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Abstract: We introduce two families of continuous distribution functions with not-necessarily symmetric
densities, which contain a parent distribution as a special case. The two families proposed depend
on two parameters and are presented as an alternative to the skew normal distribution and other
proposals in the statistical literature. The density functions of these new families are given by a closed
expression which allows us to easily compute probabilities, moments and related quantities. The second
family can exhibit bimodality and its standardized fourth central moment (kurtosis) can be lower than
that of the Azzalini skew normal distribution. Since the second proposed family can be bimodal we
fit two well-known data set with this feature as applications. We concentrate attention on the case
in which the normal distribution is the parent distribution but some consideration is given to other
parent distributions, such as the logistic distribution.

Keywords: logistic distribution; normal distribution; skew normal distribution; symmetric distribution

1. Introduction

There are many situations in which empirical data show slight or marked asymmetry.
This is frequently the case, for example, with actuarial and financial data which, in addition
to this feature, have heavy tails reflecting the existence of extreme values. The se features
mean that the data can not be adequately modeled by the Gauss (or normal) distribution.
Furthermore, bimodal distributions appear naturally in many different scenarios. For ex-
ample, in certain disease patterns, as well as in certain cancer incidence curves. Behind the
bimodality (and multimodality as well) of some cancer incidence curves, and their study,
clinicians can improve their understanding of cancer, the development process as well as
the potential characteristics that identify cancer and that separate a particular type of cancer
of all other types. This occurs, for example, in cases where there are two peaks of occurrence
per age. The se cancers include Kaposi’s sarcoma and Hodgkin’s lymphoma. The latter
type of cancer has two peaks of occurrence: in young people adults and middle-aged adults.
On the other hand, the normal skew distribution appears naturally in stochastic frontier
analysis when a normal distribution is assumed to represent the noise or idiosyncratic
component and a half-normal distribution to represent the inefficiency term, in the event
that the researcher imposes inefficient behavior on all firms in the sample of interest. See,
for instance [1]. Recently, [2] introduces (using a finite mixture model) the zero inefficiency
stochastic frontier model which can accommodate the presence of both efficient and inef-
ficient firms in the sample by appearing various bimodal scenarios. The refore, it seems
plausible to try to obtain families of distributions that incorporate bias to the normal distri-
bution but that at the same time are more versatile in the sense of being able to adapt to the
bimodal scenario that appears in different situations.
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Although there are various mechanisms to obtain skewed distributions from an initial
that is not skewed, (Two well-known procedures that allow to generalize an initial probabil-
ity distribution, symmetric or not, are those provided in the works of [3,4], among others).
Our attention here will focus on the mechanism for this purpose introduced by [5], which
enjoys an undoubted popularity and has been the subject of research in numerous works.
Let g and G be, respectively, the probability density function (pdf) and the cumulative
distribution function (cdf) of a symmetric distribution. A random variate Z is said to have
a skew distribution if its pdf is given by

fZ(z) = 2g(z)G(λz), −∞ < z < ∞, λ ∈ IR. (1)

This family of distributions has been widely studied as an extension of the normal
distribution by means of a shape parameter, λ, which accounts for the skewness. In this case
g and G are replaced in Equation (1) by the pdf and cdf of the standard normal distribution
and the resulting distribution is called the skew normal distribution. It should be pointed
out that the function g does not have to be precisely the derivative of the cdf G to ensure
that the pdf given in Equation (1) is a genuine pdf, although this case has not been studied
in depth in the statistical literature. Following the notation provided in Reference [6] we
denote the family of distributions given by g(z) = 2φ(z)Φ(λz), where φ and Φ are the
pdf and cdf of the standard normal distribution, respectively, by SN = {SN(λ) : λ ∈ IR}.
Furthermore, when a random variable follows a skew normal distribution with location
parameter −∞ < µ < ∞ and scale parameter σ > 0 we will write SN(λ, µ, σ).

In this article, a new generalization of the family of skew distributions given in
Equation (1) is proposed, which also includes the skew family of distributions of Azzalini
as a particular case; that is, the expression (1). The methodology used is based on the
combination of Azzalini’s proposal and a result provided by [7] which led us to add a
new parameter to the family (1). Later, from this new family a second family, very similar
to the first, is introduced. This new family of distributions can exhibit bimodality and
its standardized fourth central moment (kurtosis) can be lower than the kurtosis of the
Azzalini skew normal distribution (and can be positive or negative).

In recent decades, starting from Azzalini’s proposal, several generalizations and
extensions of the skew-normal distribution have been introduced (see for example [8]).
For multivariate extensions, see References [9–11], among others. The methods applied
in the present paper can be considered as extensions and alternatives to the well-known
skew-normal distribution (see [5,12]), whose properties (see [12,13]), and corresponding
estimation [14] have been widely discussed. Other ways of obtaining skewed normal
distributions have also been introduced, such as the one proposed by Reference [15],
the Balakrishnan skew-normal density in Reference [16], the proposed model of Refer-
ence [17] and the generalized normal distribution in References [18–20], among others.
For an exhaustive and comprehensive study of the skew-normal distribution, see the recent
book by Reference [21].

The class of probability models proposed in the present paper can also be considered
as alternatives or as approximations to the usual collective risk models in actuarial settings
(see [22,23] among others). Data sets in these settings are typically skewed and the general-
ized models of the present paper expected to provide better fits than the standard models.
In collective risk settings the right tail of the distribution is of considerable interest since the
likelihood of large claims is of concern. In addition, the total claim distribution is of interest.
Normal approximations are frequently resorted to when dealing with these variables.
The use of more flexible generalized normal models can be expected to yield improvement.

The organization of this paper is as follows. The main result from which we con-
structed the two proposed families is shown in Section 2. Due to the importance that
the normal distribution plays in numerous problems of applied statistics we dedicate a
complete section, Section 3, to the study of this distribution. For this purpose, the pdf,
which appears in closed form, is shown for the two families. We also give expressions
for the mean, variance and the third and fourth standardized cumulant, to compare
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with their equivalents corresponding to the classical (Azzalini) skew normal distribution.
In Section 4, the parameter estimation problem is studied. In order to obtain numerical
solutions to the maximum likelihood (ML) estimation problem, suitable software has to
be used. Multivariate extensions are described briefly in Section 5. Some examples and
applications are described in Section 6. Finally, some conclusions are drawn and promising
fields for further research are proposed in the last Section.

2. Main Results

We recall (see [24]) that if X and Y are independent and indentically distributed
random variables with a finite fractional moment and if for all real λ, Pr(X + λY > 0) =
1/2, then they are symmetric. Also, the following Theorem, which appears in [7], is
required for the main result which will appear later.

Theorem 1. (see [7]) Let G be the cdf of an arbitrary distribution that is symmetric about zero.
The n, ∫ a

−a
G(z) dz = a, ∀a ∈ IR+. (2)

Expression (2) in Reference [25] also establishes this assertion.

2.1. The First Family of Skew Distributions

The following result presents the key contribution of this work, consisting of propos-
ing, given a family of symmetrical distributions, a more general family not necessarily
symmetric that includes as a particular case the first family.

Theorem 2. Let X and Y two random variables with symmetric cdf’s GX(x) and GY(y) and pdf’s
gX(x) and gY(y), respectively. The n,

fY(y; λ, α) =
gY(y)

α

∫ α

−α
GX(z + λy) dz (3)

represents a genuine pdf for α ∈ IR − {0} and λ ∈ IR .

Proof. Without loss of generality, asume that X and Y are independent random variables.
Taking into account the fact that X − λY is symmetric and using the result provided
in Theorem 1, we get

α =
∫ α

−α
Pr(X− λY < z) dz

=
∫ ∞

−∞

[∫ α

−α
Pr(X < z + λy|Y = y) dz

]
gY(y)dy

=
∫ ∞

−∞

(∫ α

−α
Pr(X < z + λy) dz

)
gY(y) dy

=
∫ ∞

−∞
gY(y)

(∫ α

−α
GX(z + λy) dz

)
dy.

Hence the result.

Expression (3) can instead be viewed in the following form related to an infinite
mixture construction. Let GX(ξ + λy), λ ∈ IR, ξ ∈ IR and y ∈ IR, be the cdf of a symmetric
distribution with support in the real line. Suppose now that ξ is random and follows
a uniform distribution in the interval [−α, α], then

HX(y; λ, α) =
1

2α

∫ α

−α
G(ξ + λy) dξ,
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is also a genuine cdf symmetric around zero. That is, HX(y) = 1 − HX(−y). Now,
Equation (3) is derived by taking into account the fact that 2gY(y)HX(y) is a genuine pdf.
Another elegant way to see that Equation (3) defines a genuine pdf is to consider the
argument given in Lemma 1 in [15]. That is, let S(λ, α) =

∫ ∞
−∞ fY(y; λ, α) dy. Now, we have

that S(0, α) =
∫ ∞
−∞ gY(y) dy = 1 and since

∂

∂λ
S(λ, α) =

∫ ∞

−∞

ygY(y)
α

[GX(α + λy)− GX(−α + λy)]dy = 0

we have that S(λ, α) = 1.
The results in the following proposition are readily verified and consequently are

stated without proof.

Proposition 1. For the density (3) the following results hold.

(i) fY(0; λ, α) = gY(0).
(ii) fY(y; λ, α) = fY(y; λ,−α) for λ ∈ IR, α ∈ IR − {0}.
(iii) fY(y; 0, α) = gY(y) for α ∈ IR − {0}.
(iv) limα→0 fY(y; λ, α) = 2gY(y)GX(λy) for λ ∈ IR .
(v) GY(y; λ, α) = 1− GY(−y; ,−λ, α).
(vi) If Y has the pdf (3) then −Y has the same distribution but with the parameter λ replaced by

−λ.
(vii) fY(y; λ, α) + fY(y;−λ, α) = 2gY(y).
(viii)Let α = λ in (3) and consider the two random variates Z1 and Z2 following the pdf (3) with

parameters λ1 ∈ IR and λ2 ∈ IR , respectively, then, if λ1 < λ2, Z1 <st Z2. That is, Z1 is
stochastically smaller than Z2.

Because of Result (ii) in Proposition 1, an identifiability problem will arise in (3) if
we allow α to assume both positive and negative values. To avoid this problem we can and
will restrict α to be non-negative when discussing inference for this model. Observe that
(iv) establishes that when α→ 0 we get as a special case the well studied skew family of
distributions appearing in References [5,12].

In most cases the density function (3) does not have a simple, closed form but it can
be computed numerically. However, closed-form expressions for the pdf can be obtained
for some specific choices of well-known distributions. For example, if we utilize the pdf
and cdf of the logistic distribution with location parameter µ = 0 and scale parameter
s = 1 in (3), i.e., take gY(y) = exp(−y)/(1 + exp(−y))2 and GX(x) = (1 + exp(−x))−1,
respectively, then (3) becomes

fY(y; λ, α) =
exp(y)

α(1 + exp(yx))2 log
[

1 + exp(α + λy)
1 + exp(−α + λy)

]
.

On the other hand, combining the pdf of the standard normal distribution with the
cdf of the logistic distribution we have, after applying (3) the new pdf

fY(y) =
φ(y)

α
log
[

1 + exp(α + λy)
1 + exp(−α + λy)

]
.

If in Equation (3), we use a normal pdf and a normal cdf, i.e., take gY(y) = φ(y) and
GX(x) = Φ(x), where φ(·) and Φ(·) represent the pdf and cdf of the standard normal
distribution, respectively, then (3) becomes:

fY(y; λ, α) =
φ(y)

α
[2α + φ(α + λy)− φ(α− λy)

+(λy− α)Φ(α− λy)− (λy + α)Φ(−α− λy)], (4)
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which does not appear to be a very attractive analytical expression. However it is not
intractable and does represent a flexible two parameter family of densities. Figure 1
shows some graphs of this distribution in comparison with the skew normal distribution
with the same mean. Since the mean and variance do not have a closed form for this
distribution, we have chosen to calculate the mean numerically and match the mean of
the SN distribution with parameters (λ, µ, σ) to obtain the value of the skew parameter
λ. In all cases, except for the first graph, both distributions have the same mean and
approximately the same variance.) and with parameters λ, µ and σ. Similar to the latter,
the distribution is unimodal. Furthermore, the degree of skewness increases when λ grows.
Positive skewness corresponds to the case λ > 0. As can be seen, the new distribution can
take the same shape as the normal skew distribution, even having one less parameter when
the highest probability mass percentage is around the ordinate axis. Otherwise, shape and
scale parameters will have to be incorporated, as will be proposed later. The refore, taking
into account the Ockham’s razor principle, it would seem logical, if one had to choose
between both models, to opt for the new modeling proposed in this work.
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Figure 1. Plot of the pdf (4) (thick line) denoted as GSN(λ, α) and the SN(λ, µ, σ) (thin line) for selected values of the param-
eters α and λ.

Other possibilities for which we can get simple expressions for the corresponding
pdf by applying (3) include the hyperbolic secant distributions (see [26,27], among others)
and the ArcSin distributions (see [28]).

On some occasions, it is convenient expressed (3) as

fY(y; λ, α) =
gY(y)

α

∫ λy+α

λy−α
GX(u) du, (5)
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which is obtained after the change of variable u = z + λy in (3). In fact the family of skew
distributions given in [5] can alternatively be obtained from (5) by applying the first mean
value Theorem to the integral appearing on (5) in the interval [λy − α, λy + α]. To see
this take c = λy in the well known formula

∫ a
b f (x) dx = f (c)(b− a), c ∈ [a, b], to obtain

fY(y; λ, α) = 2gY(y)GX(λy).

2.2. The Second Family of Skew Distributions

Now we present the second family of skew distributions proposed in this work. This is
derived from Equation (5) as follows.

Theorem 3. If gY(y) be a density function that is symmetric about zero and GX a cdf also
symmetric about zero, then,

fY(y; λ, α) = gY(y)[GX(λy + α) + GX(λy− α)] (6)

is a valid pdf for α ∈ IR and λ ∈ IR .

Proof. From Equation (3) it follows that

α =
∫ ∞

−∞
gY(y)

(∫ α

−α
GX(z + λy) dz

)
dy

=
∫ ∞

−∞
gY(y)

[∫ 0

−α
GX(z + λy) dz +

∫ α

0
GX(z + λy) dz

]
dy. (7)

If we now take the derivative with respect to α on both sides in (7) and apply the Fun-
damental Theorem of calculus we get∫ ∞

−∞
gY(y)[GX(λy + α) + GX(λy− α)] dy = 1.

Thus Equation (6) is a genuine pdf.

It can be verified that the pdf’s given in (6) also satisfy the properties listed in
Proposition 1. Furthermore, it is straightforward to see that fY(y; λ, 0) = 2gY(y)GX(y),
fY(y; λ, ∞) = gY(y) and fY(y; 0, α) = gY(y).

Note that the two proposed families, (3) and (6), are different and the only density
belonging to both families is the basic density gY(y). A major difference between the two
proposed families is that in the first family α is not permitted to take the value zero while
that is permitted in the second family. Both families are very similar and differ markedly
only in small regions of the support of the distributions. To see this, note that applying
the trapezoid rule to (3) we get

fY(y; λ, α) ≈ gY(y)[GX(λy + α) + GX(λy− α)],

which coincides with (5).
Because GX(α) = 1− GX(−α), from (6) we get that when λ = 0, fY(y) = gY(y) while

for α = 0 we get the skew family of distributions proposed in Reference [5]. Again, it can be
verified that fY(y; λ, α) = fY(y; λ,−α) for the family given in Equation (6). Thus the same
identifiability problem arises for the model (6) as did in the model (3) if we allow α to
assume both positive and negative values. To avoid this problem here too we can and will
restrict α to be non-negative when discussing inference for the model. If desired, a more
general class than the one proposed in (6) is one corresponding to finite mixtures of densities
of the form (6) as follows

fY(y) = gY(y)
m

∑
i=1

δi[GX(λiy + αi) + GX(λiy− αi)], (8)
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where the δi’s are positve and ∑m
i=1 δi = 1.

At this point, we give a more general result than the one provided in [5,29,30] for a sym-
metric random variable.

Proposition 2. If U be a random variable that is symmetric about zero with cdf given by G(u),
pdf g(u) and if λ and α are two real numbers, then,

E[G(λU + α)] = 1− E[G(λU − α)]. (9)

Proof. This is obtained in a straightforward way directly from the result given in Theorem 3
by integrating on both sides of the equality over the support (−∞, ∞).

When U follows a standard normal distribution (9) reduces to

E[Φ(λU + α)] = 1− E[Φ(λU − α)] = Φ
(

α√
1 + λ2

)
,

a result which is well known in the statistical literature (see [5,29,30]).

3. The Normal Distribution Case

Of greater interest, because it is expressed in a simpler formulation, is the pdf obtained
from Equation (6) when g and G are replaced by the pdf and cdf of the standard normal
distribution, respectively. This is given by

fX(x) = φ(x)[Φ(λx + α) + Φ(λx− α)]. (10)

In the folowing discussion, when a random variate X has its pdf given by Equation (10) it
will be denoted by X ∼ GSN(λ, α). Figure 2 show some graphs of this pdf and the
corresponding skew normal pdf with the same mean and variance. (In this case, the skew
parameter λ of the SN distribution has been set so that, once equal to the mean and
variance of the new distribution, the values of µ and σ were obtained numerically so that
both distributions should have the same mean and the same variance. It can be seen that
the new model is very versatile and that the value of the parameters provide a distribution
which can exhibit unimodality and bimodality. Again, as with Figure 1, the distribution can
take approximately the same shape as the normal skew distribution with fewer parameter).

We next provide the moment generating function of the family given in Equation (10).

Proposition 3. The moment generating function of a random variable X having its pdf given
by Equation (10) is of the form

MX(t) = [Φ(δ(λt + α)) + Φ(δ(λt− α))] exp
(

t2

2

)
, (11)

where δ = 1/
√

1 + λ2.

Proof. It is straightforward following the same argument as the one used in Reference [5]
in order to get the moment generating function of the skew-normal distribution.

Moments can then be readily obtained by differentiation of Equation (11). In particular,
the mean and variance are given by

E(X) = λbδ exp
[
−1

2
(αδ)2

]
, (12)

var(X) = 1− (λbδ)2 exp
[
−(αδ)2

]
, (13)
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where b =
√

2/π. Table 1 shows the mean and variance of the proposed distribution and
the corresponding ones for the skew normal distribution for some special cases of param-
eters. Similar to case of the skew normal distribution, it can be verified that E(X2) = 1.
Another important property that GSN(λ, α) shares with the skew normal distribution is
that if Z ∼ GSN(λ, α) then Z2 ∼ χ2

1 for all values of λ and α. In complete moments can
also be studied following the work of Reference [31]. The third (skewness) and fourth
(kurtosis) standardised cumulants are given by,

γ1 =
E(X)

[var(X)]3/2 (δλ)2
[
2b2 exp(−(αδ)2) + (αδ)2 − 1

]
,

γ2 =
πb2(3b2π − 4δ4E2(X)κ1)− 12E4(X)

(1− var(X))2κ2
− 3,

where

κ1 = 3 + 2(2 + α2)λ2 + λ4,

κ2 =
π exp[(αδ)2]− 2(λδ)2

(λδ)4 ,

and E(X) and var(X) are given by Equations (12) and (13), respectively. Comparisons
of these values with the standard skew normal distribution are shown in Table 2. As can
be seen, the standardized fourth central moment (kurtosis) can be lower for the GSN
distribution than it is for Azzalini’s skew normal distribution.
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Figure 2. Plot of the pdf in (10) for selected values of parameters and comparison with the skew normal one.
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Table 1. Mean and variance of the GSN and the SN variates for some parameter values.

λ 0 1 2 3 4 5

Mean SN(λ) 0.000 0.564 0.713 0.756 0.774 0.782
Mean GSN(λ, 0.1) 0.000 0.562 0.712 0.756 0.773 0.782
Variance SN(λ) 1.000 0.681 0.490 0.427 0.400 0.387
Variance GSN(λ, 0.1) 1.000 0.683 0.491 0.427 0.401 0.388
Mean SN(λ) 0.000 0.564 0.713 0.756 0.774 0.782
Mean GSN(λ, 1) 0.000 0.439 0.645 0.720 0.751 0.767
Variance SN(λ) 1.000 0.681 0.490 0.427 0.400 0.387
Variance GSN(λ, 1) 1.000 0.806 0.583 0.481 0.435 0.410
Mean SN(λ) 0.000 0.564 0.713 0.756 0.774 0.782
Mean GSN(λ, 5) 0.000 0.001 0.058 0.216 0.371 0.483
Variance SN(λ) 1.000 0.681 0.490 0.427 0.400 0.387
Variance GSN(λ, 5) 1.000 0.999 0.996 0.952 0.862 0.765

Table 2. Third and fourth standardized cumulants of the GSN and the SN variates for some parame-
ter values.

λ 0 1 2 3 4 5

γ1, SN(λ) 0.000 0.136 0.453 0.667 0.784 0.850
γ1, Mean GSN(λ, 0.1) 0.000 0.135 0.451 0.664 0.782 0.849
γ2, SN(λ) 0.000 0.061 0.305 0.509 0.632 0.705
γ2, GSN(λ, 0.1) 0.000 0.060 0.302 0.507 0.630 0.703
γ1, SN(λ) 0.000 0.136 0.453 0.667 0.784 0.850
γ1, GSN(λ, 1) 0.000 0.082 0.281 0.488 0.639 0.738
γ2, SN(λ) 0.000 0.061 0.305 0.509 0.632 0.705
γ2, GSN(λ, 1) 0.000 −0.046 0.071 0.289 0.458 0.571
γ1, SN(λ) 0.000 0.136 0.453 0.667 0.784 0.850
γ1, GSN(λ, 5) 0.000 0.006 0.188 0.336 0.332 0.311
γ2, SN(λ) 0.000 0.061 0.305 0.509 0.632 0.705
γ2, GSN(λ, 5) 0.000 −0.000 −0.044 −0.294 −0.480 −0.501

Let Φλ,α(z) denote the cdf of Z ∼ GSN(λ, α).

Proposition 4. If Z ∼ GSN(λ, α), then its cdf is given by

Φλ,α(z) = Φ(z) + T
(

z,
α

z
− λ

)
− T

(
z,

α

z
+ λ

)
+T
(

αδ,
y

αδ2 − λ
)
− T

(
αδ,

z
αδ2 + λ

)
, z 6= 0, α 6= 0,

where T(x, a) is the Owen’s function see [32] given by

T(x, a) =
1

2π

∫ a

0

1
1 + t2 exp

[
−x2(1 + t2)/2

]
dt, a ∈ IR.

Proof. The proof is direct by applying result B.21 in Reference [21].

Proposition 5. If Z ∼ GSN(λ, α), then it follows that:

(i) Φλ,0(z) = Φ(z) + T
(

z,
α

z
− λ

)
− T

(
z,

α

z
+ λ

)
.

(ii) Φλ,α(0) =
1
2
− 2T(αδ, λ).

(iii) Φλ,α(z) = Φ−λ,α(−z).

Proof. The proof is also direct this time by applying the result B.23 in [21].
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To end this Section we provide a result related to probability transformations which
generalises a result appearing in Reference [5] and provided also in Reference [31].

Proposition 6. Let W and Z be independent random variables with distribution N(0, 1) and
GSN(λ, α), respectively. The n, the random variable Y = (hW + kZ)/

√
h2 + k2, where h, k ∈ IR ,

follows a GSN(λ̃, α̃), where λ̃ = δkλ/
√

h2 + k2 and α̃ = δα.

Proof. It can be proved following the same argument as that used in Lemma 1 in Refer-
ence [31].

4. Estimation

The family of distributions GSN(λ, α) can be generalized by means of a linear trans-
formation in order to introduce a location and a scale parameter adding more flexibility
to the model (10). We thus will consider the location-scale generalization of the skew-
normal distribution defined as the distribution of Y = µ + σX, where X ∼ GSN(λ, α)
given in Equation (10), where µ ∈ IR and σ > 0. Its pdf is given by

fY(y) =
1
σ

φY

(
y− µ

σ

)[
ΦY

(
λ(y− µ)

σ
+ α

)
+ ΦY

(
λ(y− µ)

σ
− α

)]
. (14)

When λ = α = 0 this pdf reduces to the N(µ, σ) and when α = 0 to the SN(µ, σ, λ).
For a sample y = {y1, . . . , yn} we can estimate the four parameters, Θ = (λ, α, µ, σ),
of the model given in Equation (14) by a direct search for the maximum of the log-likelihood
surface given by

`(y; Θ) ∝ −n log σ−
n

∑
i=1

(yi − µ)2

2σ2 +
n

∑
i=1

log
[

ΦY

(
λ(yi − µ)

σ
+ α

)
+ ΦY

(
λ(yi − µ)

σ
− α

)]
. (15)

From Equation (15) we get the normal equations which are given by:

∂`(y; Θ)

∂λ
=

n

∑
i=1

yi − µ

σ
I(r1i, r2) = 0,

∂`(y; Θ)

∂α
=

n

∑
i=1
H(r1i, r2i) = 0,

∂`(y; Θ)

∂µ
=

n(ȳ− µ)

σ2 − λ

σ

n

∑
i=1
I(r1i, r2i) = 0,

∂`(y; Θ)

∂σ
= −n

σ
+

1
σ3

n

∑
i=1

(yi − µ)2 − λ

σ2

n

∑
i=1

(yi − µ)I(r1i, r2i) = 0,

where

H(r1i, r2i) =
φ(r1i)− φ(r2i)

Φ(r1i) + Φ(r2i)
, I(r1i, r2i) =

φ(r1i) + φ(r2i)

Φ(r1i) + Φ(r2i)

and

r1i =
λ(yi − µ)

σ
+ α, r2i =

λ(yi − µ)

σ
− α.

Since it is not possible to obtain closed expressions for the maximum likelihood
estimators, algorithms based on numerical methods, such as Newton-Raphson or Broyden-
Fletcher-Goldfarb-Sanno (BGGS), among others, will have to be used. It is recommended
to use different seed points as initial values to ensure that the solution obtained constitutes
a global maximum of the logarithm-likelihood function.
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The standard errors of the estimators can be obtained by inverting the Hessian matrix.
Both Mathematica and WinRats have at least two methods for this purpose. The first is
to use Cholesky factors (this package is available on the web upon request). The second,
faster method, involves by finite differentiation. Furthermore, WinRats package also offers
the possibility to get the maximum of the log-likelihood directly giving us the elements
of the Fisher information matrix. In fact, for the examples considered later these two
packages were used to get the maximum likelihood estimators in a fast way.

5. Multivariate Versions

Multivariate extensions of the univariate distributions arise in an easy way as we can
see in the next result.

Theorem 4. Let X and Y be two random variables where X ∼ N(0, 1) and Y ∼ N(m)(0, Σ).
The n,

f (y; λ, α) =
fY(y)

α

∫ α

−α
FX(z + λTy) dz (16)

represents a genuine pdf for α ∈ IR − {0} and λ ∈ IRm.

Proof. Without loss of generality, asume that X and Y are independent random variables.
Taking into account the fact that X − λTY is symmetric and using the result provided
in Theorem 1, we get

α =
∫ α

−α
Pr(X− λTY < z) dz

=
∫

IR m

[∫ α

−α
Pr(X < z + λTy|Y = y) dz

]
fY(y) dy

=
∫

IR m

[∫ α

−α
Pr(X < z + λTy) dz

]
fY(y) dy

=
∫

IR m
fY(y)

(∫ α

−α
FX(z + λTy) dz

)
dy.

Hence the result.

Remark 1. The only important required property of the distribution of Y is that, for any λ,
the random variable λTY is symmetric about zero. The only required property for the distribution
of X is that it be symmetric about zero. This is true for the above Theorem and the next.

Theorem 5. Let X and Y be two random variables where X ∼ N(0, 1) and Y ∼ N(m)(0, Σ).
The n,

f (y; λ, α) = fY(y)
[

FX(λ
Ty + α) + FX(λ

Ty− α)
]

(17)

is a valid pdf for α ∈ IR and λ ∈ IRm.

Proof. From (16) it follows that

α =
∫

IR m
fY(y)

(∫ α

−α
FX(z + λTy) dz

)
dy

=
∫

IR m
fY(y)

[∫ 0

−α
FX(z + λTy) dz +

∫ α

0
FX(z + λTy) dz

]
dy. (18)
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If we now take the derivative with respect to α on both sides in Equation (18) and apply
the Fundamental Theorem of calculus we get∫

IR m
fY(y)

[
FX(λ

Ty + α) + FX(λ
Ty− α)

]
dy = 1.

Thus (17) is a genuine pdf.

Note that if we set α = 0 in (17), we obtain

f (y; λ) = 2 fY(y)FX(λ
Ty),

which was one of the first multivariate skew-normal models to appear in the literature.
See [10,11], for instance.

Figure 3 shows the density for bivariate generalized skew-normal (BGSN) model
for some combinations of the parameters. Perusal of Figure 3, will confirm that the density
of the BGSN model exhibits a more interesting array of possible shapes than do many of its
competitors. The flexibility of this model can be expected to be useful in fitting the model
to a variety of different data sets.
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Figure 3. Density for BGSN for: λ1 = λ2 = −3 and α = 1 (upper left panel); λ1 = λ2 = 3 and α = 1 (upper right panel);
λ1 = λ2 = −3 and α = 5 (lower left panel); λ1 = λ2 = 3 and α = 5 (lower right panel).

6. Numerical Illustrations

In this section, three examples for the GSN model given in Equation (14) are carried
out and the results are compared with the flexible epsilon skew-normal (FESN) model
introduced by Reference [33] in the first example, with the mixture of two normals (MN)
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model in the second example and flexible skew-normal (FSN) model introduced by Refer-
ence [34] in the third example. The three densities respectively are given by:

1. f (y; µ, σ, λ, ε) =


1

2σcλ
φ
(

y−µ
σ(1+ε)

− λ
)

if y < µ

1
2σcλ

φ
(

y−µ
σ(1−ε)

+ λ
)

if y ≥ µ

2. f (y; µ, µ1, σ, σ1, p) = p
σ φ
(

y−µ
σ

)
+ 1−p

σ1
φ
(

y−µ1
σ1

)
3. f (y; µ, σ, λ, α) = 2

σ φ
(

y−µ
σ

)
Φ
(

λ
(

y−µ
σ

)
+ α
(

y−µ
σ

)3
)

where φ(·) and Φ(·) denote the density and distribution functions of the standard normal
distribution, cλ = 1−Φ(λ), µ, µ1, λ, α ∈ R, σ, σ1 ∈ R+, −1 < ε < 1 and 0 ≤ p ≤ 1.

We use these three models, since they have been used in the applied statistics literature
to explain bimodal empirical data. We chose the MN model since it is a classic model
that is used to model bimodal data sets, we chose the FESN model since it is one of
the first bimodal extensions of the family of epsilon-skew-simétric distributions and We
chose the FSN model since it is one of the first bimodal extensions of the family of skew-
simétric distributions.

6.1. Example 1

The data in this example is a set of fiber levels for 315 patients and is available online
at http://Lib.stat.cmu.edu/datasets/Plasma_Retinol and contains values for 14 variables
for each patient. For our analysis we will use only the variable called Fiber (Grams of fiber
consumed per day). Low levels of this variable may be associated with higher risk of certain
types of cancer. Descriptive statistics for the data set are displayed in Table 3. In the table
b1 and b2 denote sample skewness and kurtosis coefficients. Note that the data exhibits
a high level of kurtosis.

Table 3. Fiber: Descriptive statistics.

n y s2 b1 b2

315 12.789 28.411 1.147 5.425

The estimated values of the parameters for the two models are shown in Table 4
together with the standard errors (SE) in parentheses. The table also includes the maximum
of the log-likelihood function (`max), the Akaike information criterion (AIC) and the con-
sistent Akaike information criterion (CAIC), proposed in References [35,36] respectively.
Amodel with a lower AIC or CAIC is preferred to a model with a higher value.

Table 4. Parameter estimates (SE) for FESN and GSN models.

Parameter FESN GSN

µ 7.176 (0.405) 6.714 (0.329)
σ 4.396 (0.446) 8.076 (0.406)
λ −0.288 (0.235) 9.692 (2.510)
α - 2.486 (0.764)
ε −0.695 (0.048) -

`max −949.458 −945.575

AIC 1906.916 1899.150

CAIC 1925.926 1918.160

Graphs of histogram of the data and fitted densities are given in Figure 4. As it can
be seen, the GSN distribution is the better of the two models with regard to reflecting the

http://Lib.stat.cmu.edu/datasets/Plasma_Retinol
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nature of the empirical data. All computations here were done using Mathematica v.11.0
and WinRATS v.7.0. These codes are available from the authors upon request.

Fiber

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Figure 4. FESN distribution (dashed line) and GSN distribution (solid line) for the Fiber data.

6.2. Example 2

We consider the variables M-Sweet available in the database creaminess of cream
cheese which can be found at http://www.models.kvl.dk/research/data/Cream/index.
asp.

Table 5 shows summary statistics for the M-Sweet dataset.

Table 5. M-Sweet: Descriptive statistics.

n y s2 b1 b2

240 3.276 1.964 0.882 5.049

In Table 6, presents parameter estimates (SE) for both, the MN and GSN models. It
can be seen that the log-likelihood for the GSN model is higher than the for the MN model.
The AIC and CAIC criterion are used again to compare the estimated models, it can be
seen that the GSN model presents the best fit (smallest AIC and CAIC values).

Table 6. Parameter estimates (SE) for MN and GSN models.

Parameter MN GSN

µ 2.115 (0.115) 2.577 (0.126)
σ 0.498 (0.104) 1.564 (0.091)
λ - 3.780 (0.852)
α - 3.685 (0.944)
µ1 3.727 (0.176) -
σ1 1.376 (0.084) -
p 0.280 (0.077) -

AIC 828.214 826.585

CAIC 850.617 844.507

Finally, the histogram of the data and the fitted densities are shown in Figure 5.

http://www.models.kvl.dk/research/data/Cream/index.asp
http://www.models.kvl.dk/research/data/Cream/index.asp
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Figure 5. MN distribution (dashed line) and GSN distribution (solid line) for the M-Sweet data.

6.3. Example 3

Finally, data corresponding to the age and frequency of cancer cataloged as Kaposi’s
sarcoma have been taken. This is a type of cancer that can form masses in the skin, lymph
nodes, or other organs without distinguishing the sub-types. The data has been collected
from the website of the Office for National Statistics (ONS, section Health statistics) and
it can be seen in Table A1 in the Appendix A. It can be observed that there is a higher
incidence in individuals with an age around 25 years as well as for those with an age
around 60 years. The se records were taken during the years 1995–2016 and correspond to
different regions of the United Kingdom. Table 7 shows summary statistics for the Kaposi’s
sarcoma dataset.

Table 7. Kaposi’s sarcoma: Descriptive statistics.

n y s2 b1 b2

29131 45.396 416.487 0.313 1.936

The two fitted models are represented in Figure 6 and the correspondent estimated
values can be seen in Table 8. The GSN model presents better fit for the data, since the AIC
and CAIC values are smaller.

Table 8. Parameter estimates (SE) for FSN and GSN models.

Parameter FSN GSN

µ 17.896 (0.119) 37.039 (0.139)
σ 34.245 (0.171) 22.052 (0.105)
λ 6.016 (0.118) 4.898 (0.118)
α −1.007 (0.090) 5.525 (0.138)

AIC 255,356.2 253,832.6

CAIC 255,393.3 253,869.7
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Figure 6. FSN distribution (dashed line) and GSN distribution (solid line) for the Kaposi’s sarcoma
data.

7. Conclusions

We have proposed two families of skew distributions which can be considered as al-
ternatives to the well-known skew normal distribution for fitting skewed data.

Future research could address the following issue. We can ask whether the methodol-
ogy proposed here can be applied to the generalized skew-normal distribution proposed
by Reference [9] to obtain a more flexible distribution. For the case with standard normal
components, one might consider the following model which is an average of two Arnold
and Beaver densities.

fX(x) =
1
2

φ(x)

Φ(λx + α1)

Φ
(

α1√
1+λ2

) +
Φ(λx− α2)

Φ
(
−α2√
1+λ2

)
,

where λ, α1, α2 ∈ IR. Note that this model is not obtainable by methods analogous to those
used to develop the model (10). However, it is a simple more flexible extension of the
Arnold-Beaver model. But, once we recognize it as a mixture with equal weights, it is
resonable to add more flexibility by considering unequal weights, as follows

fX(x) = φ(x)

γ
Φ(λx + α1)

Φ
(

α1√
1+λ2

) + (1− γ)
Φ(λx− α2)

Φ
(
−α2√
1+λ2

)
,

where γ ∈ [0, 1].
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Appendix A

Table A1. Data corresponding to Kaposi’s sarcoma.

Age Number

1 1
5 89

10 342
15 718
20 2352
25 3593
30 3243
35 2533
40 2015
45 1747
50 1562
55 1662
60 1801
65 1915
70 1855
75 1611
80 1203
85 642
90 247
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