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Abstract: Variability is defined as the propensity at which a given signal is likely to change. There are
many choices for measuring variability, and it is not generally known which ones offer better
properties. This paper compares different variability metrics applied to irregularly (nonuniformly)
sampled time series, which have important clinical applications, particularly in mental healthcare.
Using both synthetic and real patient data, we identify the most robust and interpretable variability
measures out of a set 21 candidates. Some of these candidates are also proposed in this work based
on the absolute slopes of the time series. An additional synthetic data experiment shows that when
the complete time series is unknown, as it happens with real data, a non-negligible bias that favors
normalized and/or metrics based on the raw observations of the series appears. Therefore, only the
results of the synthetic experiments, which have access to the full series, should be used to draw
conclusions. Accordingly, the median absolute deviation of the absolute value of the successive
slopes of the data is the best way of measuring variability for this kind of time series.

Keywords: ecological momentary assessment (EMA); Hawkes process; irregularly sampled time
series; variability

1. Introduction

Variability, also known as statistical dispersion, scatter, or spread, can be defined
as the propensity at which a given signal is likely to change. The analysis of variability
is of major importance in many fields, such as astrophysics [1,2], hydrology [3], agricul-
ture [4], or ecology [5,6]. Measuring variability also has important applications in medicine.
For example, it can be used to accurately measure the bioequivalence of doses of different
drugs [7], predict medication demand in a hospital [8], or to measure heart rate variability,
which in turn can be used as a biomarker of anxiety [9]. Variability is of particular use-
fulness in mental healthcare, as fluctuations in suicidal ideation have been identified as a
phenotypic marker for stress-induced suicide risk [10]. In this paper, we focus on how to
mathematically describe variability in nonuniformly sampled time series, which can be
used in turn to alleviate problems in mental healthcare. It must be mentioned that there
is a surge in the application of statistics and machine learning to solve other problems
in medicine, such as classifying normal versus cancerous cells [11] or diagnosing mental
disorders with electroencephalogram data [12]. For a discussion about how these methods
should be incorporated in practice, refer to the work in [13].

A variability measure is an operator that transforms a time series into a single scalar,
whose value hinges on the dispersion of the values of the sample. In order to make them
easier to understand, many of those measures are expressed in the same units as the
studied data and are non-negative, in such a way that a value of 0 indicates no change
at all. Most of the measures commonly used in psychiatry have these characteristics.
One possible way to achieve this is to summarize the expected distance with respect to
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a reference point [14]. For instance, if the reference point is the sample mean, and the
expected distance is measured as the square root of the sum of the squared distances to
the mean, divided by the sample size minus one, the dispersion will be expressed in terms
of standard deviations. However, if the median and the median of the absolute distances
are the selected criteria, the dispersion will be measured in terms of median absolute
deviations, which can be more robust to outliers.

Another approach to express variability in the same units of the observations is to
compute the difference of some sorted observations, thereby removing the need of a
reference value. This can be useful when such a computation can get skewed by the
inherent noise or other factors. In particular, if the difference is taken from the most
extreme values, variability is measured in terms of range, but it is possible to compute it
making use of the different percentiles of the dataset. In other cases, it may be convenient
to measure variability independently of both the particular scale and the units, so that
different datasets can be compared [15]. The simplest way to achieve this is to obtain ratios
of variability measures, for example, the ratio of the standard deviation and the mean
expresses variability as coefficients of variation [16].

The analysis of variability requires the definition of a variable of interest whose
changes are computed. In psychiatry, this variable of interest is usually a symptom,
which has traditionally been measured by questionnaires administered in clinical sites.
This method of assessment presents several disadvantages, such as recall bias (difficulty to
remember past events) [17] or ecological invalidity (by asking the questions outside the
usual environment) [18]. To alleviate this, a research line has tried to obtain extemporaneous
feedback from the participants by regularly requesting them to answer a set of questions via
their electronic devices. This approach, which can be categorized as ecological momentary
assessment (EMA) [19], suffers from fatigue effects. This consists in a decrease in the
number of questions answered as time goes by, which can result in withdrawal from the
study [20].

To decrease such fatigue, our research group has recently adopted a new sampling
approach for the questions that consists in randomly asking some of them out of a fixed
pool, thereby decreasing the sense of repetitiveness [21]. This approach results in studies
with longer follow-up periods, at the expense of every set of responses for the same
question being sampled non-equidistantly (nonuniformly). Because of this, special care
must be taken when measuring variability when using this approach.

In this paper, we study and propose metrics which are suited for this kind of data.
However, the findings of this research are not only useful for this specific type of design,
as they are also applicable to any analysis in which a significant amount of missing data
is produced, yielding a nonuniformly sampled time series. Missing data represent a
particularly common issue in EMA studies and it is usually dealt with discarding data
points that do not meet certain criteria, such as removing responses provided over 30 min
after being prompted [22]. We expect that our findings will provide an accurate method of
analyzing variability in non-equidistantly (nonuniformly) sampled time series, what will
also allow to better cope with missing data in mental health time series.

The rest of the paper is organized as follows. Section 2 summarizes the main vari-
ability measures that have been used in the literature. As most of these measures have
only been applied to equidistant, dense time series, in Section 3 we propose some modifi-
cations to those measures so that they can be applied to irregularly sampled data. In this
section, we also present some novel methods of measuring variability that could also be
advantageous for this task. Then, Section 4 analyzes these methods using synthetic data,
while Section 5 makes use of real data to assess their robustness. To correctly interpret the
results, Section 6 provides additional simulations. Finally, in Section 7 we summarize our
findings, discuss their implications, and we point to next lines of research.
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2. Review of Variability Assessment

In this section, we summarize the most important measures used for assessing vari-
ability in mental healthcare time series. One of the most popular measures is the root mean
square of successive differences (RMSSD) [10], that is,

RMSSD =

√√√√ 1
T − 1

T−1

∑
t=1

(xt+1 − xt)2, (1)

where T is the number of observations, and xt is the time series value, for instance, the re-
sponse of the patient recorded at (discrete) time t in the considered application. The square
is taken so that increases and decreases are not mutually canceled. This measure assumes
that changes in either direction count the same. Such an assumption is usually fulfilled
in psychiatry research, as commonly used scales are sometimes measured so that higher
scores indicate better health status, and sometimes so that higher scores indicate worse
health status [23].

The RMSSD contains some information about the temporal evolution of the assess-
ments, as it is only invariant to complete reversal and some pairwise random permutations
of the observations. This measure, normalized by the mean or by the standard deviation
of the sample, also known as coefficient of variation (CoV) and ratio of determination (RoD),
respectively, has been explored in [24] to produce variability measurements less sensitive
to the mean value of the observations. Finally, notice that the square root is taken to recover
the natural units of the explored variable in the series, though some studies do not do
it [25]. This choice is not important, since the square root is a monotone transformation:
it is similar to working with standard deviations or variances.

Another relevant measure of variability is the standard deviation (SD) of the obser-
vations [26]. This measure has the advantage of providing an interpretable parametric
meaning in the case that the observations are normally distributed. However, this method
does not carry any information about the order of the data (any permutation yields the
same SD), and this approach is not appropriate when the distribution of the data contains
many outliers or it is highly nonsymmetric [27]. A related measure that has also been
employed is the standard error of the mean (SEM) [28], which is given by the SD divided by
the square root of the number of observations.

Although simple and nonlinear, the range of the observations, measured as the difference
between the most extreme values, has also been used [29]. On the other hand, more refined
measures, such as the entropy (H) or the Teager–Kaiser energy operator (TKEO) have also
been explored [30]. The former comes from the Information Theory field and it is a measure
of data uncertainty, but it is not sensitive to local variations. We shall estimate it as

H = − ∑
{i=1,...,N}
\{i: p̂(ri)=0}

p̂(ri) · log2
(

p̂(ri)
)
, (2)

where R = {r1, . . . , rN} is the set of N possible values in the time series and p̂(rt) is the

estimated probability of rt, which is given by p̂(rt) =
#(rt={xt}T

t=1)
T , with #(·) being the count

function. Notice that (2) is measured in bits, and the sum explicitly removes terms involving
null probabilities, which otherwise would create numerical indeterminations. Indeed, it is
judicious to do so, as one of the properties of the entropy is that incorporating or discarding
events with zero probability does not alter its value. The TKEO is an approximation of
the energy of a signal, which depends on its amplitude and frequency. As highly variable
signals have high frequency components, larger TKEO values are associated with greater
variability. This metric requires at least three data points to be computed, and it may
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produce negative values under some circumstances [31]. To avoid this, we will use the
mean of the absolute value of the TKEO (MATKEO) as in [32], that is,

MATKEO =
1

T − 2

T−1

∑
t=2

∣∣∣x2
t − (xt−1 · xt+1)

∣∣∣. (3)

One final comment is in order. The variance terms of mixed-effect models have been
used as an alternative approach to measure variability, either with raw [33] or with grand
mean centered data [34]. However, we do not further analyze this model-based approach,
as it is unfeasible to make fair comparisons of models tailored for specific settings, and these
methods are somehow equivalent to computing the standard deviation of the data.

3. Variability Assessment of Irregularly Sampled Data

The variability measures presented above were not designed to cope with irregularly
(nonuniformly) sampled time series. Therefore, in this section we propose some modi-
fications to adapt them to such setting. First, notice that if (1) were directly applied to
nonuniformly sampled data, its estimation would produce a non-desired result, as the
same change in the scores, e.g., 20 units, would weight the same regardless of the time that
it took such a change to happen, e.g., one day or one month. To correct this, we argue that
the RMSSD in (1) can be understood as a finite-difference approximation of the square root
of the mean of the squared first derivative, that is,

RMSSD =

√√√√ 1
T − 1

T−1

∑
t=1

(xt+1 − xt)2 ≈

√
1

tN − t1

∫ tN

t1

(
dxt

dt

)2
dt, (4)

where t1 and tN are the times at which the first and the last observations are taken, respec-
tively. Based on this observation, more refined approximations of the integral can be used,
for instance,√

1
tN−t1

∫ tN
t1

(
dxt
dt

)2
dt ≈

√
1

tN−t1
∑T−1

t=1

(
xt+1−xt

ht

)2
ht =

√
1

tN−t1
∑T−1

t=1
(xt+1−xt)

2

ht
, (5)

which is a finite-difference approximation with (possibly) non-homogeneous step ht be-
tween xt+1 and xt. Moreover, (5) reduces to (1) when ht = 1, ∀t = 1, . . . , T − 1, in which
case tN−t1

T−1 = 1 as well. This measure, which we call the root mean square of successive slopes
(RMSSS), is expressed in units of change in the data per unit of time. Building on this
interpretation, we can propose measures that take into account the sampling interval, i.e.,
based on slopes. Specifically, we propose to work with the square root of the squared slopes
of successive samples, that is, the absolute value. Then, we can use the measures presented
in the previous section and apply them to absolute-value slopes (therefore, we shall append
the subscript “as” to the abbreviations of those measures when there is risk of confusion)
instead of the raw observations (the acronyms of which will end by the subscript “raw”).

We introduce other measures for summarizing the time series into a scalar, which have
been useful in other fields. In particular, we shall explore the potential of (1) the interquartile
range (IQR) [35], that is, the value of the 75th percentile minus that of the 25th one. (2) The
Gini’s mean difference (GMD) [36], namely, the expected value of the absolute difference of
every possible pair of the observed values,

GMD =
1

T2

T

∑
t=1

T

∑
t′=1
|xt − xt′ |. (6)

Moreover, (3) the median absolute deviation (MAD) [37], given by

MAD = median
({
|xt − x̃|

}T
t=1

)
, (7)
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where median(·) is the median operator and x̃ = median
(
{xt}T

t=1
)
.

Notice that for clarity of presentation, (6) and (7) compute the corresponding measures
for the raw scores, as the previous equations, but the variability measures can easily be
assessed in terms of the absolute value of the slopes. For instance, the GMD of the absolute
value of the slopes is given by

1
(T − 1)2

T−1

∑
t=1

T−1

∑
t′=1
|zt − zt′ |, (8)

where zt = | xt+1−xt
ht
|. For an schematic view of all the measures analyzed in this work,

refer to Figure 1.
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Figure 1. Block diagram of the analyzed variability measures. The ellipsis is used to prevent repetition of the blocks for
the metrics based on the absolute value of the successive slopes. The meaning of all quantities can be found in the table of
abbreviations.

One final comment is in order. Overall, the complexity of the studied variability mea-
sures is comparable, since most measures are O(T) computationally complex, where O(·)
denotes the big O notation [38]. All the metrics based on the absolute value of the slopes
requires the additional computation of the absolute value of the successive slopes, but this
is an inexpensive operation, which requires a number of operations which increases linearly
with the number of observations. On the other hand, the (exact) sorting of the observed
values used to compute some metrics, like IQR, isO(T log T) computationally complex [39].
Further, normalized metrics (i.e., SEM, CoV, and RoD) need to iterate twice the time se-
ries, but this can be done parallel. Finally, notice that the complexity of computing Hraw
also increases linearly as the number of possible values the time series can take on, N,
is increased. The only metric that could be computationally more demanding is GMD,
which has quadratic complexity in the number of observations, as can be seen in (6). How-
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ever, for time series with few to moderate observations, the differences in time complexity
are negligible in practice.

4. Comparison on Synthetic Data

In this section, we study several variability measures using synthetic data. To the
best of our knowledge, there is no previous work that has simulated responses to mental
health questionnaires to assess it. Therefore, we describe a possible way to achieve this,
which is supported by the item response theory (IRT). The IRT states that the answers that
a person provides to a questionnaire can be modeled by a transformation of a given latent
variable [40], which we shall denote by Ψ. Without loss of generality, let Ψ ∈ {ψ ∈ R :
0 ≤ ψ ≤ 100}. For instance, if Ψ measures the participants’ mood, 100 may correspond
with an objective, saturated feeling of elation, while 0 would be the worst possible feeling
of sorrow and any value in between them represents an (objective) feeling proportional
to the distance to the extremes. In our experiments, we set the possible responses to
R = {x ∈ Z : 0 ≤ x ≤ 100}. In doing so, we account for the measurement error given by
the precision of the scale. However, it is important to model other sources of noise, such as
respondent inconsistency [41]. Indeed, it would be very unlikely that a participant always
reports the same value in the questionnaire for the same value of Ψ. Furthermore, different
participants, all sharing the same latent value of Ψ, may provide higher or lower values in
the questionnaire if they tend to be optimistic or pessimistic, respectively.

Defining t as time in days, we exemplify three different changes for the latent state
over 60 days as follows,

Ψt =
100
60

t (9)

Ψt = 20 cos
(

2πt
7

)
+ 50 (10)

Ψt = 40 cos
(

2πt
7

)
+ 50. (11)

Thus, (9) represents a slow linear drift towards the maximum value, while (10) and (11)
model oscillations around the medium value with a periodicity of one week. Notice that
(11) has double the amplitude of (10). These are prototypic types of behaviors that were
found to be good examples of other more general cases which were analyzed but are not
shown here for simplicity. Those other more general cases include a cosine with increasing
amplitude or abrupt ground levels changes as time goes on, and a cubic function. In all
those cases we arrived to the same conclusions.

Another limitation that should be considered is the temporal resolution. In our
experiments, we restrict the observations to a maximum of one per day. Consequently,
the first step is to obtain the days when the data will be acquired by sampling uniformly
without replacement the set of 60 possible days. Then, using Equation (9), (10), or (11),
the true value of the latent state is obtained. To account for the respondent inconsistency,
we model the answer the participants would be willing to provide as a random realization
of a normal distribution with mean Ψt and standard deviation SDn, as normal distributions
are well-suited for modeling responses to Likert questionnaires [42]. Finally, to account for
the error produced by the precision of the scale, the observed data will be projected onto
the setR.

In order to objectively assess the variability measures, we follow an approach similar
to that of [43]. That is, we evaluate the measures in a favorable scenario, and then we obtain
the performance degradation by computing the Cohen’s d between the observed values
in the favorable scenario and those observed in unfavorable scenarios. In particular,
we compute it as

Cohen’s d =
xre f − xcomp√

(Nre f−1)×(SDre f )2+(Ncomp−1)×(SDcomp)2

Nre f +Ncomp−2

, (12)
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where xre f is the mean in the reference set, in other words, the mean of a given variability
measure in the favorable scenario. Moreover, xcomp represents the mean of the comparison
set, i.e., the mean of the same variability measure in the unfavorable scenario, and Nre f
(conversely Ncomp) is the number of observations in the reference (conversely, compari-
son) dataset. Finally, SDre f (conversely SDcomp) stands for the standard deviation in the
reference (conversely, comparison) dataset.

We shall complicate the problem by reducing the number of observations and in-
creasing the variance of the Gaussian function for the same Ψt. In the favorable scenario,
we observe the 60 possible answers with very low respondent inconsistency, i.e., SDn = 0.5.
Figure 2 shows one realization under such favorable settings for the three explored changes,
and the mean values of the variability measures over 4000 realizations are presented in
Figures 3a, 4a and 5a. Notice that in these figures, to facilitate the interpretation, the same
colormap has been used, which spans the range of all the data in the three figures. Finally,
the performance degradation is depicted in Figures 3b, 4b and 5b, also using a single
colormap, which spans the full range of the data in these three new figures. To further ease
the interpretation, Figures 3b, 4b and 5b show the absolute value of the Cohen’s d, as it is
of little relevance whether the measure underestimates or overestimates the variability in
the complicated scenario: for the robustness analysis the importance lies in the magnitude
of the discrepancy. As previously explained, each row in these figures corresponds to a
different value of SDn and number of observations, Ncomp, where this reduced number of
observations is obtained by randomly sampling the 60 days without replacement.
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Figure 2. One random realization in the favorable scenario. (a) Linear function. (b) Cosine function with amplitude 20.
(c) Cosine function with amplitude 40.
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(a)

1.8524 29.11 0.0364 0.0636 3.7581 98.1658 5.776 56.2812 50.0036 33.886 24.9989 1.8524 0.8085 1.1104 2.3119 0.1053 3.3673 3.4841 1.0016 0.8603 0.7863SD
n
=0.5, N

ref
=60

(b)

1.229 0.0135 1.2287 1.2425 3.0222 0.1038 0.3443 0.2349 0.0307 0.0005 0.0472 0.0098 0.0202 0.0375 0.0197 0.1174 0.0137 0.0112 0.0037 0.021 0.0114

1.6907 0.0206 1.6815 1.7127 3.7333 0.1456 0.4238 0.3137 0.0464 0.0005 0.0667 0.0271 0.0049 0.0499 0.0045 0.1235 0.0004 0.0027 0.0544 0.0068 0.0143

2.3898 0.032 2.3214 2.4387 4.362 0.2156 0.5292 0.4429 0.0641 0.0011 0.0966 0.0427 0.0133 0.0615 0.022 0.1314 0.0172 0.0173 0.1194 0.0095 0.0172

3.4483 0.0533 3.1171 3.6732 4.6255 0.3436 0.6806 0.7031 0.1021 0.0029 0.1605 0.0562 0.0388 0.0686 0.0911 0.1355 0.0423 0.0365 0.1819 0.0313 0.0206
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2.4123 0.0289 2.376 2.3921 3.0501 0.0766 0.3674 0.8167 0.028 0.0327 0.0465 0.7787 0.482 0.0543 0.0897 0.8338 0.2929 0.7833 1.1899 0.4067 0.0345

2.6734 0.0215 2.6063 2.6498 3.7558 0.1187 0.4429 0.8505 0.0445 0.0327 0.065 0.5894 0.4329 0.0814 0.093 0.8634 0.2489 0.6614 0.9839 0.3611 0.0257
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3.974 0.1209 3.0827 5.9836 3.5553 0.6742 0.9493 1.3925 0.2051 0.0082 0.32 0.0463 0.1279 0.1031 0.0068 0.7576 0.0022 0.1783 0.3796 0.133 0.0086

4.0209 0.1379 3.842 3.8373 3.1377 0.0351 0.3807 1.5594 0.0226 0.1327 0.0435 1.8754 1.0454 0.0554 0.096 1.669 0.6392 2.1411 2.2866 0.8831 0.0905

4.0299 0.1279 3.7824 3.8304 3.8215 0.0733 0.4543 1.5632 0.0373 0.1298 0.0626 1.4941 0.9504 0.0854 0.1018 1.6881 0.5556 1.7642 1.9492 0.7942 0.072

4.1694 0.1 3.8076 3.9382 4.3738 0.1492 0.5511 1.59 0.0564 0.1171 0.0881 1.1091 0.8335 0.1199 0.1062 1.6712 0.4508 1.3932 1.5395 0.6935 0.0535

4.313 0.0674 3.6889 4.1797 4.5404 0.2884 0.6949 1.6247 0.0927 0.1099 0.1514 0.6856 0.6528 0.1494 0.1046 1.5204 0.3004 0.9628 1.1727 0.5506 0.0313
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Figure 3. Results for 4000 realizations with a linear function. The meaning of all quantities can be found in the table of abbreviations. (a) Mean values in the favorable scenario.
(b) Performance degradation.
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Figure 4. Results for 4000 realizations with a cosine function with amplitude 20. The meaning of all quantities can be found in the table of abbreviations. (a) Mean values in the favorable
scenario. (b) Performance degradation.
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Figure 5. Results for 4000 realizations with a cosine function with amplitude 40. The meaning of all quantities can be found in the table of abbreviations. (a) Mean values in a favorable
scenario. (b) Performance degradation.
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As can be seen in Figures 3a, 4a and 5a, some measures are insensitive to the kind
of change that Ψ describes. For instance, RoDraw and Hraw provide very similar values
for the two cosine functions, and COVas and RoDas cannot distinguish any of the three
profiles. On the other hand, MADraw and GMDraw are difficult to interpret, as they yield
higher variability values for the slow linear drift than the periodic function, while the
vast majority of the remaining measures experiment a nearly twofold increase when the
amplitude of the cosine is multiplied by 2. Another issue regarding interpretability is that
RoDraw, RoDas, and CoVas are not well-defined when the data do not vary at all, because
their computation would involve a division of 0 by 0 under such a situation. Similarly,
CoV_raw is undetermined if all observed values are equal to zero due to the same problem.
This was not observed during the simulations, as Ψ was studied under three different
varying conditions and there was also noise.

With respect to the degradation in the performance as the samples become more
scarce and less reliable, Figure 3b shows that measures based on the raw value of the
points of the time series struggle in the simple linear drift: SEMraw is the one with the
highest absolute value of Cohen’s d for most combinations of SDn and Ncomp, followed
by RoDraw, RMSSD and CoVraw (recall that a magnitude of Cohen’s d greater than 0.8 is
considered a large difference [44]). In general, the rest of the variability measures based on
the raw scores perform worse than those based on the absolute value of the slopes, with the
notable exceptions of GMDraw, which performs exceptionally well for low values of added
noise, and SDraw and IQRraw, which offer competitive robustness. The rest of the measures
based on the slopes, except for SEMas, MATKEOas, IQRas, SDas, and RMSSS, are robust to
both added noise and missing observations. Figure 4b reveals that the worst performing
measure is RoDraw, followed by SEMraw, when Ψ describes a cosine with amplitude 20.
When we compare Figures 3b and 4b we see that even if most of the raw-based variability
measures perform better with the cosine profile than in the slow drift case (especially
SEMraw for low values of noise and missing observations) they are still surpassed by slope-
based ones, even if RMSSS, CoVas, RoDas, and SEMas are less reliable with the periodic
profile than in the linear case. When analyzing the effect of doubling the amplitude of the
cosine, i.e., comparing Figures 4b and 5b, we observe that RMSSS, SEMraw, and RMSSD
are the measures whose performance is more affected.

When analyzing Figures 3b, 4b and 5b as a whole, we see how badly SEMraw, RoDraw,
RMSSD, CoVraw, and MATKEOraw systematically perform in all the cases. RMSSD is one
of the less robust measures for nonuniformly sampled observations, in spite of its wide
applicability with uniform sampling. On the other hand, when looking at the most reliable
ways of measuring variability, we notice that CoVas and RoDas offer averagely robustness
for the linear case, although they fail to be robust enough for the cosine changes. Therefore,
they should only be used if linear changes are expected. Similarly, IQRas, Hraw, GMDas,
and SDas only behave reliably if the underlying change is periodic. When the sign of
the the Cohen’s d value is considered (recall that Figures 3b, 4b and 5b show its absolute
value) it is observed that the measures tend to underestimate variation as the comparison
set is distorted by removing observations and adding noise. When comparing the first,
sixth, and eleventh rows of these figures, we can analyze the performance with the same
number of observations (i.e., 25) but increasing noise levels. The raw-based variability
measures are the ones more affected by noise, notably RMSSD in the linear case. In general,
noise in the responses causes more distortion than missing observations, what suggests
that a small, yet reliable dataset can be more informative than a larger, noisier one. Finally,
only SDraw, and both rangeraw, MADraw and rangeas and MADas are consistently subject
to small degradations in the three cases, but MADas is the most stable one for all the cases.
In light of these findings, we conclude that the MADas is the most reasonable measure to
assess variability in irregularly sampled time series.
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5. Comparison on Real Data

The previous section has shown the performance of the measures under three different
synthetic scenarios. As the underlying data-generating process was known, it was possible
to objectively characterize the robustness of each measure by computing the Cohen’s d
of the variability scores obtained from the complete time series used as a reference and
a sampled version thereof. To complement that analysis, we now perform a similar
experiment upon real data. However, the best reference that can be used with real data,
namely, all the available responses of a participant, is already a sample of the complete
time series. Therefore, we compute the variability measures for all the responses of all
participants and use them as the reference sets. Then, up to 1000 degenerated time series
are obtained by removing a given percentage of the observations in the reference sequence
selecting the observations to discard uniformly without replacement at random, and the
measures are computed thereon to obtain the comparison set. Finally, the Cohen’s d is
computed between the sets in order to assess the robustness of each variability measure.

The dataset contains the responses from the 198 participants who rated at least four
times (so that the most restrictive metric, MATKEOas, can be computed) each of the
following items: (a) “Today I feel the wish to live” and (b) “Today I feel tired during
the day because of my sleep problems.” For rating the items, participants used a slider
with integer precision on scale that goes from 0 to 100. The mean ±SD sequence length
of the above-mentioned items among all participants are 16.79± 11.00 and 12.01± 8.01,
respectively. The mean distance ±SD among subjects is 7.85± 9.66 and 11.17± 12.59 days,
respectively. The results are shown in Figure 6, where the absolute value of the Cohen’s
d has been taken so that the results can be more easily shown on a semi-logarithmic plot.
The sample is composed of patients with a history of suicidal thoughts or behaviors, and
all of them gave their informed consent.
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Figure 6. Performance degradation in real data for questions: (a) “Today I feel the wish to live.” (b) “Today I feel tired
during the day because of my sleep problems.”

Overall, both Figure 6a,b exhibit a similar behavior, suggesting that the ensuing
conclusions are not limited to a specific kind of questions, as the same pattern is observed
for different topics (wish to live and sleep problems). Indeed, taking into account the
error bars, there is not a significant loss in performance as more data are ignored. Other
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peculiarity of Figure 6 is that the Cohen’s d values are significantly smaller than those of
Figures 3b, 4b and 5b. Furthermore, according to Figure 6, GMDraw is the most reliable
measure, clearly outperforming the rest. Equation (6) shows that such a variability measure
is very reliable to simple loss of observations (without adding noise). Indeed, the synthetic
data experiments also showcased very small absolute values of Cohen’s d for low levels
of added noise. Finally, when analyzing in more detail Figure 6, we see that SDraw,
MATKEOraw CoVraw, and RMSSD and SEMas behave robustly.

6. Additional Synthetic Data Experiment

The two previous sections have shown that there is a disagreement between the re-
sults of the synthetic data experiments and those of the real data. On one hand, synthetic
experiments show that the assessment of variability becomes harder as more data are
lost, and that one of the ways of obtaining robust measures is to make use of the distance
among the observations by considering the absolute value of the slopes of the consecutive
data points in the time series. On the other hand, results with real data depict optimistic
reliability for every measure of variability, regardless of the percentage of missing obser-
vations, and they favor simple measures that are based on raw values. This discrepancy
warrants an additional synthetic data analysis to ascertain if the fact that the reference used
in the real data experiments is itself a sample of the complete time series can bias the results.
For this purpose, let us consider the following experiment. First, the given set of days that
will be used as a reference out of the 60 possible days is sampled according to a Hawkes
process whose (conditional) intensity function is

λ∗(t) = µ + α ∑
ti<t

e−(t−ti). (13)

The intensity function measures the number of times an observation is acquired per
unit of time [45]. In (13), µ is a parameter expressing the basal intensity and α controls the
increase of the probability of observing additional data points after the observations have
been acquired. That is, α determines the burstiness of the locations of the data points in the
sequence: low values of α produce more evenly spaced time series, while high values yield
points that tend to follow each other forming clusters. In this way, it is also possible to
study if the relative location of the points used in the reference sequence has any influence
on the results. We take this cluster-producing sampling, and the simplest way of modeling
it, i.e., the Hawkes process, as a relevant example of possible kinds of structures in the
location of the data points in the reference set that could induce a bias.

Second, (11) is used to simulate the time series on the sampled instances obtained
using the Hawkes process in (13), yielding Nre f observations from which the variability
measures will be evaluated, thereby obtaining the reference set. Third, 70% of those Nre f
observations are removed by means of uniform sampling without replacement, and the
variability measures are computed in order to get the comparison set. Last, the process
is repeated, and the Cohen’s d is obtained. Figure 7 shows those values of the Cohen’s
d (keeping the sign) for 4000 repetitions and different values of µ and α, which, in turn,
determines the mean number of observations in the reference set, explicitly denoted by
“mean(Nre f )”, for clarity. As can be seen, the magnitude of the Cohen’s d in Figure 7 lies
within the same range of those of the real data analysis (Figure 6), which are significantly
smaller than those of the first synthetic data experiments (Figures 3b, 4b and 5b). Therefore,
the low density of observations in the reference set causes a bias towards low values of
Cohen’s d. This stems from the fact that the lower the number of observations for the
same time series, the lower are the chances of observing changes, in such a way that the
comparison set becomes more and more similar to the reference one. In fact, the large
majority of the variability measures attain the best results for mean sample densities as low
as (16.5× 100)/60 = 27.5%, as depicted in the bottom row of Figure 7.
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Figure 7. Results for 4000 reference subsequences obtained sampling observations with a Hawkes process of a cosine of amplitude 40, and then removing 70% of the observations.
The colormap spans the full range. The meaning of all quantities can be found in the table of abbreviations.
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However, such a bias does not equally affect all the variability measures. Indeed,
the value of Cohen’s d of the measures based on the raw answers decreases faster to
0 than those based on the absolute value of the slopes, as the reference time series has
fewer observations, particularly for simpler methods such as RMSSD, CoVraw, RoDraw,
and SEMraw. Nonetheless, MADas, GMAas, IQRas, and SEas, all of which performed
averagely to poorly in the real data experiments, have a slight bias that increases the value
of the Cohen’s d as the reference losses observations. This can be explained by the fact
that the absolute value of the slopes lies on a larger range of values than that of the raw
observations, so the measures based on the absolute slopes can still capture some variability
even when the reference observations are scant. Therefore, when the observations are
removed in the comparison set, part of such variability is lost, and this discrepancy is shown
in the Cohen’s d between the two sets. On the other hand, normalization contributes to
increase the bias towards low Cohen’s d values. This explains why SEMas, RoDas, and Coas,
which are based on the absolute slopes, suffer from it. In addition, SEMraw, RoDraw,
and Coraw are the measures that decrease faster to zero as the reference becomes lighter.
Therefore, the division by an already biased normalizing factor, such as the SD, amplifies
the bias in variability measures.

With regard to the possible influence of the relative location of the observations used
as a reference, Figure 7 allows us to compare different combinations of µ and α, which have
roughly the same number of mean observations in the reference set. In particular, it is
possible to compare: (1) the 2nd and 5th rows to observe an increase from α = 0.5 to α = 0.7
with mean(Nre f ) ≈ 45; (2) the 8th and 10th rows to see what happens when the burstiness
is increased from α = 0.1 to α = 0.5 with mean(Nre f ) ≈ 32; and (3) the 11th and 13th rows
to study the case wherein α = 0.3 and α = 0.7 with mean(Nre f ) ≈ 28. When the differences
among those rows is inspected, the values are very low and no consistent pattern is found,
suggesting the density of the observations used as a benchmark is what determines the
bias induced when the reference time series is incomplete.

In summary, this additional synthetic data experiment shows that using incomplete
time series as references induces non-negligible bias, reducing the differences between the
reference and comparison sets for simple variability measures based on raw observations.
Therefore, the real data results from Section 5, which have very low density of observations
in the benchmark (<15%), should not be considered for analyzing the robustness of the
variability measures. Instead, the synthetic data experiments from Section 4, which have
access to the complete sequence, are the ones that should be taken into account.

7. Conclusions and Future Work

In this paper, we have summarized the main variability measures used in the literature,
with special emphasis in mental healthcare time series. Datasets in this kind of studies
have a strong tendency to be nonuniformly sampled regardless of the experimental design;
even studies that aim for data uniformity end up being nonuniform due to the large amount
of missing data. We have explored the ability of different commonly used variability
measures to address this issue, and we have proposed and studied the potential of other
variability indicators not explored yet to cope with this inimical situation. We compared a
total 21 candidates, exploring their robustness and interpretability using synthetic data.
Thanks to the known profiles used in the synthetic data, some variability measures, such as
MADraw and GMDraw, have been identified as difficult to interpret, as they provided higher
values for profiles that intuitively are less variable. On the other hand, these experiments
identified measures based on the absolute value of the slopes of consecutive observations
as the most robust ones. In particular, MADas was the best candidate.

However, we reached different conclusions in the experiments performed upon real
data, as they showed that the most robust measures are the ones that are normalized
and/or based on the raw values, such as RMSSD. To shed some light on this, an additional
synthetic data experiment showed that low number of observations used in a benchmark
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(such as the one of the real data analysis) induces a non-negligible bias that favors the
variability measures that are normalized and/or based on the raw value of the series.
Therefore, only the results of the real data experiments should be used to determine which
is the most reliable measure, as the full time series is used as a reference. We can therefore
conclude that the best way to assess variability is computing the MADas, namely, the
median absolute deviation of the absolute value of the successive slopes of the data in
the time series. Finally, it would be instructive to conduct additional analyses on real and
dense time series, as data density would decrease the risk of bias.
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