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Abstract: A new parametric class of iterative schemes for solving nonlinear systems is designed.
The third- or fourth-order convergence, depending on the values of the parameter being proven.
The analysis of the dynamical behavior of this class in the context of scalar nonlinear equations
is presented. This study gives us important information about the stability and reliability of the
members of the family. The numerical results obtained by applying different elements of the family
for solving the Hammerstein integral equation and the Fisher’s equation confirm the theoretical
results.
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1. Design of a Parametric Family of Iterative Methods

The need to find a solution x̄ of equations or systems of nonlinear equations of the
form F(x) = 0, where F : D ⊆ Rn → Rn, n ≥ 1, is present in many problems of applied
mathematics as a basis for solving other more complex ones. In general, it is not possible to
find the exact solution to this type of equations, so iterative methods are required in order
to approximate the desired solution.

The essence of these methods is to find, through an iterative process and, from an
initial approximation x(0) close to a solution x̄, a sequence {x(k)} of approximations such
that, under different requirements, limk→∞ x(k) = x̄.

It is well known that one of the most used iterative methods, due to its simplicity and
efficiency, is Newton’s scheme, whose iterative expression is

x(k+1) = x(k) − [F′(x(k))]−1F(x(k)), k = 0, 1, 2, . . . (1)

where F′(x(k)) denotes the derivative or the Jacobian matrix of function F evaluated in the
kth iteration x(k). In addition, this method has great importance in the study of iterative
methods because it presents quadratic convergence under certain conditions and has great
accessibility, that is, the region of initial estimates x(0) for which the method converges is
wide, at least for polynomials or polynomial systems.

Based on Newton-type methods and by using different procedures, many iterative
schemes for solving F(x) = 0 have been presented in the last years. Refs. [1,2] compile
many of the methods recently designed to solve this type of problem. These books give us
good overviews about this area of research.

In this paper, we use a convex combination of the methods presented by Chun et al.
in [3] and Maheswari in [4]. As the mentioned schemes are designed for nonlinear equa-
tions and they have as the first step Newton’s method, we use the following algebraic
manipulation in order to extend the mentioned schemes to nonlinear systems:
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f (y(k))
f (x(k))

=
f (y(k))

(x(k) − y(k)) f ′(x(k))
=

f (y(k))− f (x(k)) + f (x(k))
(x(k) − y(k)) f ′(x(k))

= − [x(k), y(k); f ]
f ′(x(k))

+ 1.

Therefore, the parametric family of iterative methods for solving nonlinear systems
that we propose has the following iterative expression:



y(k) = x(k) − F′(x(k))−1F(x(k)),

H(x(k), y(k), γ) = I +
γ

2
I + (1− γ)B−1

k − (1− γ)Bk(2I − Bk)−
γ

2
F′(x(k))−1F′(y(k))

x(k+1) = x(k) − H(x(k), y(k), γ)F′(x(k))−1F(x(k))

for k = 0, 1, 2, . . . ,

(2)

where x(0) is the initial estimation, Bk = F′(x(k))−1P(k) and P(k) = [x(k), y(k); F] is the
divided difference operator defined as

[x, y; F](x− y) = F(x)− F(y), x, y ∈ Rn.

The rest of the paper is organized as follows: Section 2 is devoted to analyze the
convergence of family (2) in terms of the values of parameter γ. In Section 3, we study the
dynamical behavior of the class on quadratic polynomials in the context of scalar equations.
This study allows for selecting the members that are more stable in the family. In the
numerical section, (Section 4), we apply the proposed class on different examples such
as the Hammerstein integral equation and the Fisher’s equation in order to confirm the
theoretical results obtained in Sections 2 and 3. We finish the work with some conclusions
and the references used in it.

2. Convergence Analysis

Let us consider function F : D ⊆ Rn → Rn, differentiable in the convex set D ⊂ Rn

which contains a solution x̄ of the nonlinear equation F(x) = 0. From the Genochi–Hermite
formula (see [5]) of the divided difference operator

[x + h, x; F] =
∫ 1

0
F′(x + th)dt (3)

and by performing the Taylor’s expansion of F′(x + th) on the point x and integrating,
we obtain the following development:

[x + h, x; F] = F′(x) +
1
2

F′′(x)h +
1
6

F′′′(x)h2 + O(h3), (4)

which we will use in the proof of the following result, when the order of convergence of
family is established.

Theorem 1. Let F : D ⊆ Rn −→ Rn be a sufficiently Fréchet differentiable function in a convex
neighborhood D of x̄, being F(x̄) = 0. We suppose the Jacobian matrix F′(x) is continuous and
non-singular in x̄. Then, taking an initial estimate x(0) close enough to x̄, the sequence of iterates
{x(k)} generated with family (2) converges to x̄ with the following error equation:

ek+1 =
γ

2
(C3 + 4C2

2)e
3
k + (γC4 + (4− 13γ)C3

2 + 3γC2C3 + (−1+
5
2

γ)C3C2)e4
k +O(e5

k), (5)
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where Cj = 1
j! F′(α)−1F(j)(α) ∈ Lj(Rn,Rn), Lj(Rn,Rn) being the set of j-linear functions of

bounded functions, j = 2, 3, . . . and ek = x(k) − x̄. In the particular case in which γ = 0, the error
equation is

ek+1 = (4C3
2 − C3C2)e4

k + O(e5
k), (6)

and so the method has an order of convergence four.

Proof. We consider the Taylor’s expansion of F(x(k)) around x̄:

F(x(k)) = Γ
(

ek + C2e2
k + C3e3

k + C4e4
k + C5e5

k + O(e6
k)
)

, (7)

where Γ = F′(x̄), ek = x(k) − x̄ and Cj =
F′(x̄)−1F(j)(x̄)

j! ∈ Lj(Rn,Rn), j = 2, 3, . . .

In a similar way, the derivatives of F(x(k)) around x̄ take the form:

F′(x(k)) = Γ
[

I + 2C2ek + 3C3e2
k + 4C4e3

k + 5C5e4
k

]
+ O(e5

k),

F′′(x(k)) = Γ
[
2C2 + 6C3ek + 12C4e2

k + 20C5e3
k

]
+ O(e4

k),

F′′(x(k)) = Γ
[
6C3 + 24C4ek + 60C5e2

k

]
+ O(e3

k).

(8)

From the development of F′(x(k)) around x̄, we calculate the inverse

F′(x(k))−1 =
[

I + X2ek + X3e2
k + X4e3

k + X5e4
k

]
Γ−1 + O(e5

k), (9)

with X2, X3, X4 and X5 satisfying
[

F′(x(k))
]−1

F′(x(k)) = I.
Therefore,

• X2 = −2C2,
• X3 = 4C2

2 − 3C3,
• X4 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4,
• X5 = 16C4

2 + 9C2
3 + 8C2C4 + 8C4C2 − 12C2

2C3 − 12C2C3C2 − 12C3C2
2 − 5C5.

Applying (7) and (9), we obtain

F′(x(k))−1F(x(k)) = ek − C2e2
k + (−2C3 + 2C2

2)e
3
k + (−3C4 + 4C2C3 + 3C3C2 − 4C3

2)e
4
k + O(e5

k). (10)

Then, we obtain the error equation of the first step of the parametric family (2):

y(k) − x̄ = x(k) − x̄− F′(x(k))−1F(x(k)) =

= C2e2
k + (2C3 − 2C2

2)e
3
k + (3C4 − 4C2C3 − 3C3C2 + 4C3

2)e
4
k + O(e5

k).
(11)

Substituting this expression in the Taylor expansion of F(y(k)) around x̄, we get:

F(y(k)) = Γ
[
C2e2

k + (2C3 − 2C2
2)e

3
k + (3C4 − 4C2C3 − 3C3C2 + 5C3

2)e
4
k

]
+ O(e5

k). (12)

Furthermore,

F′(y(k)) = Γ
[
I + 2C2

2e2
k + (4C2C3 − 4C3

2)e
3
k + (6C2C4 − 8C2

2C3 − 6C2C3C2 + 8C4
2 + 3C3C2

2)e
4
k
]
+ O(e5

k). (13)

Multiplying expressions (9) and (13), we obtain:

F′(x(k))−1F′(y(k)) = I − 2C2ek + (−3C3 + 6C2
2)e

2
k + (−4C4 + 10C2C3 + 6C3C2 − 16C3

2)e
3
k+

+(−5C5 + 14C2C4 + 9C2
3 − 28C2

2C3 + 8C4C2 − 18C2C3C2 − 15C3C2
2 + 40C4

2)e
4
k+

+O(e5
k).

(14)



Mathematics 2021, 9, 86 4 of 18

To obtain the development of the divided difference operator of (2), we use the
Taylor series expansion of (4), considering in this case x + h = y and, so, h = y − x =
−F′(x(k))−1F(x(k)). Therefore, substituting (8) and (10) in (4), we obtain

[x(k), y(k); F] = Γ[I + C2ek + (C3 + C2
2)e

2
k + (C4 + C3C2 + 2C2C3 − 2C3

2)e
3
k+

+(C5 + C4C2 + 2C2
3 − C3C2

2 + 3C2C4 − 4C2
2C3 − 3C2C3C2 + 4C4

2)e
4
k ] + O(e5

k).
(15)

To calculate the inverse of this operator, we search

[x(k), y(k); F]−1 =
[

I + Y2ek + Y3e2
k + Y4e3

k + Y5e4
k

]
Γ−1 + O(e5

k), (16)

with Y2, Y3, Y4 and Y5 satisfying [x(k), y(k); F]−1[x(k), y(k); F] = I.
Thus,

• Y2 = −C2,
• Y3 = −C3,
• Y4 = −C4 − C2C3 + 3C3

2 ,
• Y5 = −C5 − 2C2C4 − 9C4

2 − C2
3 + 2C3C2

2 + 6C2
2C3 + 5C2C3C2.

Now, using (9) and (15), we obtain Bk,

Bk = C2
2e2

k + (2C2C3 + 2C3C2 − 6C3
2)e

3+

+ (3C2C4 − 10C2C3C2 − 12C2
2C3 + 25C4

2 + 4C2
3 − 10C3C2

2 + 3C4C2)e4
k + O(e5

k),
(17)

and using (8) and (16), we calculate B−1
K ,

B−1
k = I + C2ek + (2C3 − 2C2

2)e
2
k + (3C4 − 4C2C3 − 2C3C2 + 3C3

2)e
3
k+

+ (4C5 − 6C2C4 − 2C4C2 − 4C2
3 − 3C4

2 + 2C3C2
2 + 3C2C3C2 + 6C2

2C3)e4
k + O(e5

k).
(18)

Substituting the expressions (10), (14), (17), and (18) in the scheme (2), we get the error
equation of the parametric family

ek+1 = x(k+1) − x̄ = γ
2 (C3 + 4C2

2)e
3
k + (γC4 + (4− 13γ)C3

2 + 3γC2C3 + (−1 + 5
2 γ)C3C2)e4

k + O(e5
k). (19)

Finally, from the error equation, we conclude that the parametric family (2) has order 3 for
all γ 6= 0 and order 4 for γ = 0, being in this last case the error equation

ek+1 = (4C3
2 − C3C2)e4

k + O(e5
k). (20)

In the next section, we analyze the dynamical behavior of the parametric family (2) on
quadratic scalar polynomials.

3. Complex Dynamics

The dynamical analysis of (2) is performed throughout this section in terms of complex
analysis. The order of convergence is not the only important criterion to study when
evaluating an iterative scheme. The validity of a method also depends on other aspects
such as knowing how it behaves based on the initial estimates that are taken, that is, how
wide the set of initial estimations is for which the method is convergent. For this reason, it
is necessary to introduce several tools that allow for a more exhaustive study.

The analysis of the dynamics of a method is becoming one of the most investigated
parts within the study of iterative methods since it allows for classifying the different
iterative schemes, not only from the point of view of their speed of convergence, but also
analyzing its behavior based on the initial estimate taken (see, for example, [6–13]). This
study allows for visualizing graphically the set of initial approximations that converge to a



Mathematics 2021, 9, 86 5 of 18

given root or to points that are not roots of the equation. In addition, it provides important
information about the stability and reliability of the iterative method.

In this paper, we focus on studying the complex dynamic of the parametric family
(2) on quadratic polynomials of the form p(z) = (z − a)(z − b), where a, b ∈ C. For
this study, we need to present the result called the Scaling Theorem, since it allows us
to conjugate the dynamical behavior of one operator with the behavior associated with
another, conjugated through an affine application, that is, our operator has the same
stability on all quadratic polynomials. This result will be of great use to us since we can
apply the Möbius transformation on the operator Rp,γ associated with our parametric
family acting on p(z), assuming that the conclusions obtained will be of general application
for any quadratic polynomial used.

Theorem 2 (Scaling Theorem for family (2)). Let f (z) be an analytic function in the Riemann
sphere Ĉ and let T(z) = αz + β be an affine transformation with α 6= 0. We consider g(z) =
λ( f ◦ T)(z), λ 6= 0. Let R f ,γ and Rg,γ be the fixed point operators of the family (2) associated with
the functions f and g, respectively, that is to say,

R f ,γ(z) = z +

−γ

2

(
3− f ′(y)

f ′(z)

)
+ (1− γ)

 1
f (y)
f (z) − 1

−
(

f (y)
f (z)

)2
 f (z)

f ′(z)
, (21)

Rg,γ(z) = z +

−γ

2

(
3− g′(y)

g′(z)

)
+ (1− γ)

 1
g(y)
g(z) − 1

−
(

g(y)
g(z)

)2
 g(z)

g′(z)
, (22)

where y = z− f (z)
f ′(z) and z ∈ C. Then, R f ,γ is analytically conjugated to Rg,γ through T, that is

to say,
(T ◦ Rg,γ ◦ T−1)(z) = R f ,γ(z).

Proof. Taking into account that T(x− y) = T(x)− T(y) + β, T(x + y) = T(x) + T(y)− β
and g′(z) = αλ f ′(T(z)), so

(T ◦ Rg,γ ◦ T−1)(z) = T(Rg,γ(T−1)(z)) =

= T

T−1(z) +

−γ

2

(
3− g′(T−1(y))

g′(T−1(z))

)
+ (1− γ)

 1
g(T−1(y))
g(T−1(z)) − 1

−
(

g(T−1(y))
g(T−1(z))

)2
 g(T−1(z))

g′(T−1(z))

,

where y = z− g(z)
g′(z)

, T(T−1(z)) = z and

T
(

T−1(y)
)
= T

(
T−1(z)− g(T−1(z))

g′(T−1(z))

)
= T

(
T−1(z)− f (z)

α f ′(z)

)
= z− T

(
f (z)

α f ′(z)

)
+ β = z− f (z)

f ′(z)
= y.

Therefore, substituting these equalities and simplifying, we have

(T ◦ Rg,γ ◦ T−1)(z) =

= T

T−1(z) +

−γ

2

(
3− f ′(y)

f ′(z)

)
+ (1− γ)

 1
f (y)
f (z) − 1

−
(

f (y)
f (z)

)2
 f (z)

α f ′(z)


= z + T

−γ

2

(
3− f ′(y)

f ′(z)

)
+ (1− γ)

 1
f (y)
f (z) − 1

−
(

f (y)
f (z)

)2
 f (z)

α f ′(z)

− β

= z + T

−γ

2

(
3− f ′(y)

f ′(z)

)
+ (1− γ)

 1
f (y)
f (z) − 1

−
(

f (y)
f (z)

)2
 f (z)

α f ′(z)
,
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then (T ◦ Rg,γ ◦ T−1)(z) = R f ,γ(z), that is to say, R f ,γ and Rg,γ are analytically conjugated
by T(z).

Now, we can apply the Möbius transformation on the operator associated with the
parametric family (2) in order to obtain an operator that does not depend on the constants
a and b and, thus, be able to study the dynamical behavior of this family for any quadratic

polynomial. The Möbius transformation, in this case, is h(z) = z−a
z−b and has the following

properties:
(i) h(∞) = 1 (ii) h(a) = 0 (iii) h(b) = ∞.

The fixed-point rational operator of family (2) on p(z) has the expression

Oγ(z) = (h ◦ Rp,γ ◦ h−1)(z) =
z3(2γz2 + 3γz + 2γ + z5 + 5z4 + 10z3 + 9z2 + 4z

)
2γz5 + 3γz4 + 2γz3 + 4z4 + 9z3 + 10z2 + 5z + 1

. (23)

We can also deduce from (23) that the order of the methods for quadratic polynomials
is 3 when γ 6= 0 and 4 when γ = 0.

3.1. Fixed Points

The orbit of a point z ∈ C is defined (see, for example, [14,15]) as the set of the
successive applications of the rational operator, i.e.,{

z, Oγ(z), O2
γ(z), . . .

}
.

The performance of the orbit of z is deduced attending to its asymptotic behavior.
A point xT is said to be T-periodic if OT

γ(z) = z and Ot
γ(z) 6= z, for t < T. For T = 1, this

point is a fixed point.
Therefore, a fixed point is one that is kept invariant by the operator Oγ, that is, it is

one that satisfies the equation Oγ(z) = z. All the roots of the quadratic polynomial are, of
course, fixed points of the Oγ operator. However, it may happen that fixed points appear
that do not correspond to any root; we call these points strange fixed points. These points
are not desirable from a numerical point of view because when an initial estimate is taken
that is in the neighborhood of a strange fixed point, there is a possibility that the numerical
method will converge to it, that is, to a point that is not a solution of the equation. Strange
fixed points often appear when iterative methods are analyzed and their presence can show
the instability of the method.

Fixed points can be classified according to the behavior of the derivative operator on
them; thus, a fixed point z∗ can be:

• Repulsor, if |O′γ(z∗)| > 1;
• Parabolic, if |O′γ(z∗)| = 1;
• Attracting, if |O′γ(z∗)| < 1;
• Superattracting, if |O′γ(z∗)| = 0.

Moreover, the basin of attraction A(z∗) of an attracting fixed point z∗ is the set of
initial guesses whose orbits tend to z∗. Therefore, the set of points whose orbit tends to
an attracting fixed point defines the Fatou set F (Oγ), while its complement is the Julia set
J (Oγ).

In what follows, we study what are the fixed points of operator Oγ and their character
depending on the value of parameter γ. The proof of the following result is straightforward,
as it only needs to solve the equation Oγ(z) = z.

Proposition 1. By analyzing the equation Oγ(z) = z, one obtains the following statements:

(i) z = 0 and z = ∞ are superattracting fixed points for each value of γ.

(ii) z = 1 is a strange fixed point when γ 6= −29
7

.



Mathematics 2021, 9, 86 7 of 18

(iii) the roots of polynomial

k(t) = 1 + 6t + (16− 2γ)t2 + (21− 3γ)t3 + (16− 2γ)t4 + 6t5 + t6, (24)

which we denote by Exi(γ), where i = 1, 2, . . . , 6, are also strange fixed points for each value
of γ.

We need the expression of the differentiated operator to analyze the stability of the
fixed points and to obtain the critical points:

O′γ(z) =
z2(z + 1)4(γ(6z6 + 8z5 + 7z4 + 7z2 + 8z + 6

)
+ z
(
16z4 + 41z3 + 60z2 + 41z + 16

))(
2γz5 + (3γ + 4)z4 + (2γ + 9)z3 + 10z2 + 5z + 1

)2 ,

It is clear that 0 and ∞ are always superattracting fixed points because they come from
the roots of the polynomial, and the order of the iterative methods is higher than 2, but the
stability of the other fixed points can change depending on the values of parameter γ.

Proposition 2. The character of the strange fixed point z = 1 is as follows:

(a) If γ = −29
7

, then z = 1 is not a strange fixed point.

(b) If Re(γ) < −125
7

or Re(γ) >
67
7

, then z = 1 is an attracting point.

(c) If Re(γ) ∈
[
−125

7
,

67
7

]
and Im(γ)2 +

(
Re(γ) +

29
7

)2
>

9216
49

, then z = 1 is an

attracting point.
(d) z = 1 cannot be a superattracting point.

(e) If Re(γ) ∈
[
−125

7
,

67
7

]
and Im(γ)2 +

(
Re(γ) +

29
7

)2
=

9216
49

, then z = 1 is a parabolic

point.
(f) In another case, z = 1 is the repulsor.

Proof. We obtain that

|O′γ(1)| =
∣∣∣∣ 96
7γ + 29

∣∣∣∣.
It is not difficult to check that |O′γ(1)| cannot be 0, so z = 1 cannot be a superattractor,

and, when γ = −29
7

, z = 1 is not a fixed point.
Now, we are going to study when z = 1 is an attracting point. It is easy to check that

|O′γ(1)| < 1 is equivalent to 962 < |29 + 7γ|2. Rewriting the last expression, we obtain the
following inequality:

8375 < 406Re(γ) + 49Re(γ)2 + 49Im(γ)2.

Let us see when this inequality is verified. When 8375− 406Re(γ)− 49Re(γ)2 < 0,

that is,
(

Re(γ)− 67
7

)(
Re(γ) +

125
7

)
> 0, z = 1 is an attracting point, so we obtain

that z = 1 is an attracting point when Re(γ) >
67
7

or Re(γ) < −125
7

. When we have

Re(γ) ∈
[
−125

7
,

67
7

]
, we need Im(γ) to satisfy 8375 < 406Re(γ) + 49Re(γ)2 + 49Im(γ)2,

for z = 1 being a superattractor.
We are going to study when z = 1 is a parabolic point. z = 1 will be a parabolic point

when 8375− 406Re(γ)− 49Re(γ)2 = 49Im(γ)2, that is, z = 1 is a parabolic point when

Re(γ) ∈
[
−125

7
,

67
7

]
and 49Im(γ)2 = −Re(γ)2 − 406Re(γ) + 8375.
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Now, we establish the stability of the strange fixed points that are roots of the polyno-
mial (24). To do this, we calculate these roots noting that this polynomial is a sixth degree
symmetric polynomial, that is, it is a polynomial that can be reduced to a third degree one,
and that satisfies the following properties:

• t = 0 is not the root;
• if t = α is the root, t = 1

α is also the root.

Performing the reduction of (24), we obtain:

1 + 6t + (16− 2γ)t2 + (21− 3γ)t3 + (16− 2γ)t4 + 6t5 + t6 = 0

↔(
1
t3 + t3) + 6(

1
t2 + t2) + (16− 2γ)(

1
t
+ t) + 21− 3γ = 0

↔z3 + 6z2 + (13− 2γ)z + 9− 3γ = 0,

where z = 1
t + t, z2 − 2 = 1

t2 + t2 and z3 − 3z = 1
t3 + t3. Now, we calculate the roots of this

polynomial and obtain:

z1(γ) =

3
√

2
3 (2γ− 1)

3
√
−9γ +

√
3γ((75− 32γ)γ− 78) + 93 + 9

+

3
√
−9γ +

√
3γ((75− 32γ)γ− 78) + 93 + 9

3√232/3
− 2,

z2(γ) =

3
√
− 2

3 (1− 2γ)

3
√
−9γ +

√
3γ((75− 32γ)γ− 78) + 93 + 9

+
(−1)2/3 3

√
−9γ +

√
3γ((75− 32γ)γ− 78) + 93 + 9

3√232/3
− 2,

z3(γ) =
(−1)2/3 3

√
2
3 (2γ− 1)

3
√
−9γ +

√
3γ((75− 32γ)γ− 78) + 93 + 9

−
3
√
− 1

2
3
√
−9γ +

√
3γ((75− 32γ)γ− 78) + 93 + 9

32/3 − 2.

To calculate the roots of polynomial (24) from the zi(γ), i = 1, 2, 3, we undo the

variable change since t =
zi(γ)±

√
zi(γ)2 − 4

2
. Therefore, we obtain the roots of the sixth

degree polynomial, which are conjugated two by two

Ex1(γ) =
z1(γ) +

√
z1(γ)2 − 4

2
, Ex2(γ) =

z1(γ)−
√

z1(γ)2 − 4
2

,

Ex3(γ) =
z2(γ) +

√
z2(γ)2 − 4

2
, Ex4(γ) =

z2(γ)−
√

z2(γ)2 − 4
2

,

Ex5(γ) =
z3(γ) +

√
z3(γ)2 − 4

2
, Ex6(γ) =

z3(γ)−
√

z3(γ)2 − 4
2

.

Now, we study when the roots of the polynomial (24) are superattractors. For them, we
solve |O′γ(Exi(γ))| = 0 for all i = 1, . . . , 6, and we get the following relevant values of γ:

• γ1 = 0.8114608325277108,
• γ2 = 5.5908453191613585,
• γ3 = 0.7671008924094337 + 0.7784254153980097i,
• γ4 = 0.7671008924094337− 0.7784254153980097i.

Next, we are going to study the character of the fixed points by analyzing those values
of γ close to the values of the parameter for which some Exi(γ) is a supertractor. To do this,
we study how |O′γ(Exi(γ))| behaves near the four previous values, and we obtain regions
where some of the roots will be attractors. These regions are represented in Figure 1.
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(a) Neighbourhood of γ1

(b) Neighbourhood of γ2

(c) Neighbourhood of γ3

(d) Neighbourhood of γ4

Figure 1. Character of the roots of polynomial k(t): (a) γ1, (b) γ2, (c) γ3, (d) γ4.

3.2. Critical Points

The relevance of knowing that the free critical points (that is, critical points different
from the roots of the polynomial) is based on this known fact: each invariant Fatou
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component contains, at least, one critical point. Operator Oγ(z) has as critical points z = 0,
z = −1, z = ∞, and the roots of the polynomial

q(t) = 6γ + (16 + 8γ)t + (41 + 7γ)t2 + 60t3 + (41 + 7γ)t4 + (16 + 8γ)t5 + 6γt6,

which we denote by Zxi(γ), where i = 1, . . . , 6.
Let us remark that z = −1 is a preimage of the fixed point z = 1. We can see that

q(t) is a symmetric polynomial, so we can obtain the roots of q(t) obtaining roots of a
polynomial of degree 3. The polynomial reduced of q(t) is the following one that we obtain
analogously to the polynomial (24):

q̂(t) = 6γt3 + (16 + 8γ)t2 + (41− 11γ)t + 28− 16γ.

In order to calculate the roots z of q(t), we need to obtain the roots of q̂(t) and apply the

following expression to them
z±
√

z2 − 4
2

. Thus, the roots of q(t) are conjugated.
Now, we are going to study the asymptotic behavior of the critical points to establish

if there are different convergence basins than those generated by the roots. For the free
critical point−1, we have Oγ(−1) = 1, who is a strange fixed point, so the parameter plane
associated with this critical point is not significative, since we know the stability of z = 1.

The other free critical points are roots of a polynomial that depends on γ; for that,
we draw the parameter planes. As we have that the roots are conjugated, we will only
draw three planes. We use as an initial estimate a free critical point that depends on γ.
We establish a mesh in the complex plane of 500× 500 points. Each point of the mesh
corresponds to a parameter value. In each of them, the rational function is iterated to
obtain the orbit of the critical point as a function of γ. If that orbit converges to z = 0 or to
z = ∞ in less than 40 iterations, that point of the mesh is painted red; otherwise, the point
appears in black.

As we can see, there are many values of the parameter γ that would result in a method
in which the free critical points converge to one of the two roots. As it is observed in
Figure 2, they are located in the red area on the right side of the plane. Moreover, some
black areas can be identified as the regions of stability of those fixed points that can be
attracting, such as Figure 1b, whose stability region appears in black on the right side of
Figure 2c.

Now, we select some stable (in red in parameter planes) and unstable values of γ (in
black) in order to show their performance.

In the case of dynamical planes, the value of the parameter γ is fixed. Each point in
the complex plane is considered as a starting point of the iterative scheme, and it is painted
in different colors depending on the point that it has converged to. In this case, we paint
in blue points what converged to ∞, and in orange points what converged to 0. These
dynamical planes have been generated with a mesh of 500× 500 points and a maximum of
40 iterations per point. We mark strange fixed points with white circles, the fixed point
z = 0 with a white star, and free critical points with white squares (again, the routines used
appear in [6]).

One value of the parameter that would be an interesting value is γ = 0 because it is
the only one that obtains order 4. In that case, we obtain the dynamical plane that we can
see in Figure 3a. In this case, two free critical points are in each basin of attraction, and the
strange fixed points are in the boundary of both basins of attraction, so they are repulsive.
In that case, the method is stable, and, as we can see, almost every point converges to 0 or
∞ (Let us notice that, in practice, any initial estimation taken in the Julia set will converge
to 0 or to∞, due to the rounding error).

Other value for the parameter that we study is γ = 1, Figure 3b. As we can see, this
dynamical plane is similar to that of γ = 0, but, in this case, we obtain less free critical
points and less strange fixed points, due to the simplification of the rational function for
this value of γ.
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(a) First root of q̂(t) (b) Second root of q̂(t)

(c) Third root of q̂(t)

Figure 2. Parameter planes of Oγ(z).

(a) Dynamical plane for γ = 0
(b) Dynamical plane for γ = 1

Figure 3. Dynamical planes of γ = 0 and γ = 1.

Carrying out numerous experiments, we have realized that the simplest dynamics is
that of the methods with parameter γ = 0 and γ = 1. Next, we will see other dynamical
planes associated with other values of the parameter γ. Some of these planes do not have a
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bad dynamics, although it is not as simple as the previous ones. This is the case of γ = 2,
Figure 4b, or the case of γ = 2i, Figure 4a.

However, values such as γ = −10 + i, γ = −5 or γ = − 29
7 present a dynamical plane

with the same number of basins of attraction but with more complicated performance.
We can see some of these dynamical planes in Figures 5a,b and 6a. There are also parameter
values for which the number of basins of attraction increases, for example, γ = 5 (Figure 6b).
These cases should be avoided since our method may not converge to the roots and may
end up converging to other points.

(a) Dynamical plane for γ = 2i

(b) Dynamical plane for γ = 2

Figure 4. Dynamical planes of γ = 2i and γ = 2.
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(a) γ = −10 + i

(b) γ = −5

Figure 5. Dynamical planes of γ = −10 + i and γ = −5.
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(a) γ = − 29
7

(b) γ = 5

Figure 6. Dynamical planes of γ = − 29
7 and γ = 5.

4. Numerical Experiments

In this section, we compare different iterative methods of the parametric family (2),
solving two classical problems of applied mathematics: the Hammerstein integral equation
and the Fisher partial derivative equation. We are going to use elements for the proposed
class for which we have studied the dynamical plane because we want to verify that,
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although some of them have complicated dynamics, they can be methods that give good
numerical results.

For the computational calculations, Matlab R2020b with variable precision arithmetics
with 1000 digits of mantissa is used. From an initial estimation x(0), the different algorithms
calculate iterations until the stoping criterium ‖x(k+1) − x(k)‖ < tol is satisfied.

For the different examples and algorithms, we compare the approximation obtained,
the norm of the function in the last iterate, the norm of the distance between the last
two approximations, the number of iterations needed to satisfy the required tolerance,
the computational time and the approximate computational convergence order (ACOC),
defined by Cordero and Torregrosa in [16], which has the following expression:

p ≈ ACOC =
ln(‖x(k+1) − x(k)‖2/‖x(k) − x(k−1)‖2)

ln(‖x(k) − x(k−1)‖2/‖|x(k−1) − x(k−2)‖2)
.

4.1. Hammerstein Equation

In this example, we consider the well-known Hammerstein integral equation (see [5]),
which is given as follows:

x(s) = 1 +
1
5

∫ 1

0
F(s, t)x(t)3dt, (25)

where x ∈ C[0, 1], s, t ∈ [0, 1] and the kernel F is

F(s, t) =
{

(1− s)t t ≤ s,
s(1− t) s ≤ t.

We transform the above equation into a finite-dimensional nonlinear problem by using

the Gauss–Legendre quadrature formula given as
∫ 1

0 f (t)dt ≈
7
∑

j=1
ωj f (tj), where the nodes

tj and the weights ωj are determined for n = 7 by the Gauss–Legendre quadrature formula.
In this case, the nodes and the weights are in Table 1.

Table 1. Weights and nodes of the Gauss–Legendre quadrature.

i Weight ωi Abscissa ti

1 0.0647424831 0.0254460438
2 0.1398526957 0.1292344072
3 0.1909150252 0.2970774243
4 0.2089799185 0.5
5 0.1909150252 0.7029225757
6 0.1398526955 0.8707655928
7 0.0647424831 0.9745539561

By denoting the approximations of x(ti) by xi (i = 1, . . . , 7), one gets the system of
nonlinear equations:

5xi − 5−
7

∑
j=1

aijx3
j = 0,

where i = 1, . . . , 7 and

aij =

{
wjtj(1− ti) j ≤ i,
wjti(1− tj) i < j.

Starting from an initial approximation x(0) = (−1, . . . ,−1)T and with a tolerance
of tol = 10−15, we run the parametric family for different values of the parameter γ.
The numerical results are shown in Table 2.
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Table 2. Hammerstein results for different parameters.

Parameter γ v‖F(x(k+1))‖2 ‖x(k+1)− x(k)‖2 Iteration ACOC Time

0 5.40317 ×10−46 1.82600 ×10−184 4 3.99753 38.0469
1 1.1060 ×10−20 7.36657 ×10−63 4 2.85884 33.8594

−10 + i 4.02251 ×10−45 3.70484 ×10−135 6 2.98801 84.8594
−29/7 1.73829 ×10−32 1.18363 ×10−97 5 2.98095 44.0781
−5 8.18771 ×10−29 1.48807 ×10−86 5 2.97987 46.2500
5 6.98712 ×10−28 9.02414 ×10−84 5 2.97222 36.3281
2i 5.87285 ×10−47 2.22194 ×10−141 5 2.98606 35.3281
2 5.36968 ×10−17 8.93118 ×10−52 4 2.93508 25.8750

In all cases, we obtain as an approximation of the solution of Equation (25) the
following vector x(k+1) = (1.0026875, 1.0122945, 1.0229605, 1.0275616, 1.0229605, 1.0122945,
1.0026875)T .

In the case of the Hammerstein integral equation, we see that the numerical results of
the parametric family (2) for different values of γ are quite similar. The main difference
observed between the methods is that the ACOC for γ = 0 is 4, and, for the rest of
the methods, it is approximately 3. On the other hand, we note that the method with
γ = −10 + i needs to perform a larger number of iterations than the rest of the methods to
satisfy the required tolerance, so the time it takes to approximate the solution is also longer.
Finally, taking into account the columns that measure the error of the approximation, that
is, ‖F(x(k+1))‖2 and ‖x(k+1) − x(k)‖2, we see that iterative methods that get lower errors
are those associated with the parameters γ = 0 and γ = 2. These results confirm the
information obtained in the dynamical section.

4.2. Fisher Equation

In this second example, we are going to study the equation proposed in [17] by Fisher
to model the diffusion process in population dynamics. The analytical expression of this
partial derivative equation is as follows:

ut(x, t) = Duxx(x, t) + ru(x, t)
(

1− u(x, t)
p

)
, x ∈ [a, b], t ≥ 0, (26)

where D ≤ 0 is the diffusion constant, r is the level of growth of the species, and p is the
carrying capacity.

In this case, we will study the Fisher equation for the values p = 1, r = 1, and D = 1
in the spatial interval [0, 1] and with the initial condition u(x, 0) = sech2(πx) and null
boundary conditions.

We transform the problem we just described in a set of nonlinear systems by applying
an implicit method of finite differences, providing the estimated solution in the instant tk

from the estimated one in tk−1. We denote the spatial step by h =
1

nx
and the temporal step

by k =
Tmax

nt
, where Tmax is the final instant and nx and nt are the number of subintervals in

x and t, respectively. Therefore, we define a mesh of the domain [0, 1]× [0, Tmax], composed
of points (xi, tj), as follows:

xi = 0 + ih, i = 0, . . . , nx, tj = 0 + jk, j = 0, . . . , nt.
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Our objective is to approximate the solution of problem (26) in these points of the
mesh, solving as many nonlinear systems as there are temporary nodes tj in the mesh.
For this, we use the following finite differences:

ut(x, t) ≈ u(x, t)− u(x, t− k)
k

uxx(x, t) ≈ u(x + h, t)− 2u(x, t) + u(x− h, t)
h2 .

We observe that, for the time step, we use first order backward divided differences
and for the spatial step they are second order centered divided differences.

By denoting ui,j as the approximation of the solution at (xi, tj), and, by replacing it in
the Cauchy problem, we get the system

kui+1,j + (kh2 − 2k− h2)ui,j − kh2u2
i,j + kui−1,j = −h2ui,j−1,

for i = 1, 2, . . . , nx− 1 and j = 1, 2, . . . , nt. The unknowns of this system are u1,j, u2,j, . . . , unx−1,j,
that is, the approximations of the solution in each spatial node for the fixed instant tj.

In this example, we are going to work with the parameters Tmax = 10, nx = 10 and
nt = 50. As we have said, it is necessary to solve as many systems as there are temporary
nodes tj; for each of these systems, we use the parametric family (2) to approximate its
solution. Thus, starting from an initial approximation ui,0 = sech2(πxi), i = 0, . . . , nx, with
a tolerance of 10−6, we execute the parametric family for different values of γ so that we
get Table 3.

Table 3. Fisher results for different parameters.

Parameter γ ‖F(x(k))‖2 ‖x(k+1)− x(k)‖2 Iteration ACOC Time

0 1.00166 ×10−8 1.12488 ×10−35 3 4.21099 213.4219
1 1.9199 ×10−16 5.88036 ×10−50 4 2.99609 248.7344

−10 + i 8.08037 ×10−9 4.65282 ×10−26 5 3.01506 352.6563
−29/7 1.8002 ×10−7 2.00583 ×10−22 4 2.86978 247.9844
−5 1.89574 ×10−19 2.9985 ×10−58 5 2.99569 267.2969
5 2.4177 ×10−17 6.2774 ×10−52 5 2.99654 275.7344
2i 2.27659 ×10−11 1.96645 ×10−34 4 2.97846 252.8438
2 9.67264 ×10−12 1.50906 ×10−35 4 3.00948 231.2188

In all cases, we obtain as an approximation of the solution of problem (26) the following
vector x(k+1) = (0,4.32639,0.708718,0.853425,0.918847,0.93729,0.918847,0.853425,0.708718,
0.432639,0)T .

In this case, it can seen that the results are very similar, although there are subtle
differences. For example, the method when γ = 0 uses a smaller number of iterations than
the rest to satisfy the required tolerance, although this does not make it much faster than
the rest of the methods since the difference in time is seconds. On the other hand, if we
look at the time column, we can see that there is a method that stands out for its slowness;
this is the case of γ = −10 + i. Again, we note that the ACOC of the methods roughly
match the theoretical predictions made throughout the article. Observing the columns of
the errors, we find similar results as well and that, in this case, having a higher tolerance
than in the first example, no great differences are observed in these results.

5. Conclusions

A parametric family of iterative methods for solving nonlinear systems is presented.
The dynamical analysis of the class on quadratic polynomials is done in order to select the
members of the family with better stability properties. We prove that there exist a wide
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set of real and complex values of the parameter for which the corresponding methods are
stable. That is, the set of initial estimations converging to the roots is very wide.In particular,
we have stated that those procedures with γ = 0, γ = 1, and γ = 2 are especially stable,
although some other ones can also show similar dynamical properties. Two numerical
examples related to Hammerstein’s equation and Fisher’s equation allow us to confirm the
theoretical results corresponding to the convergence and the stability of the proposed class.
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