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Abstract: This paper presents a new formulation of the optimal control problem with uncertainty,
in which an additive bounded function is considered as uncertainty. The purpose of the control is
to ensure the achievement of terminal conditions with the optimal value of the quality functional,
while the uncertainty has a limited impact on the change in the value of the functional. The article
introduces the concept of feasibility of the mathematical model of the object, which is associated
with the contraction property of mappings if we consider the model of the object as a one-parameter
mapping. It is shown that this property is sufficient for the development of stable practical systems.
To find a solution to the stated problem, which would ensure the feasibility of the system, the synthe-
sized optimal control method is proposed. This article formulates the theoretical foundations of the
synthesized optimal control. The method consists in making the control object stable relative to some
point in the state space and to control the object by changing the position of the equilibrium points.
The article provides evidence that this approach is insensitive to the uncertainties of the mathematical
model of the object. An example of the application of the method for optimal control of a group of
robots is given. A comparison of the synthesized optimal control method with the direct method on
the model without disturbances and with them is presented.

Keywords: optimal control; Lyapunov stability; equilibrium point; symbolic regression; Pontryagin’s
maximum principle

1. Introduction

Object control in the classical mathematical sense is to qualitatively change the right-
hand sides of the differential equations describing the mathematical model of the control
object, due to the control vector included in them. Thus, the problem of optimal control [1]
consists in finding such a control function, as a function of time, which will make the
required changes in the right-hand sides of the model of the control object so that, for given
initial conditions, the partial solution of the system of differential equations achieves the
control goal with the optimal value of the quality criterion.

There are two main directions for solving the problem of optimal control: direct
and indirect approaches. The indirect approach based on the Pontryagin’s maximum
principle [2–4] solves optimal control by formulating it as a boundary-value problem,
in which it is necessary to find the initial conditions for a system of differential equations
for conjugate variables. Its optimal solution is highly accurate, however, very sensitive to
the formulation of additional conditions that the control must satisfy, along with ensuring
the maximum of the Hamiltonian, which are generally very difficult to set in practice for
problems with complex phase constraints. The direct approach reduces the optimal control
problem to a nonlinear programming problem [5–7], that provides the transition from the
optimization problem in the infinite-dimensional space to the optimization problem in the
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finite-dimensional space, so it is more convenient and can be readily solved within a wider
convergence region.

However, these works generally focus on the nominal trajectory performance without
considering possible uncertainties. In practice, in the right-hand sides of the models, there
are objectively some uncertainties of various nature. As a rule, they are not taken into
account, but the presence of such uncertainties can lead to the loss of optimality of the
obtained control.

There are also approaches when the impact of uncertainties is taken into account
during the reference trajectory design beforehand [8,9]. For example, desensitized op-
timal control [10], modifies the nominal optimal trajectory such that it is less sensitive
with respect to uncertain parameters. This involves constructing an appropriate sensi-
tivity cost which, when penalized, provides solutions that are relatively insensitive to
parametric uncertainties.

Although in practice such solutions do not guarantee the stability and still require
construction of the feedback stabilization control system to eliminate errors [8].

In control theory, there is a field of robust control [11–14], which provides a certain
stability coefficient of the control system. Robust control methods generally move the
eigenvalues of the linearized system as far as possible to the left of the imaginary axis of the
complex plane, so that uncertainties and perturbations do not make the system unstable.
These methods are not aimed at solving the optimal control problem.

In practical control system design, the existing uncertainties of the mathematical
model of the object, which subsequently cause the discrepancy between the real trajectory
of the object and the obtained optimal one, are compensated by the synthesis of a feedback
motion stabilization system relative to the optimal trajectory [8,15–17]. But construction
of the stabilization system changes the mathematical model of the object and the received
control might be not optimal for the new model.

In this paper, uncertainties are included in the problem statement as an additive
bounded function. And the optimal control problem is supposed to be solved after ensuring
stability to the plant in the state space. This approach was called the method of synthesized
optimal control. A control function is found such that the system of differential equations
will always have a stable equilibrium point in the state space. With that, the control
system contains parameters that affect the position of the equilibrium point. Consequently,
the object is controlled by changing the position of the equilibrium point. In this paper,
it is shown that such control can also provide the required value of the quality criterion,
but the mathematical model of the control object turns out to be insensitive to the existing
uncertainties and external disturbances. The approach of synthesized optimal control is
new, but we have already managed to obtain good experimental results [18,19] confirming
the effectiveness of such control. In this paper, we provide mathematical formulations of the
approach and give a theoretical substantiation of the efficiency of the synthesized optimal
control. A comparative numerical example of solving the problem of optimal control of
two robots under phase constraints by the indirect method of synthesized optimal control
and by the direct method based on piecewise linear approximation is given.

2. Problem Statement

The mathematical model of control object with uncertainty is given

ẋ = f(x, u) + y(t), (1)

where x ∈ Rn, u ∈ U ⊆ Rm, U is a compact set, m ≤ n, y is a uncertainty function,
y(t) ∈ Rn,

y− ≤ y(t) ≤ y+ (2)

y−, y+ are set constant vectors.
Initial conditions are set

x(0) = x0. (3)
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Terminal condition is set
x(t f ) = x f , (4)

where time t f of hitting terminal conditions t f is not given, but is limited

t f ≤ t+, (5)

t+ is a given positive value.
The functional is given

J =

t f∫
0

f0(x(t), u(t))dt + p1‖x f − x(t f )‖ → min
u(·)∈U

, (6)

where p1 is a given positive value.
It is necessary to find a control function

u = h(x, t) (7)

such that for any partial solution
x(t, x0) (8)

of the system
ẋ = f(x, h(x, t)) + y(t) (9)

from initial conditions (3) for any uncertainty function (2) value of the functional (6) satisfies
inequation

J(x(t, x0), y(t)) ≤ J(x(t, x0), 0) + ∆y, (10)

where J(x(t, x0), y(t)) is a value of functional (6) for the solution (8) with perturbation (2),
J(x(t, x0), 0) is a value of functional (6) for the same solution (8) without perturbations,
y(·) ≡ 0, ∆y is a given positive value.

Among possible solutions in the form (7) we consider only such that possess the
following properties. Let x(t, x0) be some partial solution of the system (9) with y(t) ≡ 0
and J(0) be a value of criterion (10) for it. Let us denote

x̃ = x(t, x0) + z̃(t), (11)

˜̃x = x(t, x0) + ˜̃z(t), (12)

and
δ̃ = max

t∈[0;t f ]
‖x(t, x0)− x̃(t)‖, (13)

˜̃δ = max
t∈[0;t f ]

‖x(t, x0) + ˜̃x(t)‖. (14)

Then δ̃ > 0 exist, such that ∀ ˜̃δ ≤ δ̃ conditions are met

˜̃∆ ≤ ∆̃, (15)

where
∆̃ = |J(x(t, x0), 0)− J(x̃(t), 0)|, (16)

˜̃∆ = |J(x(t, x0), 0)− J( ˜̃x(t), 0)|. (17)

The condition (15) is called the continuous dependence of the functional on perturbations.
The goal is to look for solutions in form (7) so that they satisfy condition (15).
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3. Theoretical Background and Justifications for the Synthesized Optimal
Control Method

Problems with uncertainties are often considered in optimal control, since the question
is relevant in the practical implementation of obtained systems. As a rule, uncertain
parameters of the right-hand sides or initial conditions are considered as uncertainties,
or some random perturbations are introduced. The main direction of solving problems
with perturbations is to ensure the stability of the obtained solution. So, firstly, the problem
of optimal control is solved without uncertainties, and then, using the stabilization system,
an attempt is made to ensure the stability of motion relative to the optimal trajectory. In fact,
the creation of a stabilization system is an attempt to ensure the stability of the differential
equation solution according to Lyapunov.

Theorem 1. To perform the condition (10) it is enough that a partial solution (8) of the system (9)
without perturbations y(t) ≡ 0

ẋ = f(x, h(x, t)), (18)

was stable according to Lyapunov.

Proof. From differential Equation (1) follows

x(t + ∆t) = x(t) + ∆tf(x, h(x, t)) + ∆ty(t), (19)

or
x̄(t) = x(t, x0) + v(t), (20)

where

v(t) =
t∫

0

y(t)dt. (21)

Let ∆y be given. Then according to condition (15) you can always define ∆̃ and value
δ̄ for perturbed solution x̄ such that according to condition of stability on Lyapunov [20,21]

‖x(t, x0)− x̄(t)‖ < δ̄, ∀t ∈ [0; t f ]. (22)

For this it is enough to satisfy the inequality

0 ≤ ‖v(t)‖ ≤ δ̄/2, ∀t ∈ [0; t f ]. (23)

However, to find control function (7) such that partial solution (8) was stable accord-
ing to Lyapunov is rather difficult and, in fact, it is not always necessary. According to
Lyapunov’s theorem, a stable solution to a differential equation must have the property
of an attractor [20,22], and, therefore, from the mathematical point of view the synthesis
of stabilization system is an attempt to give an attractor property to the found optimal
trajectory [21,23]. The main problem of unstable solutions is that they are difficult to imple-
ment, since small perturbations of the model lead to large errors of the functional, in other
words, the solution does not have the attractor property. But in fact, the requirement for the
optimal solution to obtain the attractor property or be Lyapunov stable is a fairly strict one
and it could be redundant, and other weaker requirements may be enough to implement
the resulting solution. For example, the motion of a pendulum is not Lyapunov stable if it
is not the zero rest point, but it is physically feasible, since its small perturbations lead to
small perturbations of the functional.

In this concern let us introduce the concept of feasibility.
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4. Feasibility Property

Based on a qualitative analysis [24] of the solutions of systems of differential equations,
the feasibility means that small changes in the model do not lead to a loss of quality. In other
words, it is necessary that the solution has the contraction property.

Hypothesis 1. A mathematical model is feasible, if its errors do not increase in time.

Definition 1. The system of differential equations is practically feasible, if this system as a one-
parametric mapping obtains a contraction property in the implementation domain.

Consider a system of differential equations

ẋ = f(x), (24)

where x ∈ Rn.
Any ordinary differential equation is a recurrent description of a time function. A so-

lution of the differential equation is a transformation from a recurrent form to a usual
time function.

Computer calculation of the differential Equation (24) has a form

x(t + ∆t) = x(t) + ∆tf(x(t)), (25)

where t is an independent parameter, ∆t is a constant parameter, and it is called a step
of integration.

The right side of the Equation (25) is a one-parametric mapping from space Rn to itself

F(x, t) = x(t) + ∆tf(x(t)) : Rn → Rn. (26)

Let a compact domain D be set in the space Rn. All solutions of the differential
Equations (24), that are of our interest, belong to this domain. Therefore, for the differential
Equations (24) the initial and terminal conditions belong to this domain

x(0) ∈ D ⊆ Rn, x(t f ) ∈ D ⊆ Rn, (27)

where x(t f ) is a terminal point of the solution (24).

Theorem 2. In domain D for the mapping (26), the following property is performed

ρ(xa(t), xb(t)) ≤ ρ(F(xa(t), t), F(xb(t), t)), (28)

where xa(t) ∈ D, xb(t) ∈ D, ρ(xa, xb) is a distance between two points in the space Rn

ρ(xa, xb) =
∥∥∥xa − xb

∥∥∥. (29)

Then the mathematical model (24) is feasible if the domain D ⊆ Rn according to the hypothesis.

Proof. Let x(t) ∈ D be a known state of the system in the moment t and y(t) ∈ D be a real
state of the system in the same moment. The error of the state is

δ(t) = ρ(x(t), y(t)). (30)

According to the mapping (26)

δ(t + ∆t) = ρ(F(x(t), t), F(y(t))). (31)
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And according to the condition (28) of the theorem

δ(t) ≤ δ(t + ∆t). (32)

This proves the theorem.

The condition (28) shows that the system of differential equations as a one-parametric
mapping has contraction property.

Assume that the system (24) in the neighborhood of the domain D has one stable
equilibrium point, and there is no other equilibrium point in this neighborhood

f(x̃) = 0, (33)

det(λE−A(x̃)) = λn + an−1λn−1 + . . . + a1λ + a0 =
n

∏
j=1

(λ− λj) = 0, (34)

where E is a unit n× n matrix,

A(x̃) =
∂f̃(x)

∂x
, (35)

λj = αj + iβ j, (36)

αj < 0,i =
√
−1, j = 1, . . . , n.

Theorem 3. If for the system (24) there is a domain D that includes one stable equilibrium point
(33)–(36), then the system (24) is practically feasible.

Proof. According to the Lyapunov’s stability theorem on the first approximation the trivial
solution of the differential Equation (24)

x(t) = x̃ = constant (37)

is stable. This means, that, if any solution begins from other initial point x0 6= x̃, then it
will be approximated to the stable solution asymptotically

ρ(x(t + ∆t, xa), x̃) ≤ ρ(x(t, xa), x̃), (38)

where x(t, xa) is a solution of the differential Equation (24) from initial point xa.
The same is true for another initial condition xb

ρ(x(t + ∆t, xb), x̃) ≤ ρ(x(t, xb), x̃). (39)

From here, it follows that the domain D has a fixed point x̃ of contraction mapping [24],
therefore distance between solutions x(t, xa) and x(t, xb) also tends to zero or

ρ(x(t + ∆t, xa), x(t + ∆t, xb)) ≤ ρ(x(t, xa), x(t, xb)). (40)

This proves the theorem.

Following the principle of feasibility, an approach is proposed in which the optimal
control problem is solved after ensuring the stability of the object in the state space. This ap-
proach is called the method of synthesized optimal control. It includes two stages. In the
first stage, the system without perturbations is made stable in some point of the state
space. This stage of synthesis of the stabilization system allows to embed the control in
the object so that the system of differential equations would have the necessary property
of feasibility. In this case, the equilibrium point can be changed after some time, but the
object maintains equilibrium at every moment in time. Then we control the position of the
stable equilibrium point, as an attractor, to solve the optimal control problem.
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5. The Synthesized Optimal Control

According to this approach, it is necessary to find such a control function (7) that
the system without perturbations would always have a stable equilibrium point in the
state space. Together with that, in the control function a parameter vector is introduced.
The value of this parameter vector affects on position of the equilibrium point in the
states space

u = g(x, q∗), (41)

where q∗ is a parameter vector.
Control function (41) provides for the system without perturbations

ẋ = f(x, g(x, q∗)) (42)

existence of the equilibrium point

f(x∗(q∗), g(x∗(q∗), q∗)) = 0, (43)

where x∗(q∗) is a vector of coordinates of equilibrium point, depending on the parameter
vector q∗. The system (42) satisfies conditions (34)–(36) in the point x∗(q∗).

Algorithmically, the method of synthesized optimal control first solves the problem of
stabilization system synthesis. For solving the synthesis problem, the functional (6) is not
used. Purpose of the control synthesis problem is to receive such control function (41) to
provide existence of the stable equilibrium point in the state space.

Once the function (41) is found, the optimal control problem is solved next for the
mathematical model (42) with the initial conditions (3) and the terminal conditions (4),
and with the quality criterion

J1 =

t f∫
0

f0(x(t), g(x(t), q∗(t)))dt + p1‖x f − x(t f )‖ → min
q∗∈Q

, (44)

where Q is a compact set in the space of parameters.
In general case, the vector of parameters q∗ can be some function q∗(t). The properties

of this function and methods for finding it requires additional studies. In this work
this function is found for the original optimal control problem (1)–(6) as a piece-wise
constant one.

Thus, in the synthesized optimal control approach, the uncertainty in the right parts is
compensated by the stability of the system relative to a point in the state space. Near the
equilibrium point, all solutions converge and feasibility principle is satisfied. This first step
of stabilization system synthesis is a key idea of the approach, it provides achievement of
better results in the tasks with complex environment and noise. However, this approach
could not be previously presented as a single computational method, since there was
no general numerical approach for solving the problem of control synthesis. Formally,
the problem of synthesis of stabilization system involves the construction of such a feedback
control module described by some functions that produces control basing on the received
data about the object’s state and this control makes the object achieve the terminal goal
with the optimal value of some given criterion. In the overwhelming majority of cases,
the control synthesis problem is solved analytically or technically taking into account the
specific properties of the mathematical model. But now modern numerical methods of
symbolic regression can be applied to find a solution without reference to specific model
equations. Let us consider the issue in more details.

6. The Problem of Control System Synthesis

Consider the problem statement of the general numerical synthesis of the control system.
The mathematical model is

ẋ = f(x, u), (45)
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where x ∈ Rn, u ∈ U ⊆ Rm.
The domain of initial conditions is given

X0 = {x0,1, . . . , x0,K} ⊆ Rn. (46)

The terminal condition is given

x∗ = [x∗1 . . . x∗n]
T ∈ Rn. (47)

The quality criterion is given

J3 =
K

∑
i=1

t f ,i + p1‖x∗ − x(t f ,i, x0,i)‖ → min
u

, (48)

where t f ,i is a time of achieving the terminal condition from the initial condition x0,i. It is
necessary to find a control in the form (41).

The general formulation of the synthesis problem was posed by V.G. Boltyanskiy in
the 60s of the last century [25]. One of the ways to solve it is to reduce the problem to the
partial differential equation of Bellman [26,27], who also proposed a method for its solution
in the form of a dynamic programming method [26,28]. Bellman’s equation in the general
case has no solution; therefore, most often it is solved numerically for one initial condition,
which in our case is not enough to ensure stability.

To solve the synthesis problem and obtain an equilibrium point, methods of modal
control [29] can be applied for linear systems, as well as other analytical methods such as
backstepping [30], analytical design of aggregated controllers [31,32], or synthesis based on
the application of the Lyapunov function [21,33]. Note that all known analytical synthesis
methods for nonlinear systems, when implemented, are associated with a specific type
of model, therefore they cannot be considered universal. In practice, linear controllers,
such as PID or PI controllers, are often used to ensure stability. Their use is also associated
with a specific model, which is linearized in the neighbourhood of the equilibrium point,
and their use is not related to the formal statement of the considered synthesis problem.

To solve the synthesis problem in the considered mathematical formulation, it is
necessary to find the control function in the form (41). Most of the known methods specify
the control function with an accuracy of the parameter values, for example, methods
associated with the solution of the Bellman equation, like analytical design of optimal
controllers [34], as well as the use of various controllers, including controllers based on
very popular now artificial neural networks [35].

This paper proposes to solve the addressed problem numerically. For a solution of the
synthesis problem we apply numerical methods of symbolic regression. These methods
can look for a structure of the function in the form a special code by some genetic algorithm
and also search for the optimal values of parameters in the desired function.

7. Symbolic Regression Methods

To encode a mathematical expression, it is necessary to define sets of arguments of the
mathematical expression and elementary functions. To decode a code of the mathematical
expression it is enough to know how many arguments has each elementary function.
For encoding elementary function, it is enough to use integer vector with two components.
The first component is the number of arguments of the elementary function. The second
component is the function number. Arguments of mathematical expression are elementary
functions without arguments, therefore the first component of an argument code is zero.

For the control synthesis problem (45)–(48) it is necessary to find a mathematical
expression of the control function (41).

Let us define sets of elementary functions.
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A set of mathematical expression arguments or elementary functions without argu-
ments includes variables, parameters, and unit elements for elementary functions with two
arguments,

F0 = { f0,1 = x1, . . . , f0,n = xn, f0,n+1 = c1, . . . , f0,n+p, f0,n+p+1 = e1, . . . , f0,n+p+r = eV}, (49)

where xi is a component of the state vector, i = 1, . . . , n, x = [x1 . . . xn]T , ci is a component
of the parametric vector, i = 1, . . . , p, c = [c1 . . . cp]p, ei is a unit element for function with
two arguments.

A set of functions with one argument includes an identity function

F1 = { f1,1(z) = z, f1,2(z), . . . , f1,W(z)}. (50)

A set of functions with two arguments includes such functions, that are associative,
commutative and have a unit element

F2 = { f2,1(z1, z2), . . . , f2,V(z1, z2)}, (51)

where each element from the set F2 has the following properties:

− associative
f2,j( f2,j(z1, z2), z3) = f2,j(z1, f2,j(z2, z3)), j = 1, . . . , V, (52)

− commutative
f2,j(z1, z2) = f2,j(z2, z1), j = 1, . . . , V, (53)

− existing of a unit element

f2,j(z1, ej) = z1, f2,j(ej, z2) = z2, j = 1, . . . , V. (54)

To describe the most common mathematical expressions, it is enough functions with
one and two arguments. Functions with three and more arguments may not be used.

Any element of the sets (49)–(51) is encoded by integer vector with two arguments

s = [s1 s2]
T , (55)

where s1 is the number of arguments, s2 is a function number.
A code of the mathematical expression is a set of codes of elementary functions

S = s1 . . . sL, (56)

where sj = [sj
1 sj

2]
T , sj

1 ∈ {0, 1, 2},

sj
2 ∈


{1, . . . , n + p + V}, if sj

1 = 0
{1, . . . , W}, if sj

1 = 1
{1, . . . , V}, otherwise

(57)

Theorem 4. For the mathematical expression code (57) with L elements to be correct, it is necessary
and enough that the following formulas are valid

1 +
j

∑
i=1

si
1 ≤ L, j = 1, . . . , L− 1, (58)

1− L +
L

∑
i=1

si
1 = 0. (59)
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Proof. Consider the Formula (58) and add there −j in the left and right sides

− j + 1 +
j

∑
i=1

si
1 ≤ L− j. (60)

Consider left side of the inequation (60)

T(j) = −j + 1 +
j

∑
i=1

si
1. (61)

This equation calculates how many elements from the set of arguments (49) should be
after element j. The value T(j) is increasing on 1 after each sj

1 = 2, it is not changing after

each sj
1 = 1, and it is decreasing on 1 after sj

1 = 0.
At j = L, we receive the Equation (59). After the last element j = L it must be no

elements on the right from element L.
Assume that the inequation (57) fails. Then from (61) we receive for j = L

T(j) = −L + 1 +
j

∑
i=1

si
1 > 0. (62)

This means, that after the last element there are some elements. This does not allow to
decode the code. Therefore conditions (57) and (58) are necessary.

Let the inequation (57) and Equation (58) be satisfied. If the element after the element
j is an argument from the set (49), then T(j) is decreasing on 1, if it is the function number
with one argument, then T(j) is not changed, if it is the function number with two argu-
ments, then T(j) increases on 1. Equation (58) shows that the last element from the set (49)
does not need arguments. The formula is decoded. Therefore, performing the Formulas
(57) and (58) is enough. QED.

From Equation (58) it follows

L

∑
i=1

si
1 = L− 1. (63)

Such direct encoding is in the genetic programming [36]. This method of symbolic
regression does not include extra elements, therefore codes of different mathematical
expressions have different lengths. It is not very comfortable for programming and imple-
menting crossover in genetic programming. For crossover it is necessary to find in the code
(55) the sub-code of mathematical expression with the properties (57) and (58). Crossover
operation in genetic programming is performed as exchanging sub-codes of mathematical
expressions. Searching for sub-codes and exchanging them takes significant time of the
algorithm. Other symbolic regression methods that can be effectively used to find a math-
ematical expression, such as the network operator method [37,38], or Cartesian genetic
programming [39,40] have codes of equal length for different mathematical expressions
due to redundant elements.

An effective tool in the search for an optimal mathematical expression is the principle
of small variations of the basic solution [41]. According to this principle, the search for
the mathematical expression can begin in the neighbourhood of one given basic solution.
This solution is coded by some symbolic regression method. Other possible solutions are
obtained using sets of codes of small variations of the basic solution. Each small variation
slightly modifies the basic solution code so that a new code corresponds to some kind of
mathematical expression.

To find the optimal mathematical expression by any method of symbolic regression,
a special genetic algorithm is used. Depending on the code of symbolic regression, this
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genetic algorithm has its own crossover and mutation operations. Using the principle of
small variations of the basic solution, crossover and mutation operations are performed on
the sets of small variations.

In the numerical solution of control synthesis problems by symbolic regression meth-
ods, together with the search of the structure of the mathematical expression, it is advisable
to look for the optimal values of the parameter vector c = [c1 . . . cp]T , which is included in
this mathematical expression in the form of its additional arguments (49). For this purpose,
it is convenient to use the same genetic algorithm as for finding the structure. In this case,
a possible solution is a pair including the code for structure of the mathematical expression
and the vector of parameters. When performing a crossover operation, we get not two,
but four offsprings. Two offsprings have new mathematical expression structures and new
parameter values, and two others inherit parent structures and have only new parameter
values. The crossover operation for parameters is performed as in the classical genetic
algorithm, by exchanging codes after the crossover point.

It can be seen that the methods of symbolic regression can automate the process of
synthesis of control systems, but very little of them are used in this direction. Only few
scientific groups [42–44] are developing these approaches for solving the problem of control
system synthesis in view of a number of difficulties, such as non-numerical search space
and the absence of a metric on it, the complexity of the program code and the absence of
publicly available software packages, and so forth.

8. A Computational Example

Let us consider the optimal control problem for two mobile robots. They have to
exchange its position on the plane with obstacles.

Mathematical models of mobile robots [45] are given

ẋj = 0.5(uj
1 + uj

2) cos(θ j),
ẏj = 0.5(uj

1 + uj
2) sin(θ j),

θ̇ j = 0.5(uj
1 − uj

2),

(64)

where uj = [uj
1 uj

2] is a vector of control, j = 1, 2.
Control is restricted

− 10 = u−i ≤ uj
i ≤ u+

i = 10, j = 1, 2, i = 1, 2. (65)

The initial conditions are set

x1(0) = 0, y1(0) = 0, θ1(0) = 0, x2(0) = 10, y2(0) = 10, θ2(0) = 0. (66)

The terminal conditions are set

x1(t f ) = 10, y1(t f ) = 10, θ1(t f ) = 0, x2(t f ) = 0, y2(t f ) = 0, θ2(t f ) = 0, (67)

where

t f =

{
t , if t < t+and ∆ f (t) ≤ ε

t+, otherwise
(68)

∆ f (t) =
√
(10− x1(t))2 + (10− y1(t))2 + (θ1(t))2 + (x2(t))2 + (y2(t))2 + (θ2(t))2, (69)

t+ = 2.4 s, ε = 0.01.
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The quality functional includes the time to reach the terminal state and penalty
functions for violation of the accuracy of reaching the terminal state and for violation of
static and dynamic phase constraints

Je = t f + w1∆ f (t f ) + w2

t f∫
0

2

∑
i=1

2

∑
j=1

ϑ(ϕi,j(t))dt+

w3

t f∫
0

ϑ(d2 − (x1(t)− x2(t))2 − (y1(t)− y2(t))2)dt→ min
u1,u2

(70)

where w1 = 2.5, w2 = 3, w3 = 3,

ϑ(α) =

{
1, if α > 0
0, otherwise

, (71)

ϕi,j(t) = ri −
√
(xi − xj(t))2 + (yi − yj(t))2, i = 1, 2, j = 1, 2, (72)

r1 = 3, r2 = 3, x1 = 5, x2 = 5, y1 = 9, y2 = 1, d = 2.
It is necessary to find such a control to move all robots from its initial conditions (66)

to the terminal conditions (67) with the minimal value of the quality criterion (70).
To solve the optimal control problem (64)–(72) by the proposed synthesized optimal

control method it is necessary to initially solve the control synthesis problem (45)–(48) for
each robot. Since robots are similar, it is enough to solve the control synthesis problem
once for one robot. For the solution of this problem, the symbolic regression method of
Cartesian genetic programming is used.

In the result, the following control function was obtained:

uj
i =


u+

i = 10, if u+
i ≤ ũj

i
u−i = −10, if ũj

i ≤ u−i
ũj

i , otherwise

, i = 1, 2, j = 1, 2, (73)

where
ũj

1 = A + B + ρ#(A), j = 1, 2, (74)

ũj
1 = B− A− ρ#(A), j = 1, 2, (75)

A = c1(θ
∗ − θ j) + σ#((x∗ − x J)(y∗ − yJ)), (76)

B = 2(x∗ − xj) + sgn(x∗ − x J)c2, (77)

ρ#(α) =

{
sgn(α)B+, if |α| > − log(δ−)
sgn(α)(exp(|α|)− 1)

, σ#(α) = sgn(α)
√
|α|, (78)

c1 = 3.1094, c2 = 3.6289, B+ = 108, δ− = 10−8.
For solution of the synthesis problem eight initial conditions were used and the quality

criterion took into account the speed and the accuracy of terminal position achievement

x∗ = [x∗ y∗ θ∗]T . (79)

In the result of the solution of control synthesis problem a stable equilibrium point
in the state space is appeared. Position of the equilibrium point depends on the terminal
vector (79).

In the second stage the set of four points (79) were searched for each robot on criterion (70)

X∗ = {x∗,1,1, . . . , x∗,1,4, x∗,2,1, . . . , x∗,2,4}. (80)
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These points were switching in some time interval ∆t = 0.6 s for control function (73)
of each robot.

To search for the points the evolutionary algorithm of Grey wolf optimizer [46,47] was
used. In result, after more than one hundred tests the following best points were found:

x∗,1,1 = [4.0159 1.8954 1.2397]T , x∗,1,2 = [7.0890 4.2341 0.5270]T ,
x∗,1,3 = [7.2194 − 0.4480 1.3042]T , x∗,1,4 = [11.9722 9.4663 0.1866]T ,
x∗,2,1 = [5.3899 4.0791 − 0.1208]T , x∗,2,2 = [−0.6401 4.3126 − 0.0176]T ,
x∗,2,3 = [0.3103 0.8955 0.6335]T , x∗,2,4 = [−0.0791 − 0.1518 0.0195]T .

(81)

The algorithm simulated the system (64) with the control (73) for calculation of crite-
rion values (70) in one test more than 500,000 times.

When searching for points, the following constraints were used

− 2 ≤ x∗ ≤ 12, −2 ≤ y∗ ≤ 12, −π/2 ≤ θ∗ ≤ π/2. (82)

In the Figure 1 the projections of optimal trajectories on the plane {x, y} are presented.
The trajectories are black lines, red circles are obstacles, small black squares are projections
of found points (81).

Figure 1. Optimal trajectories of robots on the plane {x, y} for synthesized optimal control.

The quality criterion (70) for found control was Je = 2.8914.
For comparative study of the obtained solution, the same optimal control problem was

solved by a direct method. For this purpose control functions of robots were approximated
by piece-wise linear functions of time. The interval of approximation was ∆dt = 0.4 s,
therefore a number of intervals was

K =

⌊
t+

∆dt

⌋
=

⌊
2.4
0.4

⌋
= 6. (83)

For the approximation of control function, the values of parameters on the boundaries
of intervals were searched. For each one control function it was necessary to find K + 1 = 7
parameters. Total vector of parameters had twenty eight components.

q = [q1 . . . q28]
T . (84)

The direct control has the following form

uj
i =


10 = u+

i , if u+
i ≤ ūj

i
−10 = u−i , if ūj

i ≤ u−i
ūj

i , otherwise

, i = 1, 2, j = 1, 2, (85)
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where

ū1
1 = qs + (qs+1 − qs)

(t− s∆dt)
∆dt

, (86)

ū1
2 = qs+L + (qs+L+1 − qs+L)

(t− s∆dt)
∆dt

, (87)

ū2
1 = qs+2K + (qs+2L+1 − qs+2L)

(t− s∆dt)
∆dt

, (88)

ū2
2 = qs+3L + (qs+3L+1 − qs+3L)

(t− s∆dt)
∆dt

, (89)

s∆dt ≤ t ≤ (s + 1)∆dt, s ∈ {1, . . . , 6}, L = K + 1 = 7.
To search for optimal parameters the same evolutionary algorithm of Grey wolf

optimizer was used. In the result of more than one hundred tests the following best values
of parameters were found:

q = [19.6125 5.4318 7.5921 19.4020 2.3928 2.1627 1.6976
1.4941 5.1828 16.9087 11.2478 − 2.4499 17.7201 − 0.6297
−0.9093 − 1.6815 − 19.5283 − 16.4979 − 0.2321 − 11.4719 − 17.7372
−1.4218 − 18.0214 − 3.7942 − 3.0899 − 13.3196 − 9.7212 − 0.3233]T

(90)

The process of searching the parameters had restrictions

− 20 = q− ≤ qi ≤ q+ = 20, i = 1, . . . , 28. (91)

In one test, the algorithm simulated the system (64) with the control (85) for calculation
of criterion values (70) more than 500,000 times. A value of quality criterion (70) for found
control was Je = 2.5134.

In Figure 2, the projection of optimal trajectories of mobile robots on the horizontal
plane {x, y} is presented.

Figure 2. Optimal trajectories of robots on the plane {x, y} for direct control.

To check the obtained solutions of sensitivity to perturbations, we included random
functions of uncertainty into the model (64)

ẋj = 0.5(uj
1 + uj

2) cos(θ j) + Bξ(t),
ẏj = 0.5(uj

1 + uj
2) sin(θ j) + Bξ(t),

θ̇ j = 0.5(uj
1 − uj

2) + Bξ(t),

(92)
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where j = 1, 2, ξ(t) generates new random value in interval from −1 to 1 at every call.
Results of simulations with the found optimal controls and different levels of pertur-

bations of the model are presented in the Table 1. The Table 1 includes average values of
functional (70) on ten tests. As we can see, the synthesized optimal control is less sensitive
to the perturbation of model. For the synthesized control with the level of perturbation
B = 1.5, the average value of the functional is changed by no more than 30% and, for the
direct control with the same level of perturbations, the functional is changed by more
than 200%.

Table 1. The average values of functional (70).

Level of Noise B Synthesized Control Direct Control

0 2.8914 2.5134
0.1 3.0014 3.0260
0.2 3.0066 3.8571
0.5 3.2141 5.5497
0.8 3.3156 5.8968
1 3.4123 6.7952

1.5 3.6954 8.2654

In Figure 3, the trajectories for synthesized optimal control with model perturbations
of level B = 1.5 are presented. In Figure 4, the trajectories for the direct control with the
same level of perturbation B = 1.5 are presented.

As can be seen from Figures 3 and 4, the synthesized control does not change the
nature of the motion of objects under large disturbances, and direct control first of all
violates the accuracy of achieving the terminal conditions.

Figure 3. Optimal trajectories of robots on the plane {x, y} for synthesized control with B = 1.5.
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Figure 4. Optimal trajectories of robots on the plane {x, y} for direct control with B = 1.5.

9. Conclusions

This work presents the statement of the new optimal control problem with uncertainty.
In this problem, the mathematical model of the control object includes an additive limited
perturbing function simulating possible model inaccuracies. It is necessary to find an opti-
mal control function that provides for limited perturbations bounded variation of functional
value. For this purpose, it is proposed to use the synthesized optimal control method.
According to this method initially, the control synthesis problem is solved. After that,
in the state space a stable equilibrium point appears. In the second stage, the original
optimal control problem is solved by searching positions of some stable equilibrium points,
which are a control for stabilization system, obtained in the first stage. It is shown that such
an approach supplies the property of a contraction mapping for differential equations of the
mathematical model of the plant. Such differential equations are quite feasible, and their
solutions reduce the errors of determining the state vector. For the solution of the control
synthesis problem it is proposed to apply symbolic regression methods. A comparative
example is presented. Computational experiments showed that the obtained solution is
very less sensitive to perturbations in the mathematical model of the control object than
the direct solution of the optimal control problem.

10. Findings/Results

This paper presents a new formulation of the optimal control problem, taking into
account the objectively existing uncertainties of the model. The concept of feasibility is
introduced, which means that small changes in the model do not lead to a loss of quality.
Given the theoretical substantiations (definitions and theorems) that a system of differential
equations of the mathematical model is feasible if it obtains, as a one-parametric mapping,
a contraction property in the implementation domain. This property is an alternative to
Lyapunov stability; it is softer, but sufficient for the development of real stable practical
systems. An approach based on the method of synthesized optimal control is proposed,
which makes it possible to develop systems that have the property of feasibility.

11. Discussion

According to the method of synthesized optimal control, the stability of the object is
first ensured, that is, an equilibrium point appears in the phase space. In the neighbourhood
of the stability point, the phase trajectories contract, and this property determines the
feasibility of the system. For this, it is necessary to numerically solve the problem of
synthesizing the stabilization system in order to obtain expressions for the control and
substitute them in the right-hand sides of the object model. The synthesis problem is quite
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difficult. This paper proposes using numerical methods of symbolic regression to solve
it. There are several successful applications, but they are still not very popular due to the
complexity of the search area on a non-numerical space of functions where there is no
metric. This is the direction for future research.

In the applied method of synthesized optimal control in the second stage we searched
positions of equilibrium points as a piece-wise constant function. It is necessary to investi-
gate other types of functions to change the position of the equilibrium point, how many
points should be and how often they should be switched.

In further studies it is also necessary to consider solutions of the new optimal control
problem for different control objects.

With the numerical solution of the optimal control problem by evolutionary algorithm
it was defined that these algorithms can find solutions for complex optimal control prob-
lems with static and dynamic phase constraints. It is necessary to continue to research
different evolutionary algorithms for the solution of the optimal control problems.
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