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Abstract: A novel algorithm called the Proper Generalized Decomposition (PGD) is widely used
by the engineering community to compute the solution of high dimensional problems. However,
it is well-known that the bottleneck of its practical implementation focuses on the computation of
the so-called best rank-one approximation. Motivated by this fact, we are going to discuss some of
the geometrical aspects of the best rank-one approximation procedure. More precisely, our main
result is to construct explicitly a vector field over a low-dimensional vector space and to prove
that we can identify its stationary points with the critical points of the best rank-one optimization
problem. To obtain this result, we endow the set of tensors with fixed rank-one with an explicit
geometric structure.

Keywords: proper generalised decomposition; alternating least squares; greedy rank one update
algorithm; tensor numerical methods

MSC: 15A69; 15A23; 57R25; 65N30

1. Introduction

Many problems in science and engineering are hard to compute due their numerical
complexity. Moreover, in the analysis of complex systems under a real time constraint, the
evaluation of all possible scenarios appears as a necessity [1]. Despite the improvements
in techniques used in high dimensional problems, some challenging questions remain
unresolved due to the efficiency of our computers. However, a novel technique called
Proper Generalized Decomposition (PGD) [2,3] has been developed to provide an answer
of these difficult tasks. It was initially proposed to compute, in a separated representation
framework, the variational solution of partial differential equations (PDE) defined over a
tensor product space [4]. It is possible to distinguish two different benefits. The first one is
the possibility of managing high dimensional problems, and the second is the possibility
to include the model’s parameters as extra-coordinates. This last fact gives a powerful
strategy to deal with classical problems because the PGD framework facilitates an efficient
design and a real-time decision-making [5,6].

This novel technique allows for computing the whole set of solutions of a parametrized
problem. The strategy is to include in an equivalent non-parametrized problem all possible
parameter values as extra-coordinates. The name of this particular PGD based approach
is Progressive Variational Vademecum [1], and it can be implemented offline. As a con-
sequence, the PGD based approach opens the possibility of solving problems in industry
with a different strategy not envisioned until now.
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The mathematical analysis of the PGD was given by Falcó and Nouy, Ref. [4] in a
Hilbert space framework and in [7] for a more general setting.

The Greedy Rank One Algorithm (GROA) [8] used to solve high-dimensional linear
systems (with a full rank matrix) is the procedure of choice in the engineering community
to implement the PGD. It is an iterative method made up of two steps that we can cyclically
repeat until convergence. The first one consists of computing the minimal residual of the
linear system over the set of tensors with bounded rank-one. In the second step, we use
this optimal rank-one solution to update the residual. In the following, we return to the
first step. Ammar et al. [8] propose an Alternating Least Squares (ALS) Algorithm for the
practical implementation of the first step of the GROA. In the aforementioned paper, the
authors justify the choice of the ALS showing that its convergence to a critical point of
the optimization problem (not necessarily an optimal one) is assured under very weak
conditions. In addition, the convergence has been studied by El Hamidi, Osman and
Jazar [9] in the framework of Sobolev tensor spaces.

In this work, we want to study the optimization problem of the first step the GROA.
To this end, even though our problem is not convex, we will take into account the rela-
tionship between the underlying convex optimization problem and the behaviour of its
associated gradient flow. It is well-known that the vector field constructed by using a
convex functional (for example related with a convex minimization problem defined over a
finite dimensional vector space), has a gradient flow that provides a dynamical system with
a unique stationary point. Moreover, it can be shown that it is a sink and its stable manifold
coincides with the whole domain of the convex functional. This fact motivates the classical
paradigm about the convergence of gradient-based numerical optimization algorithms.

In this work, we want to adapt the above paradigm in the framework of the GROA [8].
The main goal is to find a vector field in a low-dimensional vector space related to the
gradient flow of a convex functional defined over the set of tensors of fixed rank one.
The idea is to use this vector field to characterize the behaviour of the solutions of the
non-convex optimization problem associated with the first step of GROA. To achieve this,
we will prove that the set of critical points of the optimization problem over the set of
tensors with fixed rank-one can be identified with the set of stationary points of that vector
field. In order to construct it, we will proceed as follows. First, we will endow the set
tensors of fixed rank-one with an explicit structure of smooth manifold. Second, by the
help of this geometric structure, we will explicitly construct a vector field over a low
dimensional vector space related with the first step of GROA. Finally, we will show that
the set of stationary points of this vector field coincides with the set of critical points of
the optimization problem associated with the PGD algorithm. In consequence, this vector
field allows us to explain the dynamical behaviour around each of its stationary points.
Moreover, we can get explicit information, in a neighbourhood of each of these stationary
points, about the structure of its stable and unstable manifolds. In our opinion, a more
precise knowledge of these invariant sets can help us develop better and more efficient
PGD approaches.

The paper is organised as follows. Section 2 provides some preliminary definitions
and results used along this paper. Section 3 shows a geometric approach to the PGD.
In Section 4, the characterization of the smooth manifold of the set of tensors of fixed
rank-one is given. After that, Section 5 shows the first order optimality conditions for the
PGD which is the main result of this paper. Finally, Section 6 provides some conclusions of
the work.

2. Preliminary Definitions and Results

First of all, we introduce some notation used along this paper. We denote by RN×M

the set of N ×M-matrices and by AT the transpose of a given matrix A. As usual, we use

〈x, y〉 = xT y = yT x
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to denote the Euclidean inner product in RN , and its corresponding 2-norm, by ‖x‖2 =
〈x, x〉1/2. Let IN be the N × N-identity matrix and when the dimension is clear from the
context, we simply denote it by I. Given a sequence {uj}∞

j=0 ⊂ RN , we say that a vector

u ∈ RN can be written as

u =
∞

∑
j=0

uj

if and only if

lim
n→∞

n

∑
j=0

uj = u

in the ‖ · ‖2-topology. Now, we recall the definition and some properties of the Kronecker
product. The Kronecker product of A ∈ RN′1×N1 and B ∈ RN′2×N2 , written A⊗ B, is the
tensor algebraic operation defined as

A⊗ B =


A1,1B A1,2B · · · A1,N′1

B
A2,1B A2,2B · · · A2,N′1

B
...

...
. . .

...
AN1,1B AN1,2B · · · AN1,N′1

B

 ∈ RN′1 N′2×N1 N2 .

To conclude, we list some of the well-known properties of the Kronecker prod-
uct (see, for example, [10] or [11]).

1. A⊗ (B⊗ C) = (A⊗ B)⊗ C.
2. (A + B)⊗ (C + D) = (A⊗ C) + (B⊗ C) + (A⊗ D) + (B⊗ D).
3. AB⊗ CD = (A⊗ C)(B⊗ D).
4. (A⊗ B)−1 = A−1 ⊗ B−1.
5. (A⊗ B)T = AT ⊗ BT .
6. If A and B are banded, then A⊗ B is banded.
7. If A and B are symmetric, then A⊗ B is symmetric.
8. If A and B are definite positive, then A⊗ B is definite positive.

The concept of separated representation was introduced by Beylkin and Mohlenkamp
in [12], and it is related to the problem of constructing the approximate solutions of
some classes of problems in high-dimensional spaces by means of a separable function.
In particular, for a given map

u : [0, 1]d ⊂ Rd −→ R,

we say that it has a separable representation if

u(x1, . . . , xd) =
∞

∑
j=1

u(j)
1 (x1) · · · u

(j)
d (xd) (1)

Now, consider a mesh of [0, 1] in the xk-variable given by Nk-mesh points, 1 ≤ k ≤ d,
then we can write a discrete version of (1) by

u(xi1 , . . . , xid) =
∞

∑
j=1

u(j)
1 (xi1) · · · u

(j)
d (xid), (2)

where 1 ≤ ik ≤ Nk for 1 ≤ k ≤ d. Observe that, for each 1 ≤ k ≤ d, if xj
k ∈ RNk denotes the

vector with components u(j)
k (xik ) for 1 ≤ ik ≤ Nk, then (2) is equivalent to

u =
∞

∑
j=1

xj
1 ⊗ · · · ⊗ xj

d. (3)
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We point out that (3) is a useful expression to implement numerical algorithms using
the MATLAB and OCTAVE function kron.

Suppose that, for given a linear Partial Differential Equation, and after a discretization
by means of Finite Elements, we need to solve the linear system:

Au = f, (4)

where A is a (N1 · · ·Nd)× (N1 · · ·Nd)-dimensional invertible matrix, for some N1, . . . , Nd ∈
N, that is, A ∈ GL(N1 · · ·Nd). Then, from all said above, a low rank approximation

A−1f ≈ un =
n

∑
j=1

xj
1 ⊗ · · · ⊗ xj

d

with sufficient approximation exists, for some n ≥ 1 and where xj
i ∈ RNi for i =

1, 2, . . . , d and j = 1, 2, . . . , n. Moreover, we would show that

lim
n→∞

∥∥∥A−1f− un

∥∥∥
2
= 0,

that is,

A−1f =
∞

∑
j=1

xj
1 ⊗ · · · ⊗ xj

d. (5)

Thus, in a first approach to solve it, we would like to determine vectors xj
1, . . . , xj

d for
j = 1, 2, . . . , n that minimizes ∥∥∥∥∥f− A

(
n

∑
j=1

xj
1 ⊗ · · · ⊗ xj

d

)∥∥∥∥∥
2

,

or, in short
argminrank⊗u≤n‖f− Au‖2, (6)

by using the notation introduced in [13].
The Proper Generalised Decomposition (PGD in short) appears when we consider

solving the linear Equation (4) as an optimization problem as follows. For each fixed
A ∈ GL(N1N2 · · ·Nd) and f ∈ RN1 N2···Nd , we define a map

JA,f : RN1···Nd → R, JA,f(u) =
1
2
‖f− Au‖2

2,

hence
argminu∈RN1 N2 ···Nd JA,f(u) = {A−1f}

holds. The goal is to use (5) to approximate the solution of (4). To this end, for each n ∈ N,
we define the set

Sn = {x ∈ RN1···Nd : rank⊗x ≤ n},

introduced in [13], in the following way. Given x ∈ RN1···Nd , we say that x ∈ S1 =
S1(N1, N2, . . . , Nd) if x = x1 ⊗ x2 ⊗ · · · ⊗ xd, where xi ∈ RNi , for i = 1, . . . , d. For n ≥ 2, we
define inductively Sn = Sn(N1, N2, . . . , Nd) = Sn−1 + S1, that is,

Sn =

{
x : x =

k

∑
i=1

x(i), x(i) ∈ S1 for 1 ≤ i ≤ k ≤ n

}
.

Note that Sn ⊂ Sn+1 for all n ≥ 1.
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Unfortunately, from Proposition 4.1 (a) of [13], we have that the set Sn is not necessarily
(or even usually) closed for each n ≥ 2. However, from Proposition 4.2 of [13], it follows that
S1 is a closed set in any norm-topology. This fact implies (see Lemma 1 in [8]), that given
A ∈ GL(N1N2 · · ·Nd), then, for every f ∈ RN1···Nd , we have that the set

C(A, f) := argminx∈S1
JA,f(x) 6= ∅. (7)

This allows for considering the following iterative scheme. Let u0 = y0 = 0, and, for
each n ≥ 1, take

rn−1 = f− Aun−1, (8)

un = un−1 + yn where yn ∈ C(A, rn−1). (9)

Note that, given A ∈ GL(N1N2 · · ·Nd) and f ∈ RN1···Nd , we can construct for each n,
by using (8) and (9), a vector

un =
n

∑
j=1

yn ∈ Sn \ Sn−1.

Here, we assume that yj 6= 0 for 1 ≤ j ≤ n, that is, rank⊗ un = n. Since un ≈ A−1f,
we define the rank⊗ for A−1f obtained by the Greedy Rank-One Update Algorithms (8)
and (9) as

rankG
⊗ (A−1f) =

{
∞ if {j ≥ 1 : yj = 0} = ∅,

min{j ≥ 1 : yj = 0} − 1 otherwise.

The following theorem (see Theorem 1 in [8]) gives the convergence of the Greedy
Rank-One Update Approximation for solving linear systems with full rank matrix.

Theorem 1. Let f ∈ RN1 N2···Nd and A ∈ GL(N1N2 · · ·Nd). Then, by using the iterative scheme

(8) and (9), we obtain that the sequence {‖rn‖2}
rankG

⊗ (A−1f)
n=0 , is strictly decreasing and

A−1f = lim
n→∞

un =
rankG

⊗ (A−1f)

∑
j=0

yj. (10)

Moreover, the rate of convergence is given by

‖rn‖2

‖r0‖2
=

n

∏
j=1

sin θj (11)

for 1 ≤ n ≤ rankG
⊗ (A−1f) where

θj = arccos

( 〈
rj−1, Ayj

〉
‖rj−1‖2‖Ayj‖2

)
∈ (0, π/2) (12)

for 1 ≤ j ≤ n.

From (10), we obtain that, if rankG
⊗ (A−1f) < ∞, then ‖rn‖2 = 0 for all n > rankG

⊗ (A−1f).
Thus, the above theorem allows for us to construct a procedure, which we give in the
pseudo-code form in Algorithm 1, under the assumption that we have a numerical method
in order to find a y solving (7) (see the step 5 in Algorithm 1) and that we introduce below.
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Algorithm 1 Greedy Rank-One Update

1: procedure GROU(f, A, ε, tol, rank_max)
2: r0 = f
3: u = 0
4: for i = 0, 1, 2, . . . , rank_max do
5: y = procedure (minx∈S1 JA,ri (x))
6: ri+1 = ri − Ay
7: u← u + y
8: if ‖ri+1‖2 < ε or |‖ri+1‖2 − ‖ri‖2| < tol then goto 13
9: end if

10: end for
11: return u and ‖rrank_max‖2.
12: break
13: return u and ‖ri+1‖2
14: end procedure

3. A Geometric Approach to the PGD

In this section, to study the procedure given in the line 5 of the Algorithm 1, we intro-
duce a smooth manifold. To this end, introduce first the set of tensors of fixed rank-one in
the tensor space RN1···Nd =

⊗d
j=1 R

Nj defined as

MN1···Nd =

u ∈
d⊗

j=1

RNj : u = λ
d⊗

j=1

uj, λ ∈ R∗, uj ∈ RNj \ {0}, 1 ≤ j ≤ d


where R∗ = R \ {0}. Observe that the set

S1 = {0} ∪MN1···Nd .

Then, our first result is the following theorem of the alternative.

Theorem 2. Let A ∈ GL(N1N2 · · ·Nd) and f ∈ RN1 N2···Nd . Either C(A, f) ⊂MN1···Nd , or 0 ∈
C(A, f) but not both.

Proof. Assume that 0 ∈ C(A, f) and that there exists u ∈ C(A, f) ∩MN1···Nd . Since we
can write

JA,f(u) =
1
2
‖f‖2

2 − fT Au +
1
2
‖Au‖2

2

and JA,f(0) = JA,f(u) = 1
2‖f‖2

2 ≤ JA,f(u′) holds for all u′ ∈ MN1···Nd , we have

fT Au =
1
2
‖Au‖2

2 > 0.

Now, consider the map f : R −→ R defined as

f (λ) := JA,f(λu) =
1
2
‖f‖2

2 − λ fT Au +
λ2

2
‖Au‖2

2 =
1
2
‖f‖2

2 − fT Au λ + fT Au λ2.

Then, f (0) = JA,f(0) = JA,f(u) = f (1) ≤ f (λ) for all λ ∈ R holds. Observe that

f ′(λ) = −fT Au + 2 fT Au λ

and hence the map f has a global minimum for λ = 1
2 , a contradiction.
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The main consequence of this result is the following. It says that the output of the
procedure given in step 5 in Algorithm 1 always remains in the setMN1···Nd before it gives
us the final output.

Corollary 1. Let f ∈ RN1 N2···Nd and A ∈ GL(N1N2 · · ·Nd) such that A−1f /∈ S1. Then,
rankG

⊗ (A−1) = i − 1 for some i > 1 if and only if C(A, ri) = {0}, and hence C(A, rj) ⊂
MN1···Nd for all j < i− 1.

As a consequence of the above corollary, the situation of interest is when given
A ∈ GL(N1N2 · · ·Nd) and f ∈ RN1 N2···Nd , we have that C(A, f) ⊂MN1···Nd . Thus, in order
to study the vectors in C(A, f), we need to characterize the structure of the critical points
of the map u 7→ ‖f− Au‖ restricted to the setMN1···Nd . To see this in the next section, we
provide toMN1···Nd of a structure of smooth manifold.

4. The Set of Tensors of Fixed Rank-One as a Smooth Manifold

Along this paper, we will consider a manifold as a pair (M,A), where M is a subset of
some finite-dimensional vector space V and A is an atlas representing the local coordinate
system of M. We recall the definition of an atlas associated with a set M.

Definition 1. Let M be a set. An atlas of class Cp (p ≥ 0) or analytic on M is a family of charts
with some indexing set A, namely {(Uα, ϕα) : α ∈ A}, having the following properties (see [14]):

AT1 {Uα}α∈A is a covering of M, that is, Uα ⊂M for all α ∈ A and ∪α∈AUα = M.
AT2 For each α ∈ A, (Uα, ϕα) stands for a bijection ϕα : Uα →Wα of Uα onto an open set Wα of

a finite dimensional normed space (Xα, ‖ · ‖α), and for any α and β the set ϕα(Uα ∩Uβ) is
open in Xα.

AT3 Finally, if we let Uα ∩Uβ = Uα,β and ϕα(Uα,β) = Uα,β, the transition mapping ϕβ ◦ ϕ−1
α :

Uα,β → Uβ,α is a diffeomorphism of class C p (p ≥ 0) or analytic.

Observe that the condition of an open covering is not used, see [14]. Moreover, in AT2,
we do not require that the normed spaces to be the same for all indices α, or even to be
isomorphic. If Xα is linearly isomorphic to some finite dimensional normed space X for all
α, we have the following definition.

Definition 2. Let M be a set and X be a finite dimensional normed space. We say that M is a
Cp (respectively, analytic) manifold modelled on X if there exists an atlas of class Cp (respectively,
analytic) over M with Xα linearly isomorphic to X for all α ∈ A.

Since different atlases can give the same manifold, we say that two atlases are
compatible if each chart of one atlas is compatible with the charts of the other atlas in
the sense of AT3. One verifies that the relation of compatibility between atlases is an
equivalence relation.

Definition 3. An equivalence class of atlases of class Cp on M, also denoted by A, is said to define
a structure of a Cp-manifold on M, and hence we say that (M,A) is a finite dimensional manifold.
In a similar way, if an equivalence class of atlases is given by analytic maps, then we say that
(M,A) is an analytic finite dimensional manifold.

For each u = λ
⊗d

j=1 uj ∈ MN1···Nd , we construct a local chart as follows. Let be

span{uj}⊥ = {vj ∈ RNj : vT
j · uj = 0},

the orthogonal complement of the linear space span{uj} for 1 ≤ j ≤ d. Let us consider
the set

Uu := span{u1}⊥ × · · · × span{ud}⊥ ×R∗,
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which is an open and dense set of the finite-dimensional vector space

Xu := span{u1}⊥ × · · · × span{ud}⊥ ×R.

Observe that the vector space Xu is linearly isomorphic to the vector space RN1−1 ×
· · · ×RNd−1 ×R for all u ∈ MN1···Nd .

Now, we introduce the set

U(u) :=

u′ ∈ MN1···Nd : u′ = β
d⊗

j=1

(uj + wj),
wj ∈ span{uj}⊥, 1 ≤ j ≤ d
β ∈ R∗


inMN1···Nd for which we can construct a natural bijection:

ϕu : U(u) −→ Uu, u′ 7→ (w1, . . . , wd, β)⇔ u′ = β
d⊗

j=1

(uj + wj).

Then, we can state the following result.

Theorem 3. The set AN1···Nd = {(U(u), ϕu) : u ∈ MN1···Nd} is an atlas for MN1···Nd and
hence (MN1···Nd ,AN1···Nd) is a C∞-manifold modelled on

RN1−1 × · · · ×RNd−1 ×R ∼= Rlog2(2
N1 ···Nd )−d+1.

Proof. Clearly, AT1 holds. To prove AT2 and AT3, let us consider u, u′ ∈ MN1···Nd be such
that U(u) ∩ U(u′) 6= ∅. Without loss of generality we may assume that u = λ

⊗d
j=1 ui and

u′ = λ′
⊗d

j=1 u′i, where ‖ui‖i,2 = ‖u′i‖i,2 = 1 for 1 ≤ i ≤ d. Then, for each z ∈ U(u)∩U(u′),
there exists a unique (w1, . . . , wd, β) ∈ Uu and a unique (w′1, . . . , w′d, β′) ∈ Uu′ such that

z = β
d⊗

j=1

(uj + wj) = β′
d⊗

j=1

(u′j + w′j).

Since
span{uj + wj} = span{u′j + w′j}

holds, there exists a unique λj ∈ R∗ such that

uj + wj = λj(u′j + w′j) for 1 ≤ j ≤ d. (13)

Thus, multiplying (13) on the left side by uT
j and, by using that uT

j uj = 1 and uT
j wj = 0,

we obtain
λj =

1
uT

j u′j + uT
j w′j

for 1 ≤ j ≤ d.

Hence,

wj =
u′j + w′j

uT
j u′j + uT

j w′j
− uj

defines a C∞-function from the open set Vj = {wj ∈ span{u′j}⊥ : uT
j u′j + uT

j w′j 6= 0} to

span{uj}⊥ for each 1 ≤ j ≤ d. Moreover,

1 + ‖wj‖2
j,2 =

∥∥∥∥∥ u′j + w′j
uT

j u′j + uT
j w′j

∥∥∥∥∥
2

j,2
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holds for 1 ≤ j ≤ d. Observe that z can be written as

z = β
d⊗

j=1

(uj + wj) =

(
β

d

∏
j=1

√
1 + ‖wj‖2

j,2

)
d⊗

j=1

zj,

where
zj :=

1√
1 + ‖wj‖2

j,2

uj +
1√

1 + ‖wj‖2
j,2

wj

has norm one for 1 ≤ j ≤ d. In addition,

z =

(
β′

d

∏
j=1

√
1 + ‖w′j‖2

j,2

)
d⊗

j=1

z′j,

where
z′j :=

1√
1 + ‖w′j‖2

j,2

u′j +
1√

1 + ‖w′j‖2
j,2

w′j

has norm one for 1 ≤ j ≤ d. Thus,

β = β′
∏d

j=1

√
1 + ‖w′j‖2

j,2

∏d
j=1

√
1 + ‖wj‖2

j,2

= β′
∏d

j=1

√
1 + ‖w′j‖2

j,2

∏d
j=1

∥∥∥∥ u′j+w′j
uT

j u′j+uT
j w′j

∥∥∥∥
j,2

clearly defines a C∞-function from the open set V1 × · · · × Vd ×R∗ ⊂ Uu′ to Uu. Finally,
we conclude that

ϕu′(U(u) ∩ U(u′)) = V1 × · · · × Vd ×R∗ ⊂ Uu′ ,

the map
ϕu ◦ ϕ−1

u′ : ϕu′(U(u) ∩ U(u′)) −→ ϕu(U(u) ∩ U(u′))

is given by

(w′1, . . . , w′d, β′) 7→

 u′1 + w′1
uT

1 u′1 + uT
1 w′1

− u1, . . . ,
u′d + w′d

uT
d u′d + uT

d w′d
− ud, β′

∏d
j=1

√
1 + ‖w′j‖

2
j,2

∏d
j=1

∥∥∥∥ u′j+w′j
uT

j u′j+uT
j w′j

∥∥∥∥
j,2

,


and it is C∞. This follows AT2, AT3 and concludes the proof of the theorem.

The construction ofMN1···Nd as an algebraic variety is well-known (see, for exam-
ple, [15]). More recently, in [16], a structure of smooth manifold is given, in the framework
of Banach spaces, for the set of tensors of fixed rank-one. Following [16], it can be shown
that the manifoldMN1···Nd is also a principal bundle as follows. Consider the Grassmann
manifold of one-dimensional, subspaces of RNj , denoted by G1(RNj), for 1 ≤ j ≤ d and
define the surjective map

π :MN1···Nd −→ G1(RN1)× · · · ×G1(RNd), u = λ
d⊗

j=1

uj 7→ (span {uj})d
j=1

Then, for each u = λ
⊗d

j=1 uj ∈ MN1···Nd , it holds that

π−1(π(u)) =
d⊗

j=1

span {uj} \ {0} = span {u} \ {0} ∼= R∗.
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Consequently,MN1···Nd is also a principal bundle with base space G1(RN1)× · · · ×
G1(RNd) and fibre R∗. It allows for decomposing the tangent space at u ∈ MN1···Nd ,
denoted TuMN1···Nd into the vertical and horizontal spaces:

TuMN1···Nd = Xu = HuMN1···Nd + VuMN1···Nd ,

where
HuMN1···Nd . := span{u1}⊥ × · · · × span{ud}⊥

and VuMN1···Nd := R.

5. On the First Order Optimality Conditions for the PGD

The goal of this section is given A ∈ GL(N1N2 · · ·Nd) and f ∈ RN1 N2···Nd characterize
the points in the manifold MN1···Nd satisfying the first order optimality conditions of
the problem

min
z∈MN1 ···Nd

JA,f(z). (14)

Recall that the map JA,f is defined in the whole ambient space RN1 ⊗ · · · ⊗RNd . We will
denote its derivative at u ∈ RN1 ⊗ · · · ⊗RNd by J′A,f(u) = (f− Au)T , which is a bounded
linear map from RN1 ⊗ · · · ⊗RNd to R. From Theorem 3, we known thatMN1···Nd is a C∞-
manifold and hence it allows us to write the constrained map JA,f|MN1 ···Nd

as follows. Since

JA,f : RN1 ⊗ · · · ⊗RNd −→ R,

andMN1···Nd ⊂ RN1 ⊗ · · · ⊗RNd , we can take into account the standard inclusion map

i :MN1···Nd −→ RN1 ⊗ · · · ⊗RNd , z 7→ z

in order to write JA,f|MN1 ···Nd
= (JA,f ◦ i).

Definition 4. We say that u ∈ MN1···Nd is a critical point for JA,f inMN1···Nd if

Tu JA,f(v) := [D(JA,f ◦ ϕ−1
u )(ϕu(u))] (v) = 0

holds for all v ∈ TuMN1···Nd . Clearly, if u is an extremal point for JA,f inMN1···Nd , then it is also
a critical point for JA,f inMN1···Nd .

Observe that we can write

JA,f ◦ ϕ−1
u = JA,f ◦ (i ◦ ϕ−1

u ),

where on the left side of the equality, we consider JA,f overMN1···Nd , whereas, in the right
one, JA,f is considered defined over the whole space. Thus, by using the chain rule, we
have

D(JA,f ◦ ϕ−1
u )(ϕu(u)) = D(JA,f ◦ (i ◦ ϕ−1

u ))(ϕu(u))

= J′A,f(u) ◦ D(i ◦ ϕ−1
u )(ϕu(u)),

that is,

Tu JA,f = J′A,f(u) ◦ Tui = (f− Au)T Tui. (15)
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In order to compute (15), we consider first the standard inclusion map i that in local
coordinates in a neighbourhood of u = λ

⊗d
j=1 uj ∈ MN1···Nd looks like

(i ◦ ϕ−1
u )(w1, . . . , wd, β) = β

w⊗
j=1

(uj + wj).

Here, (i ◦ ϕ−1
u ) : Uu −→ RN1 ⊗ · · · ⊗RNd . Hence, its derivative as a morphism (a map

between manifolds)

Tui = D(i ◦ ϕ−1
u )(0, . . . , 0, λ) : TuMN1···Nd −→ RN1 ⊗ · · · ⊗RNd ,

is given by

Tui(β, w1, . . . , wd) =
d

∑
j=1

wj ⊗ u[j] +
β

λ
u,

where
wj ⊗ u[j] := λ u1 ⊗ · · · ⊗ uj−1 ⊗wj ⊗ uj+1 ⊗ · · · ⊗ ud.

for 1 ≤ j ≤ d. From (15), we have that u∗ = λ∗
⊗d

j=1 u∗i is a critical point for JA,f in
MN1···Nd if and only if

(f− Au∗)T Tu∗ i(w1, . . . , wd, β) = 0, holds for all (w1, . . . , wd, β) ∈ Tu∗MN1···Nd , (16)

that is, it is equivalent to state that

(f− A u∗)T

(
d

∑
j=1

wj ⊗ u∗[j] +
β

λ
u∗
)

= 0, holds for all (w1, . . . , wd, β) ∈ Tu∗MN1···Nd . (17)

Now, we will prove the following result that characterizes the set of critical points for
JA,f inMN1···Nd as the stationary points of a vector field in RN1 × · · · ×RNd , and it is the
main result of this paper.

Theorem 4. Given A ∈ GL(N1N2 · · ·Nd) and f ∈ RN1 N2···Nd . Then, u∗ =
⊗d

j=1 u∗i ∈
MN1···Nd is a critical point for JA,f in MN1···Nd if and only if XA,f(u∗1 , . . . , u∗d) = 0, where
XA,f is a vector field inMN1···Nd given by

XA,f(u1, . . . , ud) = (y1, . . . , yd).

Here,

yj := (u1 ⊗ · · · ⊗ uj−1 ⊗ id
RNj ⊗ uj+1 ⊗ · · · ⊗ ud)

T(f− A (u1 ⊗ · · · ⊗ ud))

for 1 ≤ j ≤ d.

Proof. Since u∗ =
⊗d

j=1 u∗i ∈ MN1···Nd is a critical point for JA,f inMN1···Nd if and only if
(17) holds for (w1, . . . , wd, β) ∈ Tu∗MN1···Nd . Then, (17) is equivalent to prove that

(f− A u∗)Tu∗ = 0, (18)

and

(f− A u∗)T(wj ⊗ u∗[j]) = 0 holds for all wj ∈ span {uj}⊥ and 1 ≤ j ≤ d. (19)
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Since wj ⊗ u∗[j] = u∗ when wj = u∗j for 1 ≤ j ≤ d, we conclude that u∗ =
⊗d

j=1 u∗i ∈
MN1···Nd is a critical point for JA,f inMN1···Nd if and only if

(f− A u∗)T(wj ⊗ u∗[j]) = 0 holds for all wj ∈ RNj and 1 ≤ j ≤ d. (20)

Writing the equality in (20) as

(f− A u∗1 ⊗ · · · ⊗ u∗d)
T(u∗1 ⊗ · · · ⊗ u∗j−1 ⊗ id

RNj ⊗ u∗j+1 ⊗ · · · ⊗ u∗d)wj = 0,

we conclude that it is equivalent to state that

(f− A u∗1 ⊗ · · · ⊗ u∗d)
T(u∗1 ⊗ · · · ⊗ u∗j−1 ⊗ id

RNj ⊗ u∗j+1 ⊗ · · · ⊗ u∗d) = 0T

for 1 ≤ j ≤ d. This concludes the proof of theorem

Remark 1. From (17), we can deduce that u∗ =
⊗d

j=1 u∗i is a critical point for JA,f inMN1···Nd
if and only if

(f− A u∗)T

(
d

∑
j=1

wj ⊗ u∗[j]

)
= 0 holds for all (w1, . . . , wd) ∈ RN1 × · · · ×RNd . (21)

Statement (21) was first introduced in [2,3] as a step to enrich the approximation basis in the PGD
algorithm. From the proof of Theorem 4, we have that (21) is also equivalent to (18) and (19).

There are several strategies in the literature that can be used to solve XA,f(u) = 0.
The first one, closely related to the one used in [2,3], is to find a fixed point of the map

FA,f(u1, . . . , ud) := XA,f(u1, . . . , ud)− (u1, . . . , ud)

One of the most popular numerical strategies to compute an approximated value of u∗

such that XA,f(u∗) = 0 is founded under the following argument. Since the y1 is equal to

(idRN1 ⊗ u2 ⊗ · · · ⊗ ud)
T(f− A u1 ⊗ · · · ⊗ ud) =

(idRN1 ⊗ u2 ⊗ · · · ⊗ ud)
Tf− (idRN1 ⊗ u2 ⊗ · · · ⊗ ud)

T A (u1 ⊗ · · · ⊗ ud) =

(idRN1 ⊗ u2 ⊗ · · · ⊗ ud)
Tf− (idRN1 ⊗ u2 ⊗ · · · ⊗ ud)

T A (idRN1 ⊗ u2 · · · ⊗ ud)u1,

we can choose randomly some vectors uj ∈ RNj for 2 ≤ j ≤ d and then try to solve the
linear system

(idRN1 ⊗ u2 ⊗ · · · ⊗ ud)
T A (idRN1 ⊗ u2 · · · ⊗ ud)u1 = (idRN1 ⊗ u2 ⊗ · · · ⊗ ud)

Tf.

By using Least Squares, we can compute a u′1, and next we can proceed in a similar
way iteratively with each of the other components y2, . . . , yd as follows. After the step
i ≥ 1, we know that u′1, u′2, . . . , u′i. Then, by choosing randomly ui+1, . . . ud, we can solve,
by using Least Squares, the linear system

(u′1 ⊗ · · · ⊗ u′i ⊗ idRNi ⊗ ui+1 ⊗ · · · ⊗ ud)
T A (idRN1 ⊗ u2 · · · ⊗ ud)ui

= (u′1 ⊗ · · · ⊗ u′i ⊗ idRNi ⊗ ui+1 ⊗ · · · ⊗ ud)
Tf,

to compute u′i. We can proceed cyclically until ‖f− A(u′1⊗ · · · ⊗ u′d)‖ < ε holds. This strat-
egy is known by the name of the Alternating Least Squares (ALS).

From (17), we have that u∗ is a critical point of JA,f inMN1···Nd if and only if

(f− A u∗) ⊥ Tu∗ i(Tu∗MN1···Nd) (22)
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holds, that is, the residual at u∗ is orthogonal to linear subspace Tu∗ i(Tu∗MN1···Nd). Ob-
serve that wj ⊗ u[j] ∈ Vj(u), where

Vj(u) := span{u1} ⊗ · · · ⊗ span{uj−1} ⊗ span{uj}⊥ ⊗ span{uj+1} ⊗ · · · ⊗ span{ud}

is an Nj − 1-dimensional subspace of RN1 ⊗ · · · ⊗RNd for 1 ≤ j ≤ d. Then, the next result
explicitly describes the linear subspace Tu∗ i(Tu∗MN1···Nd).

Proposition 1. The linear map Tui : TuMN1···Nd −→ RN1 ⊗ · · · ⊗RNd is injective. Moreover,

Tui(TuMN1···Nd) =
d⊕

j=1

Vj(u)⊕ span{u} ∼= TuMN1···Nd .

Proof. Assume that

Tui(β, w1, . . . , wd) =
d

∑
j=1

wj ⊗ u[j] +
β

λ
u = 0.

Since u⊥(wj ⊗ u[j]) for 1 ≤ j ≤ d and (wi ⊗ u[j])⊥(wj ⊗ u[j]) for all i 6= j, then

β = 0 and wi ⊗ u[j] = 0 for 1 ≤ j ≤ d.

Since u[j] 6= 0, then wj = 0 for 1 ≤ j ≤ d. This follows the first statement. To prove
the second one, we remark that the inclusion

Tui(TuMN1···Nd) ⊂
d⊕

j=1

Vj(u)⊕ span{u}

between both subspaces is trivial. Clearly,

dim Tui(TuMN1···Nd) = dim

 d⊕
j=1

Vj(u)⊕ span{u}


holds and then the second statement is also proved.

6. Conclusions

In this paper, a geometric upgrade of the PGD algorithm is proposed. To this end,
we endow a set of tensors of fixed rank-one with a smooth manifold structure. This con-
struction provides the solutions of a non-convex optimization problem by using a set of
stationary points of a vector field. This new perspective allows for the characterization
of the behaviour of the solutions of the Greedy Rank One Algorithm which could not be
achieved with the ALS strategy used in [8].
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