at increasing the level of consen-
sus in CRPs where participants are open to reconsider their evaluations after studying the
most influential samples that have been identified and shared by other participants.

In FAST-CR-XMIS, participants can perform contextualized evaluations of the po-
tential options to solve a FAST-GDM problem. By means of this kind of evaluations,
participants can express not only the level to which a potential option is deemed to be
suitable, but also the reasons that justify that level. Since such contextualized evaluations
are mathematically represented by AIFSs, the participants can express not only positive
but also negative aspects during a CRP.

The results of simulated CRPs suggest that FAST-CR-XMIS can increase the level of
consensus among the participants. However, these findings may be somewhat limited
by the assumption of a cooperative scenario where participants are willing to share their
experiences and update their understandings. Further research should be undertaken to
confirm the applicability of FAST-CR-XMIS to scenarios where participants are reluctant to
share their experiences.

The applicability of FAST-CR-XMIS to recurrent CRPs in which a given group of ex-
perts is organized for carrying out periodical evaluations is also considered and suggested
as future work.
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Appendix A. Computed Collective Concordance Indices τ∗f irst and τ∗last per Category

Table A1. Average of the computed collective concordance indices per category (m = 2).

Category
SK1 SK2 SK3 SK4

τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var

acq 0.84 0.96 15 0.73 0.92 26 0.55 0.85 55 0.77 0.94 22
corn 0.86 0.97 12 0.76 0.93 23 0.58 0.87 50 0.79 0.95 19
earn 0.83 0.96 15 0.73 0.92 26 0.55 0.85 55 0.77 0.93 22
grain 0.86 0.96 13 0.75 0.93 24 0.58 0.87 51 0.79 0.95 20
ship 0.86 0.97 12 0.76 0.94 23 0.59 0.88 49 0.80 0.95 19

wheat 0.86 0.96 13 0.75 0.93 24 0.58 0.87 51 0.79 0.95 20

Table A2. Average of the computed collective concordance indices per category (m = 4).

Category
SK1 SK2 SK3 SK4

τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var

acq 0.84 0.94 12 0.73 0.89 21 0.55 0.79 45 0.77 0.91 18
corn 0.86 0.95 10 0.76 0.90 19 0.58 0.82 41 0.79 0.92 16
earn 0.84 0.94 12 0.73 0.88 22 0.54 0.79 45 0.77 0.90 18
grain 0.86 0.95 10 0.75 0.90 20 0.57 0.81 42 0.79 0.92 16
ship 0.86 0.95 10 0.76 0.90 19 0.58 0.82 41 0.80 0.92 16

wheat 0.86 0.95 10 0.75 0.90 19 0.57 0.81 41 0.79 0.92 16
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Table A3. Average of the computed collective concordance indices per category (m = 5).

Category
SK1 SK2 SK3 SK4

τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var

acq 0.83 0.94 14 0.72 0.90 24 0.53 0.81 52 0.76 0.91 20
corn 0.85 0.95 12 0.75 0.91 22 0.56 0.83 48 0.78 0.93 18
earn 0.83 0.94 14 0.72 0.89 25 0.53 0.80 52 0.76 0.91 21
grain 0.85 0.95 12 0.74 0.91 22 0.56 0.83 48 0.78 0.92 19
ship 0.85 0.95 12 0.75 0.91 22 0.57 0.84 47 0.79 0.93 18

wheat 0.85 0.95 12 0.74 0.91 22 0.56 0.83 48 0.78 0.93 18

Table A4. Average of the computed collective concordance indices per category (m = 6).

Category
SK1 SK2 SK3 SK4

τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var

acq 0.83 0.95 13 0.73 0.90 24 0.54 0.82 51 0.76 0.92 20
corn 0.85 0.96 12 0.75 0.92 22 0.57 0.84 48 0.79 0.93 19
earn 0.83 0.95 14 0.72 0.90 25 0.54 0.81 52 0.76 0.92 21
grain 0.85 0.95 12 0.74 0.91 23 0.56 0.84 49 0.78 0.93 19
ship 0.85 0.96 12 0.75 0.92 22 0.57 0.84 48 0.79 0.93 18

wheat 0.85 0.95 12 0.75 0.91 23 0.56 0.84 48 0.78 0.93 19

Table A5. Average of the computed collective concordance indices per category (m = 7).

Category
SK1 SK2 SK3 SK4

τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var τ̄∗f irst τ̄∗last %var

acq 0.83 0.95 14 0.72 0.90 26 0.53 0.82 55 0.76 0.92 21
corn 0.85 0.96 13 0.74 0.92 24 0.56 0.84 51 0.78 0.93 20
earn 0.83 0.95 14 0.71 0.90 26 0.52 0.81 56 0.75 0.92 22
grain 0.84 0.95 13 0.74 0.91 24 0.55 0.84 52 0.77 0.93 20
ship 0.85 0.96 13 0.74 0.92 24 0.56 0.84 51 0.78 0.93 20

wheat 0.85 0.95 13 0.74 0.91 24 0.55 0.84 51 0.78 0.93 20
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