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Abstract: Sign, Wilcoxon and Mann-Whitney tests are nonparametric methods in one or two-sample
problems. The nonparametric methods are alternatives used for testing hypothesis when the standard
methods based on the Gaussianity assumption are not suitable to be applied. Recently, the functional
data analysis (FDA) has gained relevance in statistical modeling. In FDA, each observation is a curve
or function which usually is a realization of a stochastic process. In the literature of FDA, several
methods have been proposed for testing hypothesis with samples coming from Gaussian processes.
However, when this assumption is not realistic, it is necessary to utilize other approaches. Clustering
and regression methods, among others, for non-Gaussian functional data have been proposed recently.
In this paper, we propose extensions of the sign, Wilcoxon and Mann-Whitney tests to the functional
data context as methods for testing hypothesis when we have one or two samples of non-Gaussian
functional data. We use random projections to transform the functional problem into a scalar one,
and then we proceed as in the standard case. Based on a simulation study, we show that the proposed
tests have a good performance. We illustrate the methodology by applying it to a real data set.

Keywords: hypothesis testing; Monte Carlo simulation; non-Gaussianity; nonparametric tests;
R software

1. Introduction

Different phenomena in diverse fields can be modeled by means of random observa-
tions that are represented as curves. Since the beginning of the nineties, the functional data
analysis (FDA) [1] has been used to describe, analyze and model this type of observations.
The FDA is concerned with the study of realizations of functional random variables, that is,
variables taking values in an infinite dimensional space [2]. Functional versions of a wide
spectrum of statistical areas (as exploratory data analysis [3], linear models [4], sampling [5],
time series [6], geostatistics [7] and multivariate analysis [8], among others) have been
developed. A state-of-the-art review on methodological, practical and theoretical aspects
of the FDA can be found in [9,10].

Statistical inference based on FDA has shown recently new theoretical develop-
ments [11,12]. There has been an increasing interest in methods for testing hypothesis
using data from functional variables. Some basic inferential techniques in one-sample
problems for functional data are given in [13]. In the case of two-sample problems, testing
hypothesis that the generating distributions of two sets of curves are identical has been
approached in several contexts, such as differences in mean curves, covariance functions
or cumulative distribution functions (CDFs) [14]. In addition, in [1], a pointwise t-test is
introduced, whereas in [15], a method to test whether two groups of curves have the same
mean function is presented, when these curves are observed at different times without
noise. Furthermore, a pseudolikelihood ratio test is derived in [16] and a L2-norm-based
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test of the two-sample Behrens-Fisher problem for functional data is proposed and studied
in [17] (note that it tests the equality of mean functions of two Gaussian processes with pos-
sibly unequal covariance functions). A review of several tests when two or more functional
samples are involved is given in [13]. In a distribution-free context, the Anderson-Darling
statistic for testing the null hypothesis that two samples of curves (observed with noise at
discrete grids) have the same underlying distribution is derived in [14]. Many authors have
treated the problem of testing hypothesis with more than two functional samples. Several al-
ternatives for one-or-two-way ANOVA have been proposed in [18–21]. These methods can
be applied to the two-sample case.

Some approaches to solve the two-sample problem for functional data are based on
the Gaussianity assumption [13,15], that is, they assume that the sample at each group is
a realization of a Gaussian stochastic process. Other approaches suppose that functional
variables follow a Wishart process with some of them requiring homoscedasticity [13].
In a nonparametric context, some methods based on permutations and bootstrap have
become very popular for testing hypothesis with functional data [15]. This is probably due
to the flexibility of permutation methods to test complex hypothesis, especially when the
asymptotic distributions are difficult to derive or the parametric assumptions are hard to
justify. To the best of our knowledge, no studies on the adaptation of the sign, Wilcoxon
and Mann-Whitney statistics [22,23] to the context of functional data have been conducted.

The objective of this paper is to derive the sign, Wilcoxon, and Mann-Whitney statistics
using data from functional variables. We utilize random projections [21] to transform the
functional problem into a scalar one, and then we proceed as in the standard case by using
these statistics. As mentioned, there are several statistics that may be applied when the
curves come from Gaussian processes. Consequently, the procedures proposed here are
particularly useful when curves and random projections are realizations of non-Gaussian
stochastic processes.

The rest of the paper is organized as follows. In Section 2, a review about both
standard nonparametric tests for one-sample and two-sample problems, as well as some
concepts on FDA, are provided. In Section 3, the sign, Wilcoxon and Mann-Whitney tests
for functional data based on random projections are defined. In Section 4, the numerical
results of this study are reported. First, a Monte Carlo simulation study is conducted to
evaluate the performance of the results proposed, and then we provide an application of
the proposed tests to a real data set. The paper ends with some conclusions, discussion
and future research in Section 5.

2. Background

This section is based on the works presented in [1,21–23]. First, we provide an overview
about the sign and Wilcoxon tests for one-sample and two-sample problems. Then, we present
the pointwise t-test for functional data and hypothesis testing for Gaussian functional data
based on random projections.

2.1. Sign, Wilcoxon and Mann-Whitney Tests

Let X1, . . . , Xn be a random sample drawn from a symmetric distribution with CDF
FX with median θ. Suppose we are interested in testing the hypotheses given by

H0: θ = θ0 versus H1: θ 6= θ0.

Defining Zi = Xi − θ0, for i = 1, . . . , n, the above hypotheses can be written as

H0: θ = 0 versus H1: θ 6= 0,

where θ is the median of the random variable Z. Now, consider the absolute values |Zi|,
for i = 1, . . . , n, and order them increasingly. Let Ri denote the rank of |Zi| in this ordering,
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for i = 1, . . . , n. To compute the sign (S) and Wilcoxon (T+) statistics, for i = 1, . . . , n,
define an indicator variable stated as

ψi =

{
1, if Zi > 0;
0, if Zi ≤ 0;

and set

S =
n

∑
i=1

ψi, T+ =
n

∑
i=1

Riψi. (1)

The statistic S defined in (1) is the number of positive values of Z and T+ is the sum
of signed ranks of Zi that are positive. At the level α of significance, H0 is rejected if
S ≥ B1−α/2(n, 1/2) or S ≤ n− B1−α/2(n, 1/2), where B1−α/2(n, 1/2) is the (1− α/2)× 100-
th percentile of the binomial distribution with sample size n and p = 1/2 [23]. Analogously,
H0 is rejected if T+ ≥ t1−α/2 or T+ ≤ n(n + 1)/2− t1−α/2, where t1−α/2 is chosen to make
the type I error probability equal to α. Values of t1−α/2 are given in Table A.4 of [23].

In the case of a paired sample (X11, X12), . . . , (Xn1, Xn2) from a bivariate distribution
with CDF FX1,X2 with medians θ1 and θ2, the statistics S and T+ defined in (1) may also be
used to test the hypotheses established as

H0: θ1 = θ2 versus H1: θ1 6= θ2,

by taking

ψi =

{
1, if Xi2 > Xi1;
0, if Xi2 ≤ Xi1;

and using again a binomial distribution or the critical values from the distribution of the
statistic T+ [23]. In this case, |Zi| = |Xi2 − Xi1| and Ri is the rank of |Zi|, for i = 1, . . . , n.
In both cases (one sample and paired sample), a large-sample approximation based on the
standard Gaussian distribution can be used.

When X1, . . . , Xm and Y1, . . . , Yn are two independent random samples from distribu-
tions with CDFs FX and FY, respectively, the Wilcoxon [24] or Mann-Whitney [25] statistics
may be considered as alternatives to test the hypotheses stated as

H0: FX(ω) = FY(ω) versus H1: FX(ω) 6= FY(ω), for every ω.

In this case, the Wilcoxon (W) and the Mann-Whitney (U) statistics are defined respectively as

W =
n

∑
j=1

Rj, U =
n

∑
i=1

m

∑
j=1

φ(Xi, Yj),

with Rj denoting the rank of Yj, for j = 1, . . . , n, in the combined sample of size
N = m + n, and

φ(Xi, Yj) =

{
1, if Xi > Yj;
0, if Xi ≤ Yj.

Note that H0 is rejected at the level α if W ≥ w1−α/2 or if W ≤ n(m + n + 1)−w1−α/2. The
critical values w1−α/2 are given in Table A.6 of [23]. Mann and Whitney [25] showed that,
in case of no ties, one has

U = W − n(n + 1)
2

, (2)

which implies that tests based on U are equivalent to tests based on W [23]. In both
cases (Wilcoxon and Mann-Whitney statistics), large sample approximations based on
Gaussianity of W and U allow us to carry out the tests using critical values of the standard
Gaussian distribution.
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2.2. Functional Data and Random Projections

A functional variable X(t), for t ∈ T, is defined in [2] as a random variable taking
values in a space of functions. Then, X1(t), . . . , Xn(t) are a random sample of X(t), that is,
Xi(t), for i = 1, . . . , n, are independent and identically distributed functional variables
following the same underlying distribution of X(t). Given that in practice the functions
are known only for a finite number of measured values, a model is required to fit the
function Xi(t). Usually this modeling is carried out by using basis functions [1], which
are a system of known functions φ1(t), . . . , φk(t) that are mathematically independent of
each other. This system approximates arbitrarily well any curve by a linear combination
of a sufficiently large number K of these functions [9]. Fourier, B-splines and wavelet
smoothing methods are widely used in this context [17]. Generally, the number of basis
functions for smoothing is chosen by cross-validation [1].

In the case of one sample, the problem for functional data is described as follows.
Suppose we have a random sample X1(t), . . . , Xn(t) coming from a stochastic process with
mean function µ(t), for t ∈ T, and covariance function γ(s, t), for s, t ∈ T. Let x1(t), . . . , xn(t)
be the observations of X1(t), . . . , Xn(t) obtained after using a smoothing method. Now,
the hypotheses of interest are stated as

H0: µ(t) = µ0(t) versus H1: µ(t) 6= µ0(t), (3)

where µ0(t) is some known fixed function. A review of alternatives to test the hypothesis
in (3) is given in [13], where pointwise, L2-norm-based and F-type tests are introduced,
among others. Almost all of these tests are based on the Gaussianity assumption, that
is, they assume that X(t) ∼ N(µ, γ), for each t. The simplest option in this case is the
pointwise test. Under Gaussianity, we have

T(t) =
√

n(X̄(t)− µ0(t))√
γ̂(t, t)

∼ t(n−1), (4)

with X̄(t) = (1/n)∑n
i=1 Xi(t). The null hypothesis is rejected whenever the observed

absolute value of T(t) defined in (4) and based on the observations x1(t), . . . , xn(t) is
greater than t1−α/2,(n−1), where t1−α/2,(n−1) denotes the (1− α/2)× 100-th percentile of
the Student-t distribution with n − 1 degrees of freedom. The case of a paired sample
(Xi1(t), Xi2(t)), for i = 1 . . . , n, or two independent samples (Xi(t), Yj(t)), for i = 1 . . . , n
and j = 1, . . . , m, can be tested similarly defining the statistic T(t) stated in (4) properly;
see details in [15]. When the Gaussianity assumption is not satisfied, tests based on
bootstrap [13] and permutations [26] may be applied.

Random projections refer to the technique of mapping a set of points from a high
dimensional space to a randomly chosen low-dimensional space [27]. Given a set of func-
tional data x1(t), . . . , xn(t), for t ∈ T, the hypotheses of interest can be tested projecting the
functions on a one-dimensional subspace generated by ν(t) in H, where H is a separable
Hilbert space of square integrable functions. Thus, xi =

∫
T xi(t)ν(t)dt, for i = 1, . . . , n,

where often ν(t) is a Brownian motion. Random projections have been recently applied
in many contexts of the FDA [28], such as goodness-of-fit tests [29], clustering [30], and
ANOVA [21], among others.

3. Sign, Wilcoxon and Mann Withney Tests for Functional Data

This section derives the sign, Wilcoxon and Mann-Whitney tests for functional data
based on random projections for one-sample and two-sample problems.
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3.1. The Case of One Sample

Let X1(t), . . . , Xn(t) be a sample from a stochastic process with median function θ(t),
for t ∈ T, defined in the space C(I) of real continuous functions on the compact interval I.
The hypotheses of interest are given by

H0: θ(t) = θ0(t) versus H1: θ(t) 6= θ0(t), (5)

where θ0(t) is some particular function. In order to carry out the test:

• Define Zi(t) = Xi(t)− θ0(t), for i = 1 . . . , n.

• Generate a Brownian motion ν(t), for t ∈ T.

• Obtain random projections Zi =
∫

T Zi(t)ν(t)dt, for i = 1, . . . , n.

• Let θ be the median of Z. Then, based on Zi, for i = 1, . . . , n, test the hypotheses given by

H0: θ = 0 versus H1: θ 6= 0,

using the statistics S and T+ defined in (1). The critical values are defined in the same
way as in Section 2.1.

In the case of a paired functional sample (X11(t), X12(t)), . . . , (Xn1(t), Xn2(t)) from
a bivariate functional vector (X1(t), X2(t)) with medians θ1(t) and θ2(t), respectively,
for t ∈ T, the statistics S and T+ stated in (1) can be also used to test the hypotheses
established as

H0: θ1(t) = θ2(t) versus H0: θ1(t) 6= θ2(t), (6)

defining Zi = |
∫

T Xi2(t)ν(t)dt−
∫

T Xi1(t)ν(t)dt| and ψi as

ψi =

{
1, if

∫
T Xi2(t)ν(t)dt >

∫
T Xi1(t)ν(t)dt;

0, if
∫

T Xi2(t)ν(t)dt ≤
∫

T Xi1(t)ν(t)dt;

with ν(t), for t ∈ T, being a Brownian motion. In both cases for the hypotheses defined
in (5) and (6), a large sample approximation based on the Gaussian distribution may be
used by standardizing the statistics S and T+ [23].

3.2. The Case of Two Samples

Let X1(t), . . . , Xm(t) and Y1(t), . . . , Yn(t) be two independent random samples from
the functional variables X(t) and Y(t) with medians θX(t) and θY(t), respectively. Suppose
we want to test the hypotheses stated as

H0: θX(t) = θY(t) versus H0: θX(t) 6= θY(t).

Then, the random projections given by

Xi =
∫

T
Xi(t)ν(t)dt, i = 1, . . . , m,

and
Yj =

∫
T

Yj(t)ν(t)dt, j = 1, . . . , n,

can be used once again to test these hypotheses using the Mann-Whitney and Wilcoxon
statistics defined in (2).

4. Numerical Results

This section reports the numerical results of our study. First, a simulation study is
conducted to evaluate the performance of the tests proposed, and then we apply these tests
to a real data set.
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4.1. Simulation Study

We perform Monte Carlo simulations to evaluate the methodology presented in
Section 3. We assess the power of the test for detecting differences between medians of two
functional paired samples, with the one-sample problem being a particular case.

Consider a set of paired curves (X1(t), Y1(t)), . . . , (Xn(t), Yn(t)) with

Xi(t) = µ(t) + εi1(t), (7)

and
Yi(t) = µ(t) + a(t) + εi2(t), (8)

where µ(t) = sin(t), for t ∈ [−2π; 2π], is a common mean function, whereas εi1(t) and
εi2(t) are a paired stochastic process with generalized Tukey-lambda distribution [31].
To obtain the realizations (x1(t), y1(t)), . . . , (xn(t), yn(t)), the paired stochastic process
(εi1(t), εi2(t)), for i = 1, . . . , n, is simulated by using the function rpaired.gld of an R
library named PairedData [32]. To simulate curves under the null hypothesis, consider the
models defined in (7) and (8) with a(t) = 0(t), that is, a constant function at zero for all t,
and n = 50; see Figure 1.

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

t

X
(t)

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4

t

Y
(t)

Figure 1. Curves simulated (gray lines) under the null hypothesis a(t) = 0(t) in group 1 (at the top) and group 2 (at the
bottom). The black lines in both cases correspond to the mean curve µ(t) = sin(t).

In order to evaluate the power of the sign and Wilcoxon tests, we take a(t) = a, for all
t ∈ [−2π; 2π], with a = 0.01, . . . , 0.11. We consider five sample sizes
n = 50, 80, 100, 120, 150. At each case, 1000 realizations are generated and used to es-
timate empirically the power of the tests. Based on each sample size n, we conduct both a
sign and Wilcoxon test as defined in Section 3. We utilize the libraries PASWR [33] and stats
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of R to carry out the tests at each iteration. At each case, the power of the test is obtained
as the percentage of p-values less than 0.05. As an illustration, the simulations under the
null hypothesis (with n = 50) are shown in Figure 1. With the data of this simulation,
the p-values obtained are 0.03 and 0.04, respectively. Following a similar procedure based
on 1000 simulations, the p-values obtained were 0.03 (sign test) and 0.046 (Wilcoxon test).
In Figures 2 and 3, we show the empirical power curves of the tests for each one of the
sampling sizes n and values a(t) = a. In both figures, note that the power of the tests
increases when a(t) and n increase, that is, the simulation study provides evidence that
the sign and Wilcoxon tests for functional data proposed here are unbiased and consistent
empirically. It is important to emphasize that, in the case of the Wilcoxon test, a symmetry
test [34,35] must be performed beforehand. A comparison of the power curves in Figures 2
and 3 indicates that, as in the standard case, the Wilcoxon test is slightly more powerful.

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

P
ow

er

Figure 2. Empirical power of the sign test according to a(t) = a and n. The black curve corresponds
to the power of the test for n = 50 and the light blue curve to the case of n = 150. The other curves
correspond to n = 80 (red), n = 100 (green), and n = 120 (dark blue).
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Figure 3. Empirical power of the Wilcoxon test according to a(t) = a and n. The black curve
corresponds to the power of the test for n = 50 and the light blue curve to the case of n = 150.
The other curves correspond to n = 80 (red), n = 100 (green), and n = 120 (dark blue).

4.2. Application to Canadian Temperature Data

We apply the Mann-Whitney test of Section 3 to a meteorological data set widely used
in FDA. This data set corresponds to daily average (30 years) of temperature (in Celsius
degrees) at each one of 35 weather stations located across climate zones of Canada [1].
Some approaches for ANOVA, regression and cluster analysis [36] for functional data have
been illustrated using this data set.

We show that statistical inference for functional data assuming Gaussianity can
be unrealistic with these data and that the approaches presented here are valid alter-
natives under this scenario of non-Gaussianity. In order to carry out the analysis, we
use the data from Atlantic and Continental zones (15 and 9 stations, respectively); see
Figure 4. The data for each station are obtained from Ramsay and Silverman’s website
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(http://www.functionaldata.org). We smooth the data for each station using 65 Fourier ba-
sis functions. The number of basis functions is obtained by the generalized cross-validation
criterion. According to [26], temperature curves of Atlantic coastal display little amplitude
cool winters and summers. They appear to have a temperature around five Celsius degrees
warmer than the Canadian average. In addition, the temperature of Continental stations
show high amplitude and peakedness with cold winters and hot summers. Note that they
are slightly warmer than average in the summer but are colder in the winter by about
five Celsius degrees; see Figure 4. These descriptions suggest that there are heterogeneous
patterns between these two data sets. In order to establish from a statistical point of view if
there are significant differences between these zones, we apply a Mann-Whitney test for
functional data as described in Section 3.

Figure 4. Temperature curves (in Celsius degrees) of the Atlantic (left) and Continental (right)
climate zones obtained after daily data averages are smoothed using 65 Fourier basis functions.

Initially, a Brownian motion ν(t) is generated. Then, we compute the random projections

Xi =
∫
T

Xi(t)ν(t)dt, i = 1, . . . , 15,

and
Yj =

∫
T

Yj(t)ν(t)dt, j = 1, . . . , 9,

where Xi(t) and Yj(t) are the smoothed curves based on the Fourier basis. By using Xi
and Yj, the Mann-Whitney test is applied. Before performing this test, the projections of
each group are tested for Gaussianity using the Shapiro-Wilk test. The p-values of this test
are 0.0013 (Atlantic zone) and 0.044 (Continental zone), respectively. This indicates that,
in both cases we reject the hypothesis of Gaussianity at a level of significance α = 0.05,
which suggests that using a two-sample t-test for these functional data is inadequate. In this
scenario of non-Gaussianity, a Mann-Whitney test is a better alternative. The p-value for
this test is 0.0013, that is, there are significant differences between the median temperature
curves of both zones.

In order to establish in which periods of the year the differences occur, we apply a
pointwise t-test for functional data based on permutations (a valid approach because this
test does not assumes Gaussianity) using the function tperm.fd of the an R library named
fda [26]; see Figure 5. The dotted line in this Figure suggests that differences between these
zones are given in both January to March and September to December. The results found
are consistent with the description of Canada’s climate variability, since the Atlantic and
Continental regions have opposite temperature patterns. The Atlantic region of Canada is
typically warmer during the winter and cooler during the summer, while in this season the
parts of the country farthest from open water are the coldest ones. Note that our statistical
analysis performed contributes to the explanation of these differences.

http://www.functionaldata.org
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Figure 5. A t-test based on permutations for the temperature data of Atlantic and Continental zones.
The dashed line gives a critical value for the maximum of the t-statistic and the dotted line provides
the permutation critical value for the pointwise statistic.

5. Conclusions, Discussion and Future Research

This paper reported the following findings:

(i) An extension of the sign test to the functional data context was proposed.

(ii) The Wilcoxon test in the functional data field was derived.

(iii) The Mann-Whitney test for functional data analysis was stated.

(iv) The power of the tests for detecting differences between medians of two functional
paired samples was evaluated by Monte Carlo simulations.

(v) An illustration with a real data set was considered to show potential applications of
the results proposed.

In summary, we proposed nonparametric alternatives of methods used for testing
hypothesis when one-sample, paired-sample and two-sample problems with non-Gaussian
functional data are stated. We utilized random projections to become the functional
problem into a scalar one, and then we proceeded as in the standard case. Based on a
simulation study, we showed that the proposed tests have a good performance. Specifically,
the empirical power curve for the sign test provided evidence that this test is unbiased
and consistent. The same result was obtained with the Wilcoxon test. We illustrated our
methods with a real data set. Thus, our proposal may be a knowledge addition to the tools
of diverse practitioners, including engineers, statisticians and data scientists.

Some additional aspects which deserve study for future work in this field, which arose
from the present investigation, are the following:

(i) A power comparison between global tests for one-sample and two-sample problems
with functional data can be considered.

(ii) The extension to the case of a nonparametric test for the k-sample problem and
designs in random blocks are also of interest.

(iii) Applications to other models involving functional data are also of practical rele-
vance [37–43].

(iv) Usages of the methodology considered in this study may be of interest in diverse
fields where the functional data analysis is employed [1].

Therefore, the proposed methodology in this study promotes new challenges and
opens other issues to be considered in future research.
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