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Abstract: Motivated by recent interest on Kirchhoff-type equations, in this short note we utilize a

classical, yet very powerful, tool of nonlinear functional analysis in order to investigate the existence

of positive eigenvalues of systems of elliptic functional differential equations subject to functional

boundary conditions. We obtain a localization of the corresponding non-negative eigenfunctions

in terms of their norm. Under additional growth conditions, we also prove the existence of an

unbounded set of eigenfunctions for these systems. The class of equations that we study is fairly

general and our approach covers some systems of nonlocal elliptic differential equations subject to

nonlocal boundary conditions. An example is presented to illustrate the theory.

Keywords: positive solution; nonlocal elliptic system; functional boundary condition; cone; Birkhoff-

Kellogg type theorem
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1. Introduction

A well known result in nonlinear analysis is the Birkhoff-Kellogg invariant-direction
Theorem [1]. In the case of an infinite-dimensional normed linear space V this theorem
reads as follows.

Theorem 1. ([2], Theorem 6.1). Let U be a bounded open neighborhood of 0 in an infinite-
dimensional normed linear space (V, ‖ ‖), and let T : ∂U → V be a compact map satisfying
‖T(x)‖ ≥ α for some α > 0 for every x in ∂U. Then there exist x0 ∈ ∂U and λ0 ∈ (0,+∞) such
that x0 = λ0F(x0).

The invariant direction Theorem has been object of deep studies in the past, with
applications and extensions in several directions, we refer the reader to [3–10] and refer-
ences therein. In particular, we highlight that [6,8,10] provide interesting applications to
the existence of eigenvalues and eigenfunctions of elliptic boundary value problems.

Here we make use of a Birkhoff-Kellogg type theorem, which is set in cones, due to
Krasnosel’skiĭ and Ladyženskiı̆ [11]. Before stating this result, we recall that a cone C of
a real Banach space (X, ‖ ‖) is a closed set with C+ C ⊂ C, µC ⊂ C for all µ ≥ 0 and
C∩ (−C) = {0}.
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Theorem 2. ([12], Theorem 2.3.6). Let (X, ‖ ‖) be a real Banach space, U ⊂ X be an open
bounded set with 0 ∈ U, C ⊂ X be a cone, T : C∩U → C be compact and suppose that

inf
x∈C∩∂U

‖Tx‖ > 0.

Then there exist λ0 ∈ (0,+∞) and x0 ∈ C∩ ∂U such that x0 = λ0Tx0.

By means of Theorem 2 we discuss the solvability, with respect to the parameter λ, of
the following system of second order elliptic functional differential equations subject to
functional boundary conditions (BCs){

Liui = λ fi(x, u, Du, wi[u]), in Ω, i = 1, 2, . . . , n,
Biui = λζi(x)hi[u], on ∂Ω, i = 1, 2, . . . , n,

(1)

where Ω ⊂ Rn is a bounded domain with a sufficiently smooth boundary, Li is a strongly
uniformly elliptic operator, Bi is a first order boundary operator, u = (u1, . . . , un), Du =

(∇u1, . . . ,∇un), fi are continuous functions, ζi are sufficiently regular functions, wi and hi

are suitable compact functionals.
The class of systems occurring in (1) is fairly general and allows us to deal with

nonlocal problems of Kirchhoff-type. This is a very active area of research, a typical
example of a Kirchhoff-type problem is

−M
(∫

Ω
|∇u|2 dx

)
∆u = f (x, u), x ∈ Ω, u = 0 on ∂Ω, (2)

which has been investigated by Ma in his survey [13]. An extension to systems of the
BVP (2) has been considered by Figueiredo and Suárez [14], namely

−M1
(∫

Ω |∇u1|2 dx
)
∆u1 = f1(x, u1, u2), x in Ω,

−M2
(∫

Ω |∇u2|2 dx
)
∆u2 = f2(x, u1, u2), x in Ω,

u1 = u2 = 0 on ∂Ω.
(3)

The approach employed in [14] is the sub-supersolution method. A similar approach has
also been used in the recent papers [15,16], while variational methods have been utilized
in [17–19].

Note that there has been also interest in Kirchhoff-type systems with gradient terms ap-
pearing within the nonlinearities, we mention the recent paper [20] and references therein.

The framework of (1) allows us to deal with non-homogenous BCs of functional type.
In the case of nonlocal elliptic equations, non-homogeneous BCs have been investigated
by Wang and An [21], Morbach and Corrẽa [22] and by the author [23]. The formulation
of the functionals occurring in (1) allows us to consider multi-point or integral BCs. There
exists a wide literature on this topic, for brevity we refer the reader to the recent paper [23]
and references therein. For further reading on the topics of non-standard elliptic systems
and gradient terms appearing within the nonlinearities, we refer the reader to the recent
papers [24,25].

Here we discuss, under fairly general conditions, the existence of positive eigenvalues
with corresponding non-negative eigenfunctions for the system (1) and illustrate how these
results can be applied in the case of nonlocal elliptic systems, see Remark 2. Our results
are new and complement previous results of the author [23], by allowing the presence of
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gradient terms within the nonlinearities and the functionals. The results also complement
the ones in [26], by considering more general nonlocal elliptic systems.

2. Eigenvalues and Eigenfunctions

In what follows, for every µ̂ ∈ (0, 1) we denote by Cµ̂(Ω) the space of all µ̂-Hölder
continuous functions g : Ω→ R and, for every k ∈ N, we denote by Ck+µ̂(Ω) the space of
all functions g ∈ Ck(Ω) such that all the partial derivatives of g of order k are µ̂-Hölder
continuous in Ω (for more details see ([27], Examples 1.13 and 1.14)).

We make the following assumptions on the domain Ω and the operators Li and Bi

and the functions ζi that occur in (1) (see ([27], Section 4 of Chapter 1)):

(1) Ω ⊂ Rm, m ≥ 2, is a bounded domain such that its boundary ∂Ω is an (m − 1)-
dimensional C2+µ̂−manifold for some µ̂ ∈ (0, 1), such that Ω lies locally on one side
of ∂Ω (see ([28], Section 6.2) for more details).

(2) Li is a the second order elliptic operator given by

Liu(x) = −
m

∑
j,l=1

aijl(x)
∂2u

∂xj∂xl
(x) +

m

∑
j=1

aij(x)
∂u
∂xj

(x) + ai(x)u(x), for x ∈ Ω,

where aijl , aij, ai ∈ Cµ̂(Ω) for j, l = 1, 2, . . . , m, ai(x) ≥ 0 on Ω̄, aijl(x) = ail j(x) on Ω̄
for j, l = 1, 2, . . . , m. Moreover Li is strongly uniformly elliptic; that is, there exists
µ̄i0 > 0 such that

m

∑
j,l=1

aijl(x)ξ jξl ≥ µ̄i0‖ξ‖2
e for x ∈ Ω and ξ = (ξ1, ξ2, . . . , ξm) ∈ Rm,

where ‖ · ‖e is the Euclidean norm.
(3) Bi is a boundary operator given by

Biu(x) = bi(x)u(x) + δi
∂u
∂ν

(x) for x ∈ ∂Ω,

where ν is an outward pointing and nowhere tangent vector field on ∂Ω of class C1+µ̂

(not necessarily a unit vector field), ∂u
∂ν is the directional derivative of u with respect to

ν, bi : ∂Ω→ R is of class C1+µ̂ and moreover one of the following conditions holds:

(a) δi = 0 and bi(x) ≡ 1 (Dirichlet boundary operator).
(b) δi = 1, bi(x) ≡ 0 and ai(x) 6≡ 0 (Neumann boundary operator).
(c) δi = 1, bi(x) ≥ 0 and bi(x) 6≡ 0 (Regular oblique derivative boundary operator).

(4) ζi ∈ C2−δi+µ̂(∂Ω).

It is known that, under the previous conditions (see [27], Section 4 of Chapter 1),
a strong maximum principle holds, given g ∈ Cµ̂(Ω̄), the BVP{

Liu(x) = g(x), x ∈ Ω,
Biu(x) = 0, x ∈ ∂Ω,

(4)

admits a unique classical solution u ∈ C2+µ̂(Ω̄) and, moreover, given ζi ∈ C2−δi+µ̂(∂Ω)

the BVP {
Liu(x) = 0, x ∈ Ω,
Biu(x) = ζi(x), x ∈ ∂Ω,

(5)
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also admits a unique solution γi ∈ C2+µ̂(Ω̄).
In order to investigate the solvability of the system (1), we make use of the cone of

non-negative functions P̂ = C(Ω̄,R+). The solution operator associated to the BVP (4),
Ki : Cµ̂(Ω̄) → C2+µ̂(Ω̄), defined as Kig = u is linear and continuous. It is also known
(see [27], Section 4 of Chapter 1) that Ki can be extended uniquely to a continuous, linear and
compact operator (that we denote again by the same name) Ki : C(Ω̄)→ C1(Ω̄) that leaves
the cone P̂ invariant, that is Ki(P̂) ⊂ P̂.

We utilize the space C1(Ω̄,Rn), endowed with the norm

‖u‖1 := max{‖ui‖∞, ‖∂xj ui‖∞ : i = 1, 2, . . . , n, j = 1, 2, . . . , m},

where ‖z‖∞ = max
x∈Ω̄
|z(x)|, consider the cone P = C1(Ω̄,Rn

+) and define the sets

Pρ := {x ∈ P : ‖x‖1 < ρ}, Pρ := {x ∈ P : ‖x‖1 ≤ ρ} and ∂Pρ := {x ∈ P : ‖x‖1 = ρ},

where ρ ∈ (0,+∞).
We rewrite the elliptic system (1) as a fixed point problem, by considering the operators

T, Γ : C1(Ω̄,Rn)→ C1(Ω̄,Rn) given by

T(u) := (KiFi(u))i=1..n, Γ(u) := (γihi[u])i=1..n,

where Ki is the above mentioned extension of the solution operator associated to (4),
γi ∈ C2+µ̂(Ω) is the unique solution of the BVP (5) and

Fi(u)(x) := fi(x, u(x), Du(x), wi[u]), for u ∈ C1(Ω̄, I) and x ∈ Ω̄.

Definition 1. We say that λ is an eigenvalue of the system (1) if there exists u ∈ C1(Ω̄) with
‖u‖1 > 0 such that the pair (u, λ) satisfies the operator equation

u = λ(Tu + Γu) = λ(KiFi(u) + γihi[u])i=1..n. (6)

If the pair (u, λ) satisfies (6) we say that u is an eigenfunction of the system (1) corresponding
to the eigenvalue λ. If, furthermore, the components of u are non-negative, we say that u is a
non-negative eigenfunction of the system (1).

We now prove our existence result, the proof is relatively straightforward and illus-
trates the powerfulness of Theorem 2. Note that Theorem 3 provides a precise localization
of the eigenfunction in terms of its norm.

Theorem 3. Let ρ ∈ (0,+∞) and assume the following conditions hold.

(a) For every i = 1, 2, . . . , n, wi : Pρ → R is continuous and there exist wi,ρ, wi,ρ ∈ R such that

wi,ρ ≤ wi[u] ≤ wi,ρ, for every u ∈ Pρ. (7)

(b) For every i = 1, 2, . . . , n, fi ∈ C(Πρ,R) and there exist δi ∈ C(Ω̄,R+) such that

fi(x, u, v, w) ≥ δi,ρ(x), for every (x, u, v, w) ∈ Πρ,
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where
Πρ := Ω̄× [0, ρ]n × [−ρ, ρ]m×n × [wi,ρ, wi,ρ].

(c) For every i = 1, 2, . . . , n, ζi ∈ C2−δi+µ̂(∂Ω), ζi ≥ 0, hi : Pρ → R is continuous and
bounded. Let ηi,ρ ∈ [0,+∞) be such that

hi[u] ≥ ηi,ρ, for every u ∈ Pρ.

(d) There exist i0 ∈ {1, . . . , n} and φi0,ρ ∈ (0,+∞) such that

‖Ki0(δi0,ρ) + ηi0,ργi0‖∞ ≥ φi0,ρ. (8)

Then the system (1) has a positive eigenvalue with an associated eigenfunction u ∈ ∂Pρ.

Proof. Due to the assumptions above, the operator T + Γ maps Pρ into P and is compact
(by construction, the map F is continuous and bounded and Γ is a finite rank operator).
Take u ∈ ∂Pρ, then for every x ∈ Ω̄ we have

Ki0 Fi0 u(x) + γi0(x)hi0 [u] ≥ Ki0(δi0,ρ)(x) + ηi0,ργi0(x). (9)

Taking the supremum for x ∈ Ω̄ in (9) we obtain

‖Tu + Γu‖1 ≥ ‖Ti0 u + Γi0 u‖∞ ≥ ‖Ki0(δi0,ρ) + ηi0,ργi0‖∞ ≥ φi0,ρ. (10)

Note that the RHS of (10) does not depend on the particular u chosen. Therefore we have

inf
u∈∂Pρ

‖Tu + Γu‖1 ≥ φi0,ρ > 0,

and the result follows by Theorem 2.

Remark 1. Note that we have chosen to use inequalities in (7)–(8); this is due that, in applications,
it is often easier and somewhat more efficient to use estimates on the nonlienarieties involved.
Furthermore note that, in our reasoning, what really matters is that some positivity occurs in one
component of the system, either in the nonlinearity fi or in the functional hi.

The following Corollary provides a sufficient condition for the existence of an un-
bounded set of eigenfunctions for the system (1).

Corollary 1. In addition to the hypotheses of Theorem 3, assume that ρ can be chosen arbitrarily
in (0,+∞). Then for every ρ there exists a non-negative eigenfunction uρ ∈ ∂Pρ of the system (1)
to which corresponds a λρ ∈ (0,+∞).

Remark 2. To illustrate the applicability of the above results to the context of nonlocal elliptic
equations, we focus on the case of Kirchhoff-type systems with Dirichlet BCs of the type{

−w̃i[u]∆ui = λ f̃i(x, u, Du), in Ω, i = 1, 2, . . . , n,
ui = λζi(x)hi[u], on ∂Ω, i = 1, 2, . . . , n.

(11)
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Note that system (11) can fit within the framework of (1), by considering

fi(x, u, Du, wi[u]) = f̃i(x, u, Du)wi[u], where wi[u] = (w̃i[u])−1.

We also observe that the setting (11) permits to address several classes of problems in a unified way
(rather than a case-to-case study), this can be done by considering different functionals w̃i and hi.
We highlight the following cases (the list is not exhaustive):

(1) The choice of n = 1, w̃1[u] ≡ 1, f̃1(x, u, Du) = eu1 and h1[u] ≡ 0 yields the classical
Gelfand problem (see for example [29] and references therein), while fixing w̃1[u] =

∫
Ω eu1 dx,

f̃1(x, u, Du) = eu1 and h1[u] ≡ 0 yields the celebrated mean field problem (see for example
[30] and references therein).

(2) The choice of n = 2, w̃i[u] = Mi
(∫

Ω |∇ui|2 dx
)
, hi[u] ≡ 0 and f̃i not depending on Du

leads to the class of systems studied in [14].
(3) The case of f̃i not depending on Du, with w̃i and hi acting on the cone of non-negative

functions C(Ω̄,Rn
+), has been studied by the author in [23].

The following example provides a system of the type (11) that cannot be handled by the theory
of [14–19], due to the presence of gradient terms in the nonlinearities, and by the results in [20], due
to the presence of the nonlocal BCs. It also illustrates, in contrast to previous results on Kirchhoff-
type systems known to the author, that it is possible to consider some interaction between the
gradient terms of the components of the system occurring within the nonlocal part of the differential
equation or within the nonlocal BCs.

Example 1. Take Ω = {x ∈ R2 : ‖x‖e < 1} and consider the system
−
(
eu2(0) +

∫
Ω |∇u1|2 dx

)
∆u1 = λeu1(1 + |∇u2|2), in Ω,

−e(
∫

Ω |∇u1|2+|∇u2|2 dx)∆u2 = λu2
2|∇u1|2, in Ω,

u1 = λh1[(u1, u2)], u2 = λh2[(u1, u2)], on ∂Ω,

(12)

where

h1[(u1, u2)] =
(∂u1

∂x2
(0)
)2

+
(∂u2

∂x1
(0)
)2 and h2[(u1, u2)] = (u1(0))2 +

∫
Ω
|∇u2|2 dx.

Denote by 1̂ the function equal to 1 on Ω̄. Note that for i = 1, 2, Ki(1̂) = 1
4 (1− x2

1 − x2
2), where

x = (x1, x2), and ‖Ki(1̂)‖∞ = 1
4 . Furthermore note that we may take γ1 = γ2 = 1̂.

We fix ρ ∈ (0,+∞) and consider

f1(u1, u2,∇u1,∇u2, w1[(u1, u2)]) : = eu1(1 + |∇u2|2)w1[(u1, u2)],

f2(u1, u2,∇u1,∇u2, w2[(u1, u2)]) : = u2
2|∇u1|2w2[(u1, u2)],

where

w1[(u1, u2)] : =
(

eu2(0) +
∫

Ω
|∇u1|2 dx

)−1
,

w2[(u1, u2)] : = e−(
∫

Ω |∇u1|2+|∇u2|2 dx).

In this case we may take

[w1,ρ, w1,ρ] = [(2πρ2 + eρ)−1, 1], [w2,ρ, w2,ρ] = [e−4πρ2
, 1],
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δ1,ρ(x) ≡ (2πρ2 + eρ)−1, δ2,ρ(x) ≡ 0, η1,ρ = η2,ρ = 0,

and therefore we get

‖K1(δ1,ρ) + η1,ργ1‖∞ = (8πρ2 + 4eρ)−1 = φ1,ρ > 0.

Thus we can apply Corollary 1, obtaining uncountably many pairs (uρ, λρ) of non-negative
eigenfunctions and positive eigenvalues for the system (12).

3. Conclusions

We have illustrated how a classical Birkhoff-Kellogg type theorem can be applied
to provide new results on the existence of positive eigenvalues with corresponding non-
negative eigenfunctions for systems of elliptic functional differential equations subject
to functional BCs. As a special case we investigated the case of Kirchhoff-type systems,
providing a concrete example in which all the constants that occur in the theory can
be computed.
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