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Abstract: The main purpose of the current article is to develop new specific and general linearization
formulas of some classes of Jacobi polynomials. The basic idea behind the derivation of these formulas
is based on reducing the linearization coefficients which are represented in terms of the Kampé de
Fériet function for some particular choices of the involved parameters. In some cases, the required
reduction is performed with the aid of some standard reduction formulas for certain hypergeometric
functions of unit argument, while, in other cases, the reduction cannot be done via standard formulas,
so we resort to certain symbolic algebraic computation, and specifically the algorithms of Zeilberger,
Petkovsek, and van Hoeij. Some new linearization formulas of ultraspherical polynomials and
third-and fourth-kinds Chebyshev polynomials are established.

Keywords: Jacobi polynomials; hypergeometric functions; linearization coefficients; recurrence
relations; symbolic algorithms

1. Introduction

The connection and linearization problems of polynomials in general and of orthog-
onal polynomials, in particular, are crucial in mathematical analysis and its applications.
For example, the linearization coefficients are useful in the computation of physical and
chemical properties of quantum-mechanical systems [1,2]. In addition, they serve in the
numerical solution of some differential equations. As an example, a certain linearization
formula of Chebyshev polynomials of the third- kind is employed to find a spectral solution
for a nonlinear Riccati differential equation in Abd-Elhameed [3]. A variety of papers in
the literature were interested in solving linearization and connection problems of different
orthogonal polynomials via proposing several methods. For some articles in this direction,
one can be referred to [4–10]. For the discussion of the linearization problem, and if we
let {Ai(x)}i≥0 , {Bj(x)}j≥0, and {Ck(x)}k≥0 be three families of polynomials, then to solve
the general linearization problem

Ai(x) Bj(x) =
i+j

∑
m=0

Lm,i,j Cm(x),

it is required to find the linearization coefficients Lm,i,j.
Hypergeometric functions are very essential in the applications of mathematical analy-

sis. Almost all elementary special functions can be represented by hypergeometric functions
of certain arguments. There are theoretical studies about these kinds of functions, see,
for example, [11,12]. Moreover, when solving the connection, duplication, and linearization
problems, we have to find the connection, duplication, and linearization coefficients. These
coefficients are often expressed in terms of hypergeometric functions of certain arguments;
see, for example, [6,13].
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It is well-known that the Jacobi polynomials P(α,β)
n (x), and their particular polyno-

mials play distinguished parts in mathematical analysis theoretically and practically (see,
for example, [14–17]). The class of Jacobi polynomials includes six celebrated classes of
orthogonal polynomials. Four of them are symmetric, namely, ultraspherical, Legendre,
and Chebyshev polynomials of the first- and second- kinds, while the other two classes,
namely, Chebyshev polynomials of the third- and fourth- kinds are non-symmetric. In fact,
the ultraspherical polynomials correspond to the case α = β and each is replaced by (α− 1

2 );
first- and second-kinds of Chebyshev polynomials correspond, respectively, to the cases(

α = β = − 1
2

)
and

(
α = β = 1

2

)
. The third- and fourth-kinds of Chebyshev polynomials

correspond, respectively, to the cases
(

α = −β = − 1
2

)
and

(
α = −β = 1

2

)
. For a survey

on different kinds of Chebyshev polynomials, one can consult [18].
Due to the importance of the linearization formulas of Jacobi polynomials and their

special polynomials, some contributions were devoted to establishing these formulas.
For example, the authors in [19] established linearization formulas of the two non-symmetric
classes, namely, Chebyshev polynomials of the third-and fourth-kinds, while the author
in [20] established linearization formulas of other classes of non-symmetric Jacobi polynomi-
als. The authors in [21] developed a linearization formula for the product P(α,β)

n (x) P(β,α)
n (x)

in terms of ultraspherical polynomials. The linearization coefficients are given in terms of
a certain hypergeometric function of the type 5F4(1), which can be summed for particular
choices of the involved parameters by making use of some well-known formulas in the
literature or via the application of some suitable symbolic computation.

The current paper aims to establish new expressions for the linearization coefficients
Am,i,j in the problem

P̃(α,β)
i (x) P̃(λ,µ)

j (x) =
i+j

∑
m=0

Am,i,j P(α+λ,β+µ)
i+j−m (x), (1)

for certain choices of the involved parameters in (1), where P̃(α,β)
i (x) is the modified

Jacobi polynomial of degree i which was defined in [10]. Chaggara and Koepf in [6]
expressed the coefficients Am,i,j in terms of a product of two terminating hypergeometric
functions of unit argument. We will show that these coefficients can be reduced in some
cases to give simple forms via utilizing some standard formulas in the literature or with
the aid of suitable symbolic computation, and, in particular, Zerilberger’s, Petkovsek’s
algorithms [22], and van Hoeij’s algorithm [23].

The rest of the paper is as follows: Section 2 displays some preliminaries concerned with
the hypergeometric and the generalized hypergeometric functions and fundamental properties
of Jacobi polynomials. In addition, we present a formula for the linearization coefficients
of Jacobi polynomials. Section 3 is interested in establishing a linearization formula of two
different ultraspherical polynomials. Linearization formulas of some other Jacobi polynomials
are developed in Section 4. Finally, Section 5 presents some concluding remarks.

2. Some Preliminaries and Fundamental Properties of Jacobi Polynomials

This section is confined to presenting some essentials of the hypergeometric and the
generalized hypergeometric functions and useful reduction formulas of some of these func-
tions. In addition, some fundamental properties of the classical Jacobi polynomials are given.
Furthermore, we give an account of the linearization coefficients of Jacobi polynomials.

2.1. Hypergeometric Functions, Generalized Hypergeometric Functions, and Some Useful
Reduction Formulas

The 2F1(x) series is defined by Gauss as [24]

2F1

(
b, c
d

∣∣∣∣x) = 1 +
b c
d

x +
b(b + 1) c(c + 1)

d (d + 1)
x2

2!
+ · · · =

∞

∑
m=0

(b)m (c)m

(d)m

xm

m!
, (2)
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where d is neither zero nor a negative integer, and the symbol (z)m represents the well-

known Pochhammer symbol that is (z)m =
Γ(z + m)

Γ(z)
.

The series in (2) reduces to the elementary geometric series
∞

∑
m=0

xm for b = 1 and c = d.

The following two notes regarding the 2F1(x) in (2) are important:

• If none of b, c, or d is zero or a negative integer, then the series in (2) converges for all
|x| < 1 and diverges for all |x| > 1.

• If either b or c (or both) are zero or a negative integer, then the series in (2) is finite and
therefore converges for all x.

In general, we say that ∑ ym(x) is a hypergeometric-type series if the ratio
ym+1(x)

ym(x)
is

a rational function of m. The generalized hypergeometric function is defined as ([25])

rFs

(
c1, c2, . . . , cr
d1, d2, . . . , ds

∣∣∣∣x) =
∞

∑
m=0

(c1)m (c2)m . . . (cr)m

(d1)m (d2)m . . . (ds)m

xm

m!
, (3)

where r and s are non-negative integers, and no di, 1 ≤ i ≤ s is zero or a negative integer.
It is to be noted here that, if one of the numerator parameters is a negative integer, then the
series in (3) turns into a finite sum. For example, if c1 = −r, for some positive integer
r, then

rFs

(
−r, c2, . . . , cr
d1, d2, . . . , ds

∣∣∣∣x) =
r

∑
m=0

(−r)m (c2)m . . . (cr)m

(d1)m (d2)m . . . (ds)m

xm

m!
. (4)

There are several useful identities and transformations between hypergeometric func-
tions and generalized hypergeometric functions. In this regard, one can consult [25,26].

The following two reduction formulas are useful in the sequel.

Theorem 1. Watson’s identity (see, [27]) For every non-negative integer j, one has

3F2

(
−j, j + 2 c + 2 d− 1, c

2 c, c + d

∣∣∣∣1)

=


j! Γ(c + j

2 ) Γ(d + j
2 ) Γ(2 c) Γ(c + d)(

j
2

)
! Γ(c + d + j

2 ) Γ(2 c + j) Γ(c) Γ(d)
, j even,

0, j odd.

(5)

Theorem 2. Chu–Vandermonde identity ([24]) For every non-negative integer j, one has

2F1

(
−j, c

d

∣∣∣∣1) =
(d− c)j

(d)j
. (6)

2.2. An Overview on Jacobi Polynomials

The sequence of Jacobi polynomials P(α,β)
k (x), x ∈ [−1, 1], k ≥ 0, and α > −1, β > −1,

(see, for example, [26,28] ), can be generated with the aid of Rodrigues’ formula:

P(α,β)
k (x) =

(−1)k

2k k!
(1− x)−α(1 + x)−β dk

dxk

[
(1− x)α+k(1 + x)β+k

]
.

The hypergeometric representation of Jacobi polynomials is given by

P(α,β)
k (x) =

(α + 1)k
k! 2F1

(
−k, k + α + β + 1

β + 1

∣∣∣∣1− x
2

)
.
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Rahman in [10] defined the modified Jacobi polynomials as

P̃(α,β)
k (x) = 2F1

(
−k, k + α + β + 1

β + 1

∣∣∣∣1− x
2

)
. (7)

The modified Jacobi polynomials are characterized by the property:

P̃(α,β)
k (1) = 1, k = 0, 1, 2, . . . ,

and, therefore, obtaining the six particular polynomials of Jacobi polynomial is easier.
In fact, they can be given by the following formulas:

Tk(x) = P̃(− 1
2 ,− 1

2 )
k (x), Uk(x) = (k + 1) P̃( 1

2 , 1
2 )

k (x),

Vk(x) = P̃(− 1
2 , 1

2 )
k (x), Wk(x) = (2k + 1) P̃( 1

2 ,− 1
2 )

k (x),

C(α)
k (x) = P̃(α− 1

2 ,α− 1
2 )

k (x), Pk(x) = P̃(0,0)
k (x),

where Tk(x), Uk(x), Vk(x) and Wk(x) denote, respectively, the first-, second-, third-, and
fourth- kinds of Chebyshev polynomials, while C(α)

k (x) and Pk(x) denote, respectively,
the ultraspherical and Legendre polynomials.

Note that all four kinds of Chebyshev polynomials have trigonometric representations.
They are given as follows:

Tk(x) = cos(k θ), Uk(x) =
sin((k + 1) θ)

sin θ
,

Vk(x) =
cos
((

k + 1
2

)
θ
)

cos
(

θ
2

) , Wk(x) =
sin
((

k + 1
2

)
θ
)

sin
(

θ
2

) ,

with θ = cos−1(x).
In addition, note that the polynomials Vk(x) and Wk(x) satisfy the following relation:

Wk(x) = (−1)k Vk(−x).

2.3. Linearization Coefficients of Jacobi Polynomials

There are many approaches followed to obtain new formulas of linearization coef-
ficients of Jacobi polynomials and their special classes. The authors in [6] discussed the
linearization problem:

P(α,β)
i (x) P(η,θ)

j (x) =
i+j

∑
k=0

Lk,i,j P(ρ,σ)
i+j−k(x), (8)

and they established a formula for the linearization coefficients Lk,i,j, in which Lk,i,j are
expressed in terms of the Kampé de Fériet function F2:2

2:1 , which is represented as a double
hypergeometric function. Regarding the linearization coefficients Lk,i,j, it is not easy to
express them in reduced forms even for particular choices of the parameters of Jacobi
polynomials in (8). The authors in [6] used the Gasper’s reduction formula in [29] for
developing a new formula for the coefficients Lk,i,j corresponding to the particular choices:
ρ = α + η, σ = β + θ, and they stated and proved in [6] an important theorem in this
regard. The following theorem displays the corresponding result for the modified Jacobi
polynomials, which are defined in (7).
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Theorem 3. For all non-negative integers i and j, the following linearization formula holds:

P̃(α,β)
i (x) P̃(η,θ)

j (x) =
i+j

∑
k=0

Mk,i,j P̃(α+η,β+θ)
i+j−k (x), (9)

where

Mk,i,j =
(1 + α + β)2i (1 + α + η)i+j (1 + η + θ)2j (1 + α + β + η + θ)i+j−k

(1 + α + β)i (1 + α + η)i+j−k (1 + η + θ)j (1 + α + β + η + θ)1+2(i+j)−k

× (i + j)! Γ(1 + α) Γ(1 + η) Γ(1 + i + j− k + α + η)

(i + j− k)! k! Γ(1 + i + α) Γ(1 + j + η) Γ(1 + α + η)

× (2i− k + α + β + 1)k (α + β + η + θ + 2i + 2j− 2k + 1)
(2j− k + η + θ + 1)k

× 3F2

(
−k,−i,−θ − β− 2i− 2j + k− α− η − 1

−i− j,−β− 2i− α

∣∣∣∣1)
× 3F2

(
−k,−i− α,−θ − β− 2i− 2j + k− α− η − 1

−β− 2i− α,−i− j− α− η

∣∣∣∣1).

(10)

As mentioned in [6], we have to note that the two 3F2(1) which appear in (10) have no
reduction formulas in general.

In the upcoming sections, and starting from Equation (9), we are going to establish
some new linearization formulas of Jacobi polynomials for particular choices of their
parameters. The basic idea behind the derivation of these formulas is based on reducing
one or two of the 3F2(1) which appear in (10). We mention here that the desired reductions
can be done through one of the following two approaches:

(a) Using some standard formulas such as Watson’s and Chu–Vandermonde identities.

(b) Making use of some celebrated symbolic algebra. To be more precise, we make use of
Zerilberger’s algorithm [22] to obtain the recurrence relation satisfied by the hyperge-
ometric function, and, after that, and thanks to any suitable symbolic algorithm such
as Petkovsek’s algorithm (Koepf [22]) or the improved version of van Hoeij ([23]),
this recurrence relation can be exactly solved. This yields some linearization formulas
in simple forms free of any hypergeometric functions.

3. Some Linearization Formulas of Ultraspherical Polynomials

Our goal in this section is to derive new linearization formulas of ultraspherical
polynomials of different parameters. Some new specific and general linearization formulas
are also deduced.

Theorem 4. For all non-negative integers i and j, the following linearization formula is valid:

C(α)
i (x)C(η)

j (x) =
(i + j)! Γ(2i + 2α) Γ

(
1
2 + α

)
Γ
(

1
2 + η

)
4i+α Γ(i + 2α) Γ(α + η) Γ(j + 2η)

×

⌊
i+j
2

⌋
∑
k=0

(−1)k (−1 + 2i + 2j− 4k + 2α + 2η) Γ(j− k + η) Γ(−1 + i + j− 2k + 2α + 2η)

k! (i + j− 2k)! Γ
(

1
2 + i− k + α

)
Γ
(

1
2 + i + j− k + α + η

)
× 3F2

(
−2k,−i,−2α− 2η − 2i− 2j + 2k + 1

−i− j,−2α− 2i + 1

∣∣∣∣∣1
)

C(α+η− 1
2 )

i+j−2k (x).

(11)
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Proof. The substitution by β = α, θ = η into the linearization coefficients (10) enables one
to write the linearization coefficients Mk,i,j in this case as

Mk,i,j =
4i+α (1 + 2i + 2j− 2k + 2α + 2η) (i + j)! Γ(1 + 2j− k + 2η) Γ(1 + i + j− k + 2α + 2η)√

π k! (i + j− k)! Γ(1 + i + 2α) Γ(1 + 2i− k + 2α)

×
Γ(1 + α) Γ

(
1
2 + i + α

)
Γ(1 + 2i + 2α) Γ(1 + η) Γ(1 + i + j + α + η)

Γ(1 + j + η) Γ(1 + α + η) Γ(1 + j + 2η) Γ(2i + 2j− k + 2(1 + α + η))

× 3F2

(
−k,−α− i,−2α− 2η − 2i− 2j + k− 1

−2α− 2i,−α− η − i− j

∣∣∣∣∣1
)

× 3F2

(
−k,−i,−2α− 2η − 2i− 2j + k− 1

−i− j,−2α− 2i

∣∣∣∣∣1
)

.

(12)

The first 3F2(1) which appears in (12) can be summed with the aid of Watson’s identity
(5). More definitely, setting j = k, c = −i− α and d = −k− η, in (5) immediately yields

3F2

(
−k,−α− i,−2α− 2η − 2i− 2j + k− 1

−2α− 2i,−α− η − i− j

∣∣∣∣1) =
(−1)

k
2 Γ
(

k+1
2

)(
j− k

2 + η + 1
)

k
2√

π
(

i− k
2 + α + 1

2

)
k
2

(
i + j− k

2 + α + η + 1
)

k
2

, k even,

0, k odd,

and, therefore, the following linearization formula is obtained:

P̃(α,α)
i (x) P̃(η,η)

j (x) =
2−1−2i−2α (i + j)! Γ(α + 1) Γ(1 + η) Γ(1 + 2i + 2α)

Γ(1 + i + 2α) Γ(1 + α + η) Γ(1 + j + 2η)

×

⌊
i+j
2

⌋
∑
k=0

(−1)k (1 + 2i + 2j− 4k + 2α + 2η) Γ
(

1
2 + j− k + η

)
Γ(1 + i + j− 2k + 2α + 2η)

k! (i + j− 2k)! Γ(1 + i− k + α) Γ
(

3
2 + i + j− k + α + η

)
× 3F2

(
−2k,−i,−1− 2i− 2j + 2k− 2α− 2η

−i− j,−2i− 2α

∣∣∣∣∣1
)

P̃(α+η,α+η)
i+j−2k (x).

(13)

Noting the identity: C(α)
m (x) = P̃(α− 1

2 ,α− 1
2 )

m (x), it is easy to convert formula (13) into
the desired linearization formula (11).

The result of Theorem 4 can be reduced to give some new linearization formulas free
of any hypergeometric functions for specific choices of α and η. In the following, we state
and prove some corollaries in this respect.

Corollary 1. For all non-negative integers i and j, the following linearization formula is valid

C( 3
2 )

i (x) Pj(x) =
1

2 (1 + i) (2 + i)π

×
min(i+1,j)

∑
k=0

(3 + 2i + 2j− 4k)(i + j− k + 1)! Γ
(

1
2 + k

)
Γ
( 3

2 + i− k
)

Γ
(

1
2 + j− k

)
k! (i− k + 1)! (j− k)! Γ

( 5
2 + i + j− k

)
×
(

2 + j + i(3 + i + j)− 3k− 2(i + j)k + 2k2
)

C( 3
2 )

i+j−2k(x).

(14)
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Proof. If we substitute by α = 3
2 , η = 1

2 into (11), then we get

C( 3
2 )

i (x) Pj(x) =
(i + j)! (2i + 2)!
23+2i j! (i + 2)!

⌊
i+j
2

⌋
∑
k=0

(−1)k (3 + 2i + 2j− 4k) (i + j− 2k + 2)! Γ
(

1
2 + j− k

)
(i + j− 2k)! k! (i− k + 1)! Γ

( 5
2 + i + j− k

)
× 3F2

(
−2k,−i,−3− 2i− 2j + 2k

−2− 2i,−i− j

∣∣∣∣∣1
)

C( 3
2 )

i+j−2k(x).

(15)

To the best of our knowledge, no standard reduction formula exists in the literature to
sum the 3F2(1) that appears in (15), so we employ symbolic computation for such purpose.
First, set

Rk,i,j = 3F2

(
−k,−i,−3− 2i− 2j + k
−2− 2i,−i− j

∣∣∣∣1), (16)

and utilize Zeilberger’s algorithm (see [22]). The Maple software can be employed through
“sumrecursion command”. More precisely, to obtain the recurrence relation satisfied by the
finite sum in (16), we use the command

sumrecursion
(
(−k)m (−i)m (−3− 2i− 2j + k)m

(−2− 2i)m (−i− j)m m!
, m, R[k]

)
,

to show that Rk,i,j satisfies the following recurrence of order two:

(k− 1)(2 + 2 j− k)(i + j + 4− k)(−k + 2 + i + j)Rk−2,i,j

−
(

2 ij− 2 ik + 2 j2 − 2 jk + k2 + 2 i + 6 j− 5 k + 4
)
(5 + 2 i + 2 j− 2 k)Rk−1,i,j

+ (4 + 2 i + 2 j− k)(−k + 3 + 2 i)(i + j + 3− k)(−k + i + j + 1)Rk,i,j = 0,

(17)

with the initial values
R0,i,j = 1, R1,i,j =

j
(i + 1)(i + j)

. (18)

The recurrence relation (17) can be exactly solved with the aid of any suitable symbolic
algorithm. The celebrated symbolic algorithm by Petkovsek [22], or the improved version
of van Hoeij ([23]) may be employed for this purpose. The exact solution of (17) with the
initial values in (18) is given explicitly as follows:

3F2

(
−k,−i,−3− 2i− 2j + k
−2− 2i,−i− j

∣∣∣∣1) =

j!
√

π (1 + i)(1 + i + j− k) (2 + i + j− k) Γ
( 3

2 + i
)
(i + j)!

×



(−1)
k
2
(
2(1 + i)(2 + i + j)− (3 + 2i + 2j) k + k2)Γ( 3

2 + i− k
2

)(
1 + i + j− k

2

)
! Γ
(

1+k
2

)
2
(

j− k
2

)
!

, k even,

2(−1)
k+3

2 Γ
(

2 + i− k
2

) (
i + j− k−3

2

)
! Γ
(

1 + k
2

)
(

j− k+1
2

)
!

, k odd.

(19)

Now, it is clear that from relation (19) that

3F2

(
−2k,−i,−3− 2i− 2j + 2k

−2− 2i,−i− j

∣∣∣∣1)

=
(−1)k(2 + j + i(3 + i + j)− 3k− 2(i + j)k + 2k2)Γ( 1

2 + k
)
(1 + j− k)k

(1 + i)
√

π(1 + i + j− 2k)(2 + i + j− 2k)
( 3

2 + i− k
)

k(2 + i + j− k)k−1
.

(20)



Mathematics 2021, 9, 74 8 of 21

The above reduction together with relation (15) yield the desired linearization
Formula (14).

Remark 1. We mention here that all the recurrence relations in what follows can be treated similarly.

Corollary 2. For all non-negative integers i and j with j ≥ i, one obtains

Pi(x) Tj(x) =
1
π

i

∑
k=0

Γ
(

1
2 + i− k

)
Γ
(

1
2 + k

)
k!(i− k)!

Ti+j−2k(x). (21)

Proof. If we substitute by α = 1
2 and η = 0 into (11), then we get

Pi(x) Tj(x) =
(i + j)! Γ

(
1
2 + i

)
√

π (j− 1)!

i

∑
k=0

(−1)k (j− k− 1)!
(i− k)! k! (j− k + i)!

× 3F2

(
−2k,−i,−2i− 2j + 2k

−2i,−i− j

∣∣∣∣1) Ti+j−2k(x).

(22)

Now, in order to reduce the 3F2(1) in (22), first set

Gk,i,j = 3F2

(
−k,−i,−2i− 2j + k
−2i,−i− j

∣∣∣∣1).

In virtue of Zeilberger’s algorithm (Koepf [22]), it can be shown that the following
recurrence relation is satisfied by Gk,i,j:

(k− 1)(2 j− k + 1)(−2 k + 2 i + 2 j + 1) Gk−2,i,j − 2
(

2 i2 + 2 ij− 2 ik− 2 jk + k2 + 3 i + 2 j− 2 k + 1
)

× Gk−1,i,j + (2 i + 2 j− k + 1)(2 i− k + 1)(2 i− 2 k + 3 + 2 j) Gk,i,j = 0, G0,i,j = 1, G1,i,j =
1

2(i + j)
.

(23)

The above recurrence relation can be exactly solved to give

Gk,i,j =
(j− 1)!

√
π (i + j)! Γ

(
1
2 + i

)


(−1)
k
2

(
i + j− k

2

)
! Γ
(

i− k
2 + 1

2

)
Γ
(

k+1
2

)
(

j− k
2 − 1

)
!

, k even,

(−1)
k−1

2 Γ
(

i− k
2 + 1

)
Γ
(

i + j− k
2 + 1

2

)
Γ
(

1 + k
2

)
Γ
(

j− k
2 + 1

2

) , k odd.

(24)

Now, it is clear from (24) that

3F2

(
−2k,−i,−2i− 2j + 2k

−2i,−i− j

∣∣∣∣1) =
(−1)k (j− 1)! (i + j− k)! Γ

(
1
2 + i− k

)
Γ
(

1
2 + k

)
√

π (i + j)! (j− k− 1)! Γ
(

1
2 + i

) ,

and hence the following linearization formula can be obtained:

Pi(x) Tj(x) =
1
π

i

∑
k=0

Γ
(

1
2 + i− k

)
Γ
(

1
2 + k

)
k! (i− k)!

Ti+j−2k(x).

Corollary 3. For every non-negative integer i, one has
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(
C(α)

i (x)
)2

=
i! Γ
(

1
2 + α

)
2
√

π Γ(α)Γ(i + 2α)

×
i

∑
k=0

(−1 + 4i− 4k + 4α) Γ
(

1
2 + k

)
Γ(i− k + α) Γ

(
− 1

2 + i− k + 2α
)

Γ(2i− k + 2α)

(i− k)! k! Γ
(

1
2 + i− k + α

)
Γ
(

1
2 + 2i− k + 2α

) C(2 α− 1
2 )

2i−2k (x),

(25)

and, in particular, one has

(Pi(x))2 =
1

2 π

i

∑
k=0

(4 i− 4 + 1) (2 i− k)! Γ
(

k + 1
2

) (
Γ
(

i− k + 1
2

))2

k! ((i− k)!)2 Γ
(
2 i− k + 3

2
) P2i−2k(x),

(Ui(x))2 =
i + 1

4

i

∑
k=0

(4 i− 4 k + 3) (2 i− k + 1)! Γ
(

k + 1
2

)
k! Γ
(
2 i− k + 5

2
) C( 3

2 )
2 i−2 k(x).

Proof. Setting j = i and η = α in (11) yields

(
C(α)

i (x)
)2

=
(2 i)! Γ(2(i + α))

(
Γ
(

1
2 + α

))2

4i+α Γ(2α) (Γ(i + 2α))2

×
i

∑
k=0

(−1)k (−1 + 4i− 4k + 4α) Γ(i− k + α)Γ(−1 + 2i− 2k + 4α)

k! (2i− 2k)! Γ
(

1
2 + i− k + α

)
Γ
(

1
2 + 2i− k + 2α

)
× 3F2

(
−i,−2k, 1− 4i + 2k− 4α
−2i, 1− 2i− 2α

∣∣∣∣1) C(2α− 1
2 )

2 i−2 k (x).

Making use of Watson’s identity (5), it can be shown that

3F2

(
−k,−i, 1− 4i + k− 4α
−2i, 1− 2i− 2α

∣∣∣∣1) =
(−1)

k
2 Γ
(

1
2 + i− k

2

)
Γ
(

1+k
2

)
Γ(i + 2α)Γ

(
2i− k

2 + 2α
)

√
π Γ
(

1
2 + i

)
Γ(2(i + α))Γ

(
i− k

2 + 2α
) , k even,

0, k odd.

(26)

Based on the above reduction formula, the linearization formula (25) can be ob-
tained.

Remark 2. Relation (25) is in agreement with that obtained in Ref. [30], but here it is derived differently.

Corollary 4. For every non-negative integer i, one has

C(α)
i (x)C(α)

i+1(x) =
(1 + 2i + 2α) i! Γ

(
1
2 + α

)
4
√

π Γ(α) Γ(1 + i + 2α)

×
i

∑
k=0

(1 + 4i− 4k + 4α) Γ
(

1
2 + k

)
Γ(i− k + α) Γ

(
1
2 + i− k + 2α

)
Γ(1 + 2i− k + 2α)

(i− k)! k! Γ
( 3

2 + i− k + α
)

Γ
( 3

2 + 2i− k + 2α
) C(2α− 1

2 )
2i−2k+1(x),

(27)

and, in particular, one has

Ui(x)Ui+1(x) =
1
8
(3 + 2i)

i

∑
k=0

(5 + 4i− 4k) (2i− k + 2)! Γ
(

1
2 + k

)
k! Γ
( 7

2 + 2i− k
) C( 3

2 )
2i−2k+1(x).
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Proof. Setting j = i + 1 and η = α in (11) yields

C(α)
i (x)C(α)

i+1(x) =
(2i + 1)! Γ(2(i + α))

(
Γ
(

1
2 + α

))2

4i+ α Γ(2α) Γ(i + 2α) Γ(1 + i + 2α)

×
i

∑
k=0

(−1)k (1 + 4i− 4k + 4α) Γ(1 + i− k + α) Γ(2i− 2k + 4α)

k! (2i− 2k + 1)! Γ
(

1
2 + i− k + α

)
Γ
( 3

2 + 2i− k + 2α
)

× 3F2

(
−2k,−i,−1− 4i + 2k− 4α
−1− 2i, 1− 2i− 2α

∣∣∣∣1)C(2α− 1
2 )

2i−2k+1(x).

(28)

In order to reduce the 3F2(1) that appears in (28), we perform similar procedures to
those followed in the proof of Corollary 2 to obtain

3F2

(
−2k,−i,−1− 4i + 2k− 4α
−1− 2i, 1− 2i− 2α

∣∣∣∣1)

=
(−1)k (1 + 2i + 2α) Γ

(
k + 1

2

)
(i− k + 2α)k

2
√

π (1 + 2i− 2k + 2α) (i− k + α)
(
i− k + 3

2
)

k(1− k + 2(i + α))k−1
,

and, therefore, the linearization formula (27) can be obtained.

Corollary 5. For every non-negative integer i, one has

Ti(x)Ui(x) =
i + 1

2 i + 1
+

1
4

i−1

∑
k=0

(1 + 4i− 4k) (2i− k)! Γ
(

1
2 + k

)
k! Γ
( 3

2 + 2i− k
) P2i−2k(x). (29)

Proof. Setting α = 0 , η = 1 and j = i in (11) gives

Ti(x)Ui(x) = 4i−1
(

Γ
(

1
2 + i

))2 i

∑
k=0

(−1)k (1 + 4i− 4k) (i− k)!

k! Γ
(

1
2 + i− k

)
Γ
( 3

2 + 2i− k
)

× 3F2

(
−2k,−i,−1− 4i + 2k

1− 2i,−2i

∣∣∣∣1) P2i−2k(x).

(30)

Now, in order to obtain a reduction formula for the 3F2(1) that appears in (30), we note
that we have the following two cases:

(a) For k = i, the 3F2(1) in (30) reduces to 2F1

(
−i,−2i− 1

1− 2i

∣∣∣∣1), which can be summed

with the aid of the Chu–Vandermonde identity, which stated in Theorem 2 to give

2F1

(
−i,−2i− 1

1− 2i

∣∣∣∣1) =
(−1)i (i + 1)! (i− 1)!

(2i− 1)!
. (31)

(b) For 0 ≤ k ≤ i − 1, let Hk,i = 3F2

(
−k,−i,−1− 4i + k

1− 2i,−2i

∣∣∣∣1), and make use of Zeil-

berger’s algorithm to obtain the following recurrence relation, which is satisfied
by Hk,i:

(k− 1)(3 + 2 i− k)Hk−2,i + (−2 k + 4 i + 3)Hk−1,i + (2 + 4 i− k)(−k + 2 i)Hk,i = 0,

H0,i = 1, H1,i =
1

1− 2i
.

(32)
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The last recurrence relation can be exactly solved to give

3F2

(
−k,−i,−1− 4i + k

1− 2i,−2i

∣∣∣∣∣1
)

=
1

22i
(

Γ
(

1
2 + i

))2

×



(−1)
k
2

(
2i− k

2

)
! Γ
(

i− k
2 + 1

2

)
Γ
(

k+1
2

)
(

i− k
2

)
!

, k even,

(−1)
k+1

2

(
2i− k−1

2

)
!Γ
(

i− k
2

)
Γ
(

k
2 + 1

)
(

i− k−1
2

)
!

, k odd.

(33)

Merging the two reduction formulas (31) and (33) leads to the reduction formula

3F2

(
−2k,−i,−1− 4i + 2k

1− 2i,−2i

∣∣∣∣1) =


(−1)k Γ

(
1
2 + k

)
(1 + i− k)k

√
π
(

1
2 + i− k

)
k
(1 + 2i− k)k

, 0 ≤ k ≤ i− 1,

(−1)i (i + 1)! (i− 1)!
(2i− 1)!

, k = i,

and, therefore, some calculations lead to the following linearization formula:

Ti(x)Ui(x) =
i + 1

2 i + 1
+

1
4

i−1

∑
k=0

(1 + 4i− 4k) (2i− k)! Γ
(

1
2 + k

)
k! Γ
( 3

2 + 2i− k
) P2i−2k(x).

Theorem 5. For all non-negative integers i and j, the following linearization formula is valid:

P̃(α,α+1)
i (x)C(η)

j (x) =
(i + j)! Γ(1 + α) Γ(2(1 + i + α)) Γ

(
1
2 + η

)
21+2i+2α Γ(2 + i + 2α) Γ

(
1
2 + α + η

)
Γ(j + 2η)

×


⌊

i+j
2

⌋
∑
k=0

Gk,i,j P̃(α+η− 1
2 ,α+η+ 1

2 )
i+j−2k (x) +

⌊
i+j−1

2

⌋
∑
k=0

Ḡk,i,j P̃(α+η− 1
2 ,α+η+ 1

2 )
i+j−2k−1 (x)

,

(34)

where

Gk,i,j =
(−1)k Γ(j− k + η) Γ(1 + i + j− 2k + 2α + 2η)

k! (i + j− 2k)! Γ(1 + i− k + α) Γ(1 + i + j− k + α + η)

× 3F2

(
−2k,−i,−1− 2i− 2j + 2k− 2α− 2η

−i− j,−1− 2i− 2α

∣∣∣∣1),

and

Ḡk,i,j =
(−1)k Γ(j− k + η) Γ(i + j− 2k + 2α + 2η)

k! (i + j− 2k− 1)! Γ(1 + i− k + α) Γ(1 + i + j− k + α + η)

× 3F2

(
−2k− 1,−i,−2i− 2j + 2k− 2α− 2η

−i− j,−1− 2i− 2α

∣∣∣∣1).
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Proof. If we substitute by β = α + 1, and θ = η in (10), then the coefficients Mk,i,j take
the form

Mk,i,j =
2 (α + η + i + j− k + 1) (i + j)! Γ(α + 1) Γ(η + 1) (Γ(2(i + α + 1))2

k! (i + j− k)! Γ(α + η + 1) Γ(i + α + 1) Γ(i + 2α + 2) Γ(j + η + 1)

× Γ(2j− k + 2η + 1) Γ(i + j + α + η + 1) Γ(i + j− k + 2(α + η + 1))
Γ(j + 2η + 1) Γ(2i− k + 2α + 2) Γ(2i + 2j− k + 2α + 2η + 3)

× 3F2

(
−k,−i,−2α− 2η − 2i− 2j + k− 2

−i− j,−2α− 2i− 1

∣∣∣∣1)
× 3F2

(
−k,−α− i,−2α− 2η − 2i− 2j + k− 2

−2α− 2i− 1,−α− η − i− j

∣∣∣∣1).

Again, we can employ Zeilberger’s and Petkovsek’s algorithms to show that the
second 3F2(1) in the above relation can be summed to give

3F2

(
−k,−α− i,−2α− 2η − 2i− 2j + k− 2

−2α− 2i− 1,−α− η − i− j

∣∣∣∣1) =

(−1)
k
2 Γ
(

k+1
2

)
Γ
(

i + j− k
2 + α + η + 2

)(
j− k

2 + η + 1
)

k
2√

π (α + η + i + j− k + 1) Γ(i + j + α + η + 1)
(

i + α + 3−k
2

)
k
2

, k even,

(−1)
k+3

2 Γ
(

k
2 + 1

)
Γ(j + η + 1)Γ

(
i− k

2 + α + 1
)

Γ
(

i + j + α + η + 3−k
2

)
√

π (α + η + i + j− k + 1) Γ
(
i + α + 3

2
)
Γ
(

j + η + 1−k
2

)
Γ(i + j + α + η + 1)

, k odd.

Some straightforward computations lead to the linearization formula (34).

Corollary 6. For all non-negative integers i and j with i ≥ j, the following linearization for-
mula holds:

Vi(x) Pj(x) =
1
π

j

∑
k=0

Γ
(

1
2 + j− k

)
Γ
(

1
2 + k

)
k! (j− k)!

Vi+j−2k(x). (35)

Proof. Substitution by α = − 1
2 and η = 1

2 into (34) yields the following formula:

Vi(x) Pj(x) =
(i + j)! Γ

(
1
2 + i

)
√

π j!

⌊
i+j
2

⌋
∑
k=0

(−1)k Γ
(

1
2 + j− k

)
k! (i + j− k)! Γ

(
1
2 + i− k

)
× 3F2

(
−2k,−i,−1− 2i− 2j + 2k

−2i,−i− j

∣∣∣∣1) Vi+j−2k(x)

+
(i + j)! Γ

(
1
2 + i

)
√

π j!

b 1
2 (i+j−1)c

∑
k=0

(−1)k Γ
(

1
2 + j− k

)
k! (i + j− k)! Γ

(
1
2 + i− k

)
× 3F2

(
−2k− 1,−i,−2i− 2j + 2k

−2i,−i− j

∣∣∣∣1)Vi+j−2k−1(x).

(36)

Watson’s identity again (5) leads to the following two identities:

3F2

(
−2k,−i,−1− 2i− 2j + 2k

−2i,−i− j

∣∣∣∣1) =
(−1)k Γ

(
k + 1

2

)
(j− k + 1)k

√
π
(

i− k + 1
2

)
k
(i + j− k + 1)k

,

and

3F2

(
−2k− 1,−i,−2i− 2j + 2k

−2i,−i− j

∣∣∣∣1) = 0,
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and, accordingly, the following linearization formula can be obtained:

Vi(x) Pj(x) =
1
π

j

∑
k=0

Γ
(

1
2 + j− k

)
Γ
(

1
2 + k

)
k! (j− k)!

Vi+j−2k(x).

Remark 3. As a direct consequence of Corollary 6, and based on the two identities

Pk(−x) = (−1)k Pk(x), Vk(−x) = (−1)k Wk(x),

it is easy to see that, for all i ≥ j, we have

Wi(x) Pj(x) =
1
π

j

∑
k=0

Γ
(

1
2 + j− k

)
Γ
(

1
2 + k

)
k! (j− k)!

Wi+j−2k(x). (37)

Remark 4. The two linearization formulas (35) and (37) can be translated into the following
trigonometric identities:

1
π

j

∑
k=0

Γ
(

1
2 + j− k

)
Γ
(

1
2 + k

)
k! (j− k)!

cos
((

i + j− 2k + 1
2

)
θ
)
= cos

((
i + 1

2

)
θ
)

Pj(cos(θ)),

1
π

j

∑
k=0

Γ
(

1
2 + j− k

)
Γ
(

1
2 + k

)
k! (j− k)!

sin
((

i + j− 2k + 1
2

)
θ
)
= sin

((
i + 1

2

)
θ
)

Pj(cos(θ)).

4. Some Other Linearization Formulas of Some Jacobi Polynomials

In this section, we are interested in deriving some other linearization formulas of
certain Jacobi polynomials.

Theorem 6. For every non-negative integer i, the following linearization formula is valid:

P̃(α,β)
i (x) P̃(η,α+β−η)

i (x) =
i! Γ(α + 1) Γ(η + 1) Γ(2i + α + β + 1) Γ(2i + α + η + 1)

22i+1 Γ(α + η + 1) Γ(i + α + 1) Γ(i + η + 1) Γ(i + α + β + 1)

×
i

∑
k=0

(−1)k (2α + 2β + 4i− 4k + 1) Γ
(

i− k + α + β + 1
2

)
k! (i− k)! Γ

(
2i− k + α + β + 3

2
)

× 3F2

(
−2k,−α− i,−2α− 2β− 4i + 2k− 1

−α− β− 2i,−α− η − 2i

∣∣∣∣1) P̃(α+η,α+2 β−η)
2i−2k (x).

(38)

Proof. If we set θ = α + β− η, and j = i in (9), then the following formula can be obtained:

P̃(α,β)
i (x) P̃(η,α+β−η)

i (x) =
(2i)! Γ(α + 1) Γ(η + 1) Γ(2i + α + η + 1)(Γ(2i + α + β + 1))2

Γ(α + η + 1) Γ(i + α + 1) Γ(i + η + 1) (Γ(i + α + β + 1))2

×
2i

∑
k=0

(2α + 2β + 4i− 2k + 1) Γ(2i− k + 2α + 2β + 1)
k! (2i− k)! Γ(4i− k + 2(α + β + 1))

× 3F2

(
−k,−i,−4i + k− 2α− 2β− 1

−2i,−2i− α− β

∣∣∣∣1)
× 3F2

(
−k,−i− α,−4i + k− 2α− 2β− 1
−2i− α− β,−2i− α− η

∣∣∣∣1) P̃(α+η,α+2 β−η)
2i−k (x).

(39)
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The first 3F2(1) which appears in (39) can be summed with the aid of Watson’s identity
(5) to give

3F2

(
−k,−i,−4i + k− 2α− 2β− 1

−2i,−2i− α− β

∣∣∣∣∣1
)

=


(−1)

k
2 Γ
(

k+1
2

)(
i− k

2 + α + β + 1
)

k
2√

π
(

i− k
2 + 1

2

)
k
2

(
2i− k

2 + α + β + 1
)

k
2

, k even,

0, k odd,

and hence, after performing some manipulations, the following linearization formula
is obtained:

P̃(α,β)
i (x) P̃(η,α+β−η)

i (x) =
i! Γ(α + 1) Γ(η + 1) Γ(2i + α + β + 1) Γ(2i + α + η + 1)

22i+1 Γ(α + η + 1) Γ(i + α + 1) Γ(i + η + 1) Γ(i + α + β + 1)

×
i

∑
k=0

(−1)k (2α + 2β + 4i− 4k + 1) Γ
(

i− k + α + β + 1
2

)
k! (i− k)! Γ

(
2i− k + α + β + 3

2
)

× 3F2

(
−2k,−α− i,−2α− 2β− 4i + 2k− 1

−α− β− 2i,−α− η − 2i

∣∣∣∣1) P̃(α+η,α+2 β−η)
2i−2k (x).

The proof is now complete.

Corollary 7. For every non-negative integer i, the following linearization formula holds:

P̃(α,β)
i (x) P̃(β,α)

i (x) =
i! Γ(1 + α) Γ(1 + β) Γ(1 + 2i + α + β)2

22i+1 Γ(1 + i + α) Γ(1 + i + β) Γ(1 + α + β) Γ(1 + i + α + β)

×
i

∑
k=0

(−1)k (1 + 4i− 4k + 2α + 2β) Γ
(

1
2 + i− k + α + β

)
k! (i− k)! Γ

( 3
2 + 2i− k + α + β

)
× 3F2

(
−2k,−i− α,−1− 4i + 2k− 2α− 2β

−2i− α− β,−2i− α− β

∣∣∣∣1)C(α+β+ 1
2 )

2i−2k (x).

(40)

Proof. Corollary 7 is an immediate consequence of Theorem 6 for the case η = β.

Remark 5. The left-hand side of relation (40) was expressed before in [21], but in terms of a termi-
nating hypergeometric function of the type 4F3(1). Therefore, a transformation formula between
two different hypergeometric functions of unit argument can be deduced. This transformation is
given in the following corollary.

Corollary 8. The following transformation formula holds:

4F3

(
−k, 1

2 + i− k + α
2 + β

2 , 1 + i− k + α
2 + β

2 , 1 + 2i− k + α + β

1 + i− k + α, 1 + i− k + β, 3
2 + 2i− 2k + α + β

∣∣∣∣∣1
)

=

(−1)k 21+4i−4k+2α+2β Γ(1 + i− k + α) Γ(1 + i− k + β) Γ(1 + 2i + α + β)2
√

π Γ(1 + i + α) Γ(1 + i + β) Γ(1 + 2i− 2k + α + β)

×
Γ
( 3

2 + 2i− 2k + α + β
)

Γ(2(1 + 2i− k + α + β))
3F2

(
−2k,−α− i,−2α− 2β− 4i + 2k− 1

−α− β− 2i,−α− β− 2i

∣∣∣∣1).

(41)

Proof. From formula (9), p. 159, which was introduced in [21], and if we set ν = α + β + 1
2 ,

then we get

P̃(α,β)
i (x) P̃(β,α)

i (x) =
i

∑
k=0

ξk,i C(α+β+ 1
2 )

2i−2k (x), (42)
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where

ξk,i =
( i

i−k) (1 + i + α + β)i−k

(
1
2 (1 + α + β)

)
i−k

(
1
2 (2 + α + β)

)
i−k

(1 + α)i−k(1 + β)i−k

(
1
2 + i− k + α + β

)
i−k

× 4F3

(
−k, 1

2 + i− k + α
2 + β

2 , 1 + i− k + α
2 + β

2 , 1 + 2i− k + α + β

1 + i− k + α, 1 + i− k + β, 3
2 + 2i− 2k + α + β

∣∣∣∣∣1
)

.

Comparing the two results in (40) and (42), the transformation formula (41) can
be followed.

Corollary 9. For every non-negative integer i, the following linearization formula is valid:

(
P̃(α,β)

i (x)
)2

=
i! Γ(α + 1) Γ

(
i + α + 1

2

)
Γ(2i + α + β + 1)

2
√

π Γ
(

α + 1
2

)
Γ(i + α + 1) Γ(i + α + β + 1)

×
i

∑
k=0

(2α + 2β + 4i− 4k + 1) Γ
(

k + 1
2

)
Γ
(

i− k + α + β + 1
2

)
(i− k + β + 1)k

k! (i− k)! Γ
(
2i− k + α + β + 3

2
) (

i− k + α + 1
2

)
k
(2i− k + α + β + 1)k

P̃(2α,2β)
2i−2k (x).

(43)

Proof. Setting η = α in (38) yields the relation

(
P̃(α,β)

i (x)
)2

=
i! Γ(α + 1) Γ

(
i + α + 1

2

)
Γ(2i + α + β + 1)

2 Γ
(

α + 1
2

)
Γ(i + α + 1) Γ(i + α + β + 1)

×
i

∑
k=0

(−1)k (2α + 2β + 4i− 4k + 1) Γ
(

i− k + α + β + 1
2

)
k! (i− k)! Γ

(
2i− k + α + β + 3

2
)

× 3F2

(
−2k,−α− i,−2α− 2β− 4i + 2k− 1

−2α− 2i,−α− β− 2i

∣∣∣∣1) P̃(2α,2β)
2i−2k (x).

Again, Watson’s identity can be utilized to reduce the last 3F2(1). More precisely,
we have

3F2

(
−2k,−α− i,−2α− 2β− 4i + 2k− 1

−2α− 2i,−α− β− 2i

∣∣∣∣1) =
(−1)k Γ

(
k + 1

2

)
(i− k + β + 1)k

√
π
(

i− k + α + 1
2

)
k
(2i− k + α + β + 1)k

,

and, therefore, the linearization formula (43) can be obtained.

Corollary 10. For every non-negative integer i, the following linearization formulas are valid:

(
P̃(− 1

4 , 1
4 )

i (x)
)2

=

√
2
(

Γ
(

3
4

))2
Γ
(

i + 5
4

)
π3/2 Γ

(
i + 3

4

) i

∑
k=0

(2 i− k)! Γ
(

k + 1
2

)
Γ
(

i− k + 1
2

)
k! (i− k)! Γ

(
2 i− k + 3

2

) V2 i−2 k(x), (44)

(
P̃( 1

4 ,− 1
4 )

i (x)
)2

=

√
2
(
Γ
( 5

4
))2

Γ
(
i + 3

4
)

π3/2 Γ
(
i + 5

4
) i

∑
k=0

(2 i− k)! Γ
(

k + 1
2

)
Γ
(

i− k + 1
2

)
k! (i− k)! Γ

(
2 i− k + 3

2
) W2 i−2 k(x). (45)

Proof. Relations (44) and (45) can be immediately obtained as direct special cases of
relation (43).
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Theorem 7. For every non-negative integer i, the following linearization formula is valid:

P̃(α,β)
i (x) P̃(η,α+β−η)

i+1 (x) =
i

∑
k=0

Sk,i P̃(α+η,α+2β−η)
2i−2k (x) +

i

∑
k=0

S̄k,i P̃(α+η,α+2β−η)
2i−2k+1 (x), (46)

where

Sk,i =
(−1)k i! (α + β) (2α + 2β + 4i− 4k + 1) Γ(α + 1) Γ(η + 1) Γ(2i + α + η + 2)

22 i+2 k! (i− k)! Γ(α + η + 1) Γ(i + α + 1) Γ(i + η + 2)

×
Γ(2i + α + β + 1) Γ

(
i− k + α + β + 1

2

)
Γ(i + α + β + 2) Γ

(
2i− k + α + β + 3

2
)

× 3F2

(
−2k− 1,−α− i,−2α− 2β− 4i + 2k− 2

−α− β− 2i,−α− η − 2i− 1

∣∣∣∣1),

(47)

and

S̄k,i =
(−1)k i! (α + β + 2i + 2) (2α + 2β + 4i− 4k + 3) Γ(α + 1) Γ(η + 1) Γ(2 i + α + β + 1)

22i+2 k! (i− k)! Γ(α + η + 1) Γ(i + α + 1) Γ(i + η + 2)

×
Γ(2i + α + η + 2) Γ

(
i− k + α + β + 3

2

)
Γ(i + α + β + 2) Γ

(
2i− k + α + β + 5

2

)
× 3F2

(
−2k,−α− i,−2α− 2β− 4i + 2k− 3
−α− β− 2i,−α− η − 2i− 1

∣∣∣∣∣1
)

.

(48)

Proof. If we set θ = α + β− η, and j = i + 1 in (9), then the following linearization formula
is obtained:

P̃(α,β)
i (x) P̃(η,α+β−η)

i+1 (x) =
2i+1

∑
k=0

Gk,i P̃(α+η,α+2β−η)
2i−k+1 (x), (49)

where

Gk,i =
(2i + 1)! (α + β + 2i− k + 1) (α + β + 2i− k + 2) (2α + 2β + 4i− 2k + 3) Γ(α + 1) Γ(η + 1)

k! (2i− k + 1)! Γ(α + η + 1) Γ(i + α + 1) Γ(i + η + 2)

× (Γ(2i + α + β + 1))2 Γ(2i + α + η + 2) Γ(2i− k + 2(α + β + 1))
Γ(i + α + β + 1) Γ(i + α + β + 2) Γ(4i− k + 2(α + β + 2))

× 3F2

(
−k,−i,−2α− 2β− 4i + k− 3
−2i− 1,−α− β− 2i

∣∣∣∣∣1
)

× 3F2

(
−k,−α− i,−2α− 2β− 4i + k− 3
−α− β− 2i,−α− η − 2i− 1

∣∣∣∣∣1
)

.

Regarding the first 3F2(1) which appears in the last formula, it seems that it cannot be
summed with any standard reduction formula, so we resort to the symbolic computation.
More precisely, if we set

Bk,i = 3F2

(
−k,−i,−2α− 2β− 4i + k− 3
−2i− 1,−α− β− 2i

∣∣∣∣1),

then it can be shown with the aid of Zeilberger’s algorithm that Bk,i satisfies the following
recurrence relation of order two:

(k− 1)(α + β + 2 i− k + 4)(−k + 2 + 2 i + β + α)(2 i + 3 + 2 α + 2 β− k) Bk−2,i

− (α + β)(2 + α + β + 2 i)(2 α + 2 β + 4 i− 2 k + 5) Bk−1,i

+ (2 α + 2 β + 4 i− k + 4)(−k + 2 i + 2)(α + β + 2 i− k + 3)(−k + α + β + 2 i + 1) Bk,i = 0,



Mathematics 2021, 9, 74 17 of 21

with the initial values

B0,i = 1, B1,i =
α + β

(2i + 1)(α + β + 2i)
.

The last recurrence relation has the following exact solution:

Bk,i =
1√

π(α + β + 2i− k + 1)(α + β + 2i− k + 2)

×



(−1)
k
2 (α + β + 2i + 2) Γ

(
k+1

2

)(
i− k

2 + α + β + 1
)

k
2(

i− k
2 + 3

2

)
k
2

(
2i− k

2 + α + β + 2
)

k
2−1

, k even,

(−1)
k−1

2 (α + β) Γ
(

k+2
2

)
Γ
(

i− k
2 + 1

)(
i− k

2 + α + β + 3
2

)
k−1

2

Γ
(
i + 3

2
) (

2i− k
2 + α + β + 5

2

)
k−3

2

, k odd.

Now, and based on the above reduction formula for Bk,i, the linearization coefficients
Gk,i can be reduced to give

Gk,i =
i! (2α + 2β + 4i− 2k + 3) Γ(α + 1) Γ(η + 1) Γ(2i + α + β + 1) Γ(2i + α + η + 2)

22i+2 Γ(α + η + 1) Γ(i + α + 1) Γ(i + η + 2) Γ(i + α + β + 2)

× 3F2

(
−k,−α− i,−2α− 2β− 4i + k− 3
−α− β− 2i,−α− η − 2i− 1

∣∣∣∣1)

×



(−1)
k
2 (α + β + 2i + 2) Γ

(
i− k

2 + α + β + 3
2

)
(

k
2

)
!
(

i− k
2

)
! Γ
(

2i− k
2 + α + β + 5

2

) , k even,

(−1)
k−1

2 (α + β) Γ
(

i− k
2 + α + β + 1

)
(

k−1
2

)
!
(

i− ( k−1
2 )
)

! Γ
(

2i− k
2 + α + β + 2

) , k odd.

Now, it is not difficult to see that (49) is equivalent to

P̃(α,β)
i (x) P̃(η,α+β−η)

i+1 (x) =
i

∑
k=0

Sk,i P̃(α+η,α+2β−η)
2i−2k (x) +

i

∑
k=0

S̄k,i P̃(α+η,α+2β−η)
2i−2k+1 (x),

and Sk,i and S̄k,i, are given respectively by (47) and (48).

Now, the following corollary is a special case of Theorem 7.

Corollary 11. If we set η = α in (46), then, for every non-negative integer i, the following
linearization formula is valid:
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P̃(α,β)
i (x) P̃(α,β)

i+1 (x) =
i! (α + β + 2i + 2)2 Γ(α + 1) Γ(i + β + 1)

2
√

π Γ
(

α + 1
2

)
Γ(i + α + 2) Γ(i + α + β + 2)

×
i

∑
k=0

(2α + 2β + 4i− 4k + 3) Γ
(

k + 1
2

)
Γ
(
i− k + α + 3

2
)

Γ
(
i− k + α + β + 3

2
)

k! (i− k)! (α + β + 2i− 2k + 1) (α + β + 2i− 2k + 2) Γ(i− k + β + 1)

× Γ(2i− k + α + β + 2)
Γ
(
2i− k + α + β + 5

2
) P̃(2α,2β)

2i−2k+1 +
i!(β− α)(α + β)Γ(α + 1)Γ(i + β + 1)

2
√

πΓ
(

α + 1
2

)
Γ(i + α + 2)Γ(i + α + β + 2)

×
i

∑
k=0

(2α + 2β + 4i− 4k + 1) Γ
(
k + 3

2
)

Γ
(

i− k + α + 1
2

)
Γ
(

i− k + α + β + 1
2

)
k! (i− k)! (α + β + 2i− 2k) (α + β + 2i− 2k + 1) Γ(i− k + β + 1)

× Γ(2i− k + α + β + 2)
Γ
(
2i− k + α + β + 3

2
) P̃(2α,2β)

2i−2k .

(50)

Proof. If we set α = η in relation (46), then the linearization coefficients Sk,i, S̄k,i are
given by

Sk,i =
(−1)k i! Γ(α + 1) Γ

(
i + α + 3

2
)

Γ(2i + α + β + 1)

2k! (i− k)! Γ
(

α + 1
2

)
Γ(i + α + 2) Γ(i + α + β + 2)

×
(α + β + 2i + 2) (2α + 2β + 4i− 4k + 3) Γ

(
i− k + α + β + 3

2
)

Γ
(
2i− k + α + β + 5

2
)

× 3F2

(
−2k,−α− i,−2α− 2β− 4i + 2k− 3

−2α− 2i− 1,−α− β− 2i

∣∣∣∣1),

S̄k,i =
(−1)k i! Γ(α + 1) Γ

(
i + α + 3

2
)

Γ(2i + α + β + 1)

2 k! (i− k)! Γ
(

α + 1
2

)
Γ(i + α + 2) Γ(i + α + β + 2)

×
(α + β) (2α + 2β + 4i− 4k + 1) Γ

(
i− k + α + β + 1

2

)
Γ
(
2i− k + α + β + 3

2
)

× 3F2

(
−2k− 1,−α− i,−2α− 2β− 4i + 2k− 2

−2α− 2i− 1,−α− β− 2i

∣∣∣∣1).

Making use of Zeilberger’s and Petkovsek’s algorithms, it can be shown that the two
hypergeometric functions appearing in the coefficients Sk,i, S̄k,i can be reduced to give the
following formulas:

3F2

(
−2k,−α− i,−2α− 2β− 4i + 2k− 3

−2α− 2i− 1,−α− β− 2i

∣∣∣∣1) =

(−1)k (α + β + 2i + 2) Γ
(

k + 1
2

)
(i− k + β + 1)k

√
π (α + β + 2i− 2k + 1) (α + β + 2i− 2k + 2)

(
i− k + α + 3

2
)

k(2i− k + α + β + 2)k−1
,

and

3F2

(
−2k− 1,−α− i,−2α− 2β− 4i + 2k− 2

−2α− 2i− 1,−α− β− 2i

∣∣∣∣1) =

(−1)k (β− α) (β + i) Γ
(
k + 3

2
)
(i− k + β + 1)k−1

√
π (α + β + 2i− 2k) (α + β + 2i− 2k + 1)

(
i− k + α + 1

2

)
k+1

(2i− k + α + β + 2)k−1

,

and, therefore, the linearization formula (50) that is free of any hypergeometric function
can be obtained.
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In the following, we are going to write some other linearization formulas of certain
Jacobi polynomials. The proofs are omitted due to their similarity with the proofs of
Theorems 6 and 7.

Theorem 8. For every non-negative integer i, the following linearization formula is valid:

P̃(α,β)
i (x) P̃(η,α+β−η+1)

i (x) =
i

∑
k=0

Qk,i P̃
(α+η,α+2β−η+1)
2i−2k (x) +

i−1

∑
k=0

Q̄k,i P̃
(α+η,α+2β−η+1)
2i−2k−1 (x), (51)

where

Qk,i =
i! (−1)k (1 + 2i− 2k + α + β) Γ(1 + α) Γ(1 + η) Γ(1 + 2i + α + η) Γ(1 + 2i + α + β)

22i k! (i− k)! Γ(1 + i + α) Γ(1 + i + η) Γ(1 + α + η) Γ(2 + i + α + β)

×
Γ
( 3

2 + i− k + α + β
)

Γ
( 3

2 + 2i− k + α + β
) 3F2

(
−2k,−α− i,−2α− 2β− 4i + 2k− 2

−α− β− 2i,−α− η − 2i

∣∣∣∣1),

and

Q̄k,i =
(−1)k i! (2k− α− β− 2i) Γ(α + 1) Γ(η + 1) Γ(2i + α + η + 1)Γ(2i + α + β + 1)

22i k! (i− k− 1)! Γ(α + η + 1)Γ(i + α + 1) Γ(i + η + 1) Γ(i + α + β + 2)

×
Γ
(

i− k + α + β + 1
2

)
Γ
(
2i− k + α + β + 3

2
) 3F2

(
−2k− 1,−α− i,−2α− 2β− 4i + 2k− 1

−α− β− 2i,−α− η − 2i

∣∣∣∣1).

Theorem 9. For every non-negative integer i, the following linearization formula is valid

P̃(α,β)
i (x) P̃(η,α+β−η−1)

i (x) =
i

∑
k=0

Lk,i P̃
(α+η,α+2β−η−1)
2i−2k (x) +

i−1

∑
k=0

L̄k,i P̃
(α+η,α+2β−η−1)
2i−2k−1 (x), (52)

where

Lk,i =
(−1)k i! Γ(1 + α) Γ(1 + 2i + α + β) Γ(1 + η) Γ(1 + 2i + α + η)

k! 22i (i− k)! Γ(1 + i + α)Γ(1 + i + α + β) Γ(1 + i + η) Γ(1 + α + η)

×
Γ
(

1
2 + i− k + α + β

)
Γ
(

1
2 + 2i− k + α + β

) 3F2

(
−2k,−i− α,−4i + 2k− 2α− 2β
−2i− α− β,−2i− α− η

∣∣∣∣1),

and

L̄k,i =
(−1)k i! Γ(1 + α) Γ(1 + 2i + α + β) Γ(1 + η) Γ(1 + 2i + α + η)

22i k! (i− k− 1)! Γ(1 + i + α) Γ(1 + i + α + β) Γ(1 + i + η)Γ(1 + α + η)

×
Γ
(

α + β + i− k− 1
2

)
Γ
(

α + β + 2i− k + 1
2

) 3F2

(
−2k− 1,−i− α, 1− 4i + 2k− 2α− 2β

−2i− α− β,−2i− α− η

∣∣∣∣1).

5. Conclusions

In this paper, we have considered the linearization problem of Jacobi polynomials.
Various general and specific linearization formulas were derived. The derivation of these
formulas depends on the reduction of the linearization coefficients which are expressed
in terms of two terminating hypergeometric functions of unit argument. Some of these
reductions can be obtained with the aid of some well-known standard formulas in the
literature. Some other reductions can be obtained by employing some symbolic algorithms,
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and in particular via the algorithms of Zeilberger, Petkovsek, and van Hoeij. To the best of
our knowledge, most of the results of this paper are new, and they are very useful.
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