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Abstract: This article is partially a review and partially a contribution. The classical two approaches
to robustness, Huber’s minimax and Hampel’s based on influence functions, are reviewed with
the accent on distribution classes of a non-neighborhood nature. Mainly, attention is paid to the
minimax Huber’s M-estimates of location designed for the classes with bounded quantiles and
Meshalkin-Shurygin’s stable M-estimates. The contribution is focused on the comparative perfor-
mance evaluation study of these estimates, together with the classical robust M-estimates under
the normal, double-exponential (Laplace), Cauchy, and contaminated normal (Tukey gross error)
distributions. The obtained results are as follows: (i) under the normal, double-exponential, Cauchy,
and heavily-contaminated normal distributions, the proposed robust minimax M-estimates outper-
form the classical Huber’s and Hampel’s M-estimates in asymptotic efficiency; (ii) in the case of
heavy-tailed double-exponential and Cauchy distributions, the Meshalkin-Shurygin’s radical stable
M-estimate also outperforms the classical robust M-estimates; (iii) for moderately contaminated nor-
mal, the classical robust estimates slightly outperform the proposed minimax M-estimates. Several
directions of future works are enlisted.

Keywords: robustness; minimax approach; stable estimation

1. Introduction

Robust statistics, as a new field of mathematical statistics, originates from the pioneer-
ing works of John Tukey (1960) [1], Peter Huber (1964) [2], and Frank Hampel (1968) [3].
The term “robust” (Latin: strong, vigorous, sturdy, tough, powerful) was introduced into
statistics by George Box (1953) [4].

The reasons of research in this field of statistics are of a general mathematical nature:
the conceptions of “optimality” and “stability” are mutually complementary in perfor-
mance evaluation for almost all mathematical procedures, and the trade-off between them
is often a sought goal.

It is not rare that the performance of optimal solutions is rather sensitive to small
violations of the assumed conditions of optimality. In statistics, the classical example of such
unstable optimal procedure is given by the least squares estimates, in which performance
under small deviations from normality can become disastrous [5].

Since the term “stability” is overloaded in mathematics, the term “robustness” being
its synonym is at present conventionally used in statistics and in optimal control theory:
in general, it means the stability of statistical inference under uncontrolled violations of
accepted distribution models.

In present, there are two main approaches to robustness: historically, the first global
minimax approach of Huber (quantitative robustness) [5] and the local approach of Hampel
based on influence functions (qualitative robustness) [6]. Within the first approach, the
least informative (favorable) distribution minimizing Fisher information over a certain dis-
tribution class is obtained with the subsequent use of the asymptotically optimal maximum
likelihood parameter estimate for this distribution. In this case, the minimax approach
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gives the guaranteed accuracy of robust estimates, that is, the asymptotic variance of the
optimal parameter estimate is upper-bounded for distributions from the aforementioned
class.

Within the second approach, a parameter estimate is defined by its desired influence
function, which determines the qualitative robustness properties of an estimate, such as its
low sensitivity to the presence of gross outliers in the data, to the data rounding-off, to the
missing data, etc.

In what follows, we consider these methodologies in detail focusing on the opti-
mization and variational calculus tools used in both aforementioned approaches. Within
Huber’s minimax approach, we review the conventional least informative (favorable) dis-
tributions obtained for the neighborhoods of a Gaussian [5], as well as those designed for a
variety of the non-standard distribution classes of a non-neighborhood nature [7]. Within
Hampel’s local approach [6], we mostly emphasize its recently developed stable estimation
branch with the originally posed variational calculus problems and rather prospective
results on their application to robust statistics [8].

While this paper focuses on particular topics in the field of robust statistics, it is worth
noting a few comprehensive reviews also covering the present state of art in this field,
namely Reference [9–14].

An outline of the remainder of the article is as follows. In Section 2, a general prob-
lem setting for the design of minimax variance M-estimates of location is recalled. In
Section 3, the globally stable Meshalkin-Shurygin’s M-estimates are described. In Section 4,
a comparative performance evaluation of the conventional robust M-estimates of location
with the several novel proposed M-estimates is examined (univariate setting is considered
throughout the paper), and several unforeseen and unexpected results have been obtained.
In Section 5, some conclusions are given.

2. Huber’s Minimax Variance Robust M-Estimates of Location
2.1. Preliminaries

The minimax principle aims at the worst case suggesting for it the best solution [2];
thus, this approach provides a guaranteed result [5]. However, being applied to the
problem of estimation of location, it yields a robust version of the principle of the maximum
likelihood [2]. Usually, estimation of location is of a primary interest, and, in this study, we
focus on it.

Let x1, . . . , xn be a sample from a distribution with density p(x− θ) from a convex class
P , where θ is a location parameter. Further, we assume that p is a symmetric distribution
density; hence, θ is the center of symmetry to be estimated.

An M-estimate Tn of θ is a solution to the following minimization problem:

Tn = arg min
θ

n

∑
i=1

ρ(xi − θ), (1)

where ρ(u) is called the function of contrast [15]: ρ(xi − θ) is a measure of difference between
the observation xi and the estimated center of symmetry. The following particular cases
of (1) are of a particular interest: (i) for ρ(u) = u2, we have the least squares method
with the sample mean x as the estimate of location; (ii) for ρ(u) = |u|, we arrive at the
least absolute values method with the sample median estimate med x; and (iii), mostly
importantly, for a given density p, the choice ρ(u) = − log p(u) yields the maximum
likelihood (ML) estimate of location.

It is more convenient to formulate the properties of M-estimates in terms of the
derivative of the function of contrast ψ(u) = ρ′(u) called a score function. In this case, an
M-estimate is defined as a solution to the following implicit estimating equation

n

∑
i=1

ψ(xi − Tn) = 0. (2)
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Under rather general conditions of regularity imposed on the class Ψ of score functions
ψ and on the class P of densities p (their various forms can be found in Reference [2,5,6]),
M-estimates are consistent and asymptotically normal with the asymptotic variance AV:

Var(n1/2Tn) = AV(ψ, p) =
A
B2 =

∫
ψ2(x)p(x) dx

(
∫

ψ′(x)p(x) dx)2 , (3)

where
A(ψ, p) =

∫
ψ2(x)p(x) dx,

B(ψ, p) =
∫

ψ′(x)p(x) dx.

For M-estimates (2), the following result holds [5].

Theorem 1. (Huber, 1964) Under regularity conditions, M-estimates satisfy the minimax property

AV(ψ∗, p) ≤ AV(ψ∗, p∗) = sup
p∈P

inf
ψ∈Ψ

AV(ψ, p) ≤ AV(ψ, p∗), (4)

where p∗(x) is the least informative (favorable) density p∗ minimizing Fisher information for
location I(p) over the class P :

p∗ = arg min
p∈P

I(p), I(p) =
∫ [ p′(x)

p(x)

]2

p(x) dx. (5)

From (4) and (5), it follows that the minimax function of contrast and score function
are given by the maximum likelihood method for the least informative density p∗:

ρ∗(x) = − log p∗(x), ψ∗(x) = −p∗(x)′/p∗(x). (6)

Thus, the pair (ψ∗, p∗) is the saddle-point of the functional AV(ψ, p). The right-hand
part of inequality (4) is the Rao–Cramér inequality:

AV(ψ, p∗) ≥ AV(−p∗′/p∗, p∗) = 1
/ ∫

(p∗(x)′)2/p∗(x) dx = 1/I(p∗) ,

whereas its left-hand part guarantees the asymptotic accuracy of robust minimax estimation
with the following upper bound upon the asymptotic variance of the minimax variance
robust M-estimate of location: AV(ψ∗, p) ≤ 1/I(p∗).

The key point of the minimax approach is the solution of the variational problem (5):
further, various classes P with the corresponding least informative densities p∗ and mini-
max estimates are enlisted.

Now, we recall the Huber’s classical solution for ε-contaminated normal distributions
(Tukey’s gross-error model):

Pε = {p : p(x) ≥ (1− ε)ϕ(x), 0 ≤ ε < 1}, (7)

where ϕ(x) = (2π)−1/2 exp(−x2/2) is the standard normal distribution density.

Theorem 2. (Huber, 1964) In the class Pε, the least informative density p∗ and the optimal score
function has the following form [2]:

p∗(x) = pHuber(x) =
{

(1− ε)ϕ(x), |x| ≤ k,
C exp(−D|x|), |x| > k,

(8)
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ψ∗(x) = ψHuber(x) =
{

x, |x| ≤ k,
CD sgn (x), |x| > k,

(9)

where the parameters C, D, and k satisfy the conditions of norming, continuity, and continuous
differentiability of the solution at x = k:∫

p∗(x) dx = 1, p∗(k− 0) = p∗(k + 0), p∗′(k− 0) = p∗′(k + 0).

Finally, we get the linear bounded score ψHuber(x) = max{−k, min{x, k}}, where k
depends on the value of the contamination parameter ε, as follows:

2 ϕ(k)
k
− 2 Φ(−k) =

ε

1− ε
, Φ(x) =

∫ x

−∞
ϕ(t) dt;

the values of the parameter k = k(ε) are tabulated in Reference [5].
The particular cases of this solution for ε = 0 and ε → 1 are given by k → ∞ (the

sample mean) and k = 0 (the sample median), respectively.
The Huber’s score function ψHuber(x) is a robust version of the ML estimation: in the

center |xi − θ| ≤ k, the data are processed by the ML method, and they are trimmed within
the exponential distribution tails |xi − θ| > k. In the limiting case of a completely unknown
density as ε→ 1, the minimax variance M-estimate of location tends to the sample median.

2.2. Free Extremals of the Basic Variational Problem

Consider the problem of minimization of Fisher information for location (5) under
two basic side conditions of non-negativeness and norming: p(x) ≥ 0,

∫ ∞
−∞ p(x) dx = 1.

Set
√

p(x) = q(x), and rewrite this minimization problem as

minimize I(p) = 4
∫ ∞

−∞

(
q′(x)

)2 dx under
∫ ∞

−∞
q2(x) dx = 1.

Introducing the Lagrange multiplier λ related to the norming condition, we obtain
the following differential equation for the function q(x): 4q′′(x) + λq(x) = 0.

The general solutions of this harmonic oscillator equation have the well-known forms
depending on the sign of λ = 4k2: (i) the exponential q(x) = C1ekx + C2e−kx, the cosine
q(x) = C1 sin kx + C2 cos kx, and the linear q(x) = C1 + C2x, where k = ±

√
λ/2.

Further, we show that all these forms work in the structures of least informative
distribution densities.

2.3. Least Informative Distributions

The neighborhoods of normal, generally, are not the only models of interest. In real-life
applications, the information about the distribution central part tails, its moments, and/or
subranges is rather often available. The empirical distribution and quantile functions, his-
tograms, and kernel estimates, together with their tolerance limits, provide other examples.
To enhance the efficiency of robust estimates, this information can be used in minimax
settings.

Further, we deal with symmetric distribution densities p(−x) = p(x). Evidently,
distribution densities must also satisfy the non-negativeness and norming conditions
common for all classes. For brevity, we do not write out all these conditions any time we
define a distribution density class.

Now, we enlist several examples of distribution classes convenient for the description
of a prior knowledge about data distributions [7].

(1) The class of non-degenerate densities [15]: P1 = {p : p(0) ≥ 1/(2a) > 0}. The pa-
rameter a of this class characterizes the dispersion of the central part of a distribution.
The least informative density in this class is given by the double-exponential or
Laplace density [16]: p∗1(x) = L(x; 0, a) = 2a−1 exp(−|x|/a). This result is quite
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natural if one recalls the exponential form of free extremals for the basic variational
problem.

(2) The class P2 of distribution densities with a bounded variance:

P2 =

{
p : σ2(p) =

∫ ∞

−∞
x2 p(x) dx ≤ σ2

}
.

All distribution densities with bounded variances are the members of this class.
Evidently, the Cauchy-type distributions do not belong to it.
The least informative density in this class is normal [17]:

p∗2(x) = N(x; 0, σ) =
1√
2πσ

exp
(
− x2

2σ2

)
.

(3) The classP3 of approximately normal distribution densities is defined by Equation (7):
{p : p(x) ≥ (1− ε)ϕ(x), 0 ≤ ε < 1}.

(4) The class of finite distributions: P4 =
{

p :
∫ l
−l p(x) dx = 1

}
. This class defines the

boundaries of the data (i.e., the inequality |X| ≤ l holds with probability one), and
there is no more information about this distribution besides the boundary conditions
of smoothness: p(±l) = p′(±l) = 0.
The least informative density in this class has the cosine-squared form [15]:

p∗4(x) =


1
l

cos2
(πx

2l

)
for |x| ≤ l,

0 for |x| > l.

(5) The class of distributions with a bounded interquantile distribution mass:

P5 =

{
p :

∫ l

−l
p(x) dx ≥ 1− β

}
, 0 ≤ β < 1.

The parameters l and β are assumed given. The restriction upon the interquantile mass
means that P(|X| ≤ l) ≥ 1− β. We can redefine this class in a different way as the class

with an upper-bounded interquantile range IQRβ = P−1
(

1 + β

2

)
− P−1

(
1− β

2

)
≤

2l, where P(x) is a probability density function.
The least informative density in this class has both the cosine and exponential parts
working at the center and tail areas, respectively [7],

p∗5(x) =
{

A1 cos2(B1x) for |x| ≤ l,
A2 exp(−B2|x|) for |x| > l,

where the constants A1, A2, B1, and B2 are determined from the simultaneous equa-
tions (restrictions) of the class P5, namely the conditions of normalization and upon
the distribution interquantile range, and the conditions of continuity and continuous
differentiability at x = l (for details, see Reference [7]). It is worth noting that the
classes P1 and P4 are the particular cases of the class P5 when β → 0 and β = 1,
respectively.

3. Hampel’s Robust and Shurygin’s Stable Estimates of Location

Robust methods have lower sensitivity to possible departures from the accepted
distribution models as compared to conventional statistical methods. To analyze the
sensitivity of estimation, it is natural to have its specific indicator. In what follows, we
introduce these indicators, namely the influence function and related to it measures.
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3.1. Hampel’s Local Approach to Robustness

Let P be a distribution function corresponding to p ∈ P , the class of distribution
densities, and let T(P) be a functional defined in a subset of all distribution functions. The
natural estimate defined by T is Tn = T(Pn), i.e., the functional computed at the sample
distribution function Pn.

The influence function IF(x; T, p) of this functional is defined as

IF(x; T, p) = lim
t→0

T((1− t)P + t∆x)− T(P)
t

, (10)

where ∆x is the degenerate distribution taking mass 1 at x [6].
The influence function measures the impact of an infinitesimal contamination at

x on the value of an estimate, formally being the Gâteaux derivative of the functional
T(P). For an M-estimate with a score function ψ, the influence function is proportional
to it: IF(x; ψ, p) = ψ(x)/B(ψ, p), where the term B(ψ, p) stands in Equation (3) for the
asymptotic variance of M-estimates.

Based on the influence function, several local measures of robustness are defined [6],
including the gross-error sensitivity of T at p:

γ∗(T, p) = sup
x
|IF(x; T, p)|.

This indicator of sensitivity gives an upper bound upon the asymptotic estimate bias
and measures the worst influence of an infinitesimal contamination on the value of an
estimate. Maximizing the efficiency of an M-estimate of location under the condition of a
bounded gross-error sensitivity at the normal distribution

max
ψ

e f f (ψ, ϕ) under γ∗ ≤ γ,

where e f f (ψ, p) =
1

AV(ψ, p)I(p)
formally leads to the Huber’s minimax linear bounded

score ψHuber(x) = max{−k, min{x, k}} in the class of contaminated normal distributions
[6]. This particular result confirms the following general observation: the best estimates
within both approaches, Huber’s minimax and Hampel’s local, are rather close in their
performances.

3.2. Meshalkin-Shurygin’s Stable Estimates of Location

This topic is partially reversal to the conventional setting: the maximum of some
measure of sensitivity is minimized under the guaranteed value of the estimate variance
or efficiency.

The conventional point-wise local measures of sensitivity, such as the influence and
change-of-variance functions [6] are not appropriate here—a global indicator of sensitivity
is desirable. We show that a novel global indicator of robustness proposed by Shurygin [18],
the estimate stability, is closely related to the classical variation of the functional of the
estimate asymptotic variance. Although the related theory has been developed for stable
estimation of an arbitrary parameter of the underlying distribution, here, we focus on
stable estimation of location.

A measure of the M-estimate sensitivity called variance sensitivity (VS) is introduced
in Reference [19]. Formally, it is defined as the Lagrange functional derivative of the
asymptotic variance (3):

VS(ψ, p) =
∂AV(ψ, p)

∂p
=

∂

∂p

( ∫
ψ2(x)p(x) dx

(
∫

ψ′(x)p(x) dx)2

)
=

∫
ψ2(x) dx

(
∫

ψ′(x)p(x) dx)2 . (11)

Equation (11) gives a global measure of the stability of an M-estimate in a model,
where the outliers occur uniformly anywhere on the real line. The boundness of the
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Lagrange derivative (11) holds under the condition of square integrability of ψ with the
corresponding redescending scores when ψ(x)→ 0 for |x| → ∞.

In Reference [7], it is shown that the principal part of the variation δAV(ψ, p) of
the asymptotic variance AV(ψ, p) with respect to ||δp|| is proportional to the variance
sensitivity (11) or to the Lagrange derivative of the asymptotic variance: δAV(ψ, p) ∝
∂AV(ψ, p)/∂p .

Further, consider the following optimization problem: what is the minimum variance
sensitive score function for a given distribution density p? The solution of this optimization
problem is given by the minimum variance sensitive (MVS) score function:

ψMVS(x) = arg min
ψ

VS(ψ, p) = −p′(x). (12)

The estimate with this optimal score function (12) is called as the estimate of minimum
variance sensitivity with VSmin = VS(ψMVS, p). We define a global measure of the stability
of any M-estimate comparing an estimate variance sensitivity with its minimum

0 ≤ stb(ψ, p) = VSmin(p)/VS(ψ, p) ≤ 1 .

A number of optimization criteria settings with different weights for efficiency and
stability of M-estimates of location have been proposed and solved; in other examples,
efficiency is maximized under guaranteed stability, and vice versa [18]. Practically in all
these cases, we deal with the score functions ψopt(x) with the following limiting forms:
the maximum likelihood case ψopt(x)→ ψML(x) = −p′(x)/p(x) when the requirement of
high efficiency mostly matters and the opposite redescending case ψopt(x)→ ψMVS(x) =
−p′(x) when the requirement of high stability is important.

A compromise case is given by a stable estimate called radical with equal efficiency
and stability, e f f (ψ, p) = stb(ψ, p), desirably both highly efficient and stable: its score
function is given by

ψrad(x) = ψML(x)
√

p(x) = −p′(x)/
√

p(x) . (13)

Finally, it should be noted that the minimum sensitivity and radical estimates belong
to the class of M-estimates with the exponentially weighted maximum likelihood score
functions previously proposed by Meshalkin [20].

4. Asymptotic Efficiency of M-Estimates: A Comparative Study

Here, we compare the asymptotic efficiency performance of various robust and sta-
ble estimates of location at the conventional in robustness studies distributions: some
particular results can be found in Reference [19,21]. We mainly focus on the minimax
variance estimates for distributions with bounded interquantile ranges, as until present,
their performance has not been thoroughly studied. It is important that some obtained
results are unexpected and surprising.

4.1. Robust and Stable M-Estimates of a Location Parameter

We test the following M-estimates of location: (i) the sample mean and median,
(ii) the Huber’s minimax variance M-estimate with the linear bounded score ψHuber(x) =
max [−1.14, min (x, 1.14)] optimal for ε-contaminated standard normal distributions with
the parameter of contamination ε = 0.1, (iii) the Hampel’s M-estimate with the redescend-
ing three-part score

ψHampel(x) =


x for 0 ≤ |x| ≤ a,
a sgn(x) for a ≤ |x| ≤ b,

a
r− |x|
r− b

sgn(x) for a ≤ |x| ≤ b,

0 for r ≤ |x|,
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where the parameters a = 1.31, b = 2.039, and r = 4 (see Reference [6], pp. 166–167), (iv) the
minimax variance M-estimates with the scores ψβ(x) for various values of the parameter β :
0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, and (v) the stable Shurygin’s minimum variance sensitivity
and radical M-estimates with the scores ψMVS(x) = −p′(x) and ψrad(x) = −p′(x)/

√
p(x),

respectively.

4.2. Data Distributions

In our study, the following distribution densities are used:
(i) the standard normal p(x) = N(x; 0, 1) = (2π)−1/2 exp(−x2/2),
(ii) the standard Laplace p(x) = L(x; 0, 1/

√
2) = 2−1/2 exp(−

√
2|x|),

(iii) the standard Cauchy p(x) = C(x; 0, 1) = π−1(1 + x2)−1, and
(iv) the heavy-tailed Tukey gross-error model as the Cauchy contaminated normal density
p(x) = 0.9N(x; 0, 1) + 0.1C(x; 0, 1).

4.3. Asymptotic Efficiency

The asymptotic efficiency of M-estimates is numerically computed as follows:

e f f (Tn) =
Var(TML)

Var(Tn)
=

(
∫

ψ′(x)p(x) dx)2

I(p)
∫

ψ2(x)p(x) dx
.

5. Conclusions

From Table 1, it follows:

(1) As usual, the performance of the sample mean under heavy-tailed Cauchy and
contaminated normal distributions is awful. Designed for these models, Huber’s
and Hampel’s M-estimates perform well except the Laplace distribution case. This
distribution with moderately heavy tails against a sharp peak at the center is a rather
tough test for the asymptotic performance of M-estimates of location, especially as
compared to the Cauchy distribution case. Recall that the Laplace and distributions
close to it are the least informative ones in wide classes of distributions, for instance, in
the class Pβ with the parameter β close to unit (the corresponding minimax variance
M-estimates perform quite well in these cases). For a statistical user, the version with
a bounded IQR (interquartile range, β = 1/2) seems a reasonable choice.

(2) Surprisingly, the proposed minimax variance M-estimates with the scores ψβ outper-
form the classical robust Huber’s and Hampel’s M-estimates at the normal, although
the shape of the least informative distribution is not at all normal: note that the Taylor
expansion of the cosine2-bell shape is close to the exponential one with small values
of β. Moreover, these M-estimates are better than the classical robust estimates in
heavy-tailed distribution models. We explain this effect by the nature of the distribu-
tion class Pβ—it is one of the most wide possible distribution classes. Finally, these
M-estimates and their statistical properties can be obtained in a closed analytical form.

(3) The globally stable Meshalkin-Shurygin’s radical M-estimate also outperforms the
classical robust Huber’s and Hampel’s M-estimates at the heavy-tailed Laplace and
Cauchy distributions.
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Table 1. Asymptotic efficiency (two best values are boldfaced).

M-Estimate Normal Laplace Cauchy Tukey Gross Error

mean 1 0.500 0 0
median 0.636 1 0.811 0.678

Huber’s linear bounded 0.924 0.669 0.759 0.953
Hampel’s three-part 0.911 0.644 0.869 0.946

ψ0.01 0.895 0.310 0.250 0.747
ψ0.1 0.976 0.503 0.484 0.948
ψ0.5 0.844 0.799 0.765 0.962
ψ0.9 0.679 0.965 0.898 0.825
ψ0.99 0.641 0.995 0.859 0.727
MVS 0.650 0.750 0.800 0.710

radical 0.840 0.890 0.920 0.890

Finally, we outline the prospective future works: (i) an extension of the proposed
minimax variance M-estimates to the multivariate case and the classes with simultaneously
bounded subranges of different parameter β values—in the latter case, we may expect
a uniformly better performance; (ii) a generalization of the Meshalkin-Shurygin’s stable
estimates to the multivariate case; and (iii) a thorough comparative study of the small
sample performance of M-estimates of location—Monte Carlo experiments show a slightly
better performance of the classical Huber’s and Hampel’s estimates in this case.
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