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Abstract: In this paper, the sinc-derivative collocation approach is used to solve second order
integro-differential boundary value problems. While the derivative of the unknown variables is
interpolated using sinc numerical methods, the desired solution and the integral terms are evaluated
through numerical integration and all higher order derivatives are approximated through successive
numerical differentiation. Suitable transformations are used to reduce non-homogeneous boundary
conditions to homogeneous. Comparison of the proposed method with different approaches that
were previously considered in the literature is carried out in order to test its accuracy and efficiency.
The results show that the sinc-derivative collocation method performs well.

Keywords: integro-differential equation; boundary value problems; sinc-derivative; numerical methods;
sinc-collocation

1. Introduction

A wide range of real world processes that are explicitly influenced by the history and the
additive nature of the system are modelled using integro-differential boundary value problems
(IDBVPs). These models constitute boundary value problems involving differential as well as
integral terms in the governing model equations. IDBVPs have been used to model many scientific
and engineering problems including, population dynamics [1–4], forestry [5], nano-structures [6],
financial models [7], the theory of viscoelasticity [8], neuroscience models [9], image processing [10],
geotechnical problems [11], cancer research [12] and pest control [13].

Due to their inherent complication, there are no analytic solutions of most IDBVPs.
Therefore, numerical methods are often used to approximate their exact solutions including
reproducing kernel Hilbert space method [14], semi-orthogonal spline wavelets [15], the Chebychev
finite difference method [16,17], the Legender polynomials [18], the multistep collocation method [19],
the compact finite difference method [20], the Tau method [21,22], the domain decomposition
method [23], and the sinc numerical method [24].

In this work, the sinc-derivative collocation numerical technique is used to approximate the
solution of a general second order integro-differential boundary value problem of the form:

y′′(x) + p(x)y′(x) + q(x)y(x) + λ1

∫ x

a
k1(x, t)y(t)dt + λ2

∫
Γ

k2(x, t)y(t)dt = g(x, y(x)) (1)

such that t, x ∈ Γ = [a, b], y(a) = γl , y(b) = γr

where the coefficients λ1, λ2, the functions p(x), q(x), and g(x, y(x)) and the integral kernels k1(x, t)
and k2(x, t) are all given. Note that, g(x, y(x)) is generally nonlinear in y(x) which is the variable of
the IDBVP that needs to be determined. It is assumed that all the functions in this equation satisfy
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the properties which can guarantee that the IDBVP solutions exists and is unique. We note that the
method described in this paper can easily be extended to higher order IDBVPs.

Sinc numerical methods have become more prevalent in recent years as a method of solving
a wide range of applications involving boundary value problems [25–32]. Partly this is due to
their high efficiency in handling singular boundary value problems but also due to their ability
to provide highly accurate solutions with exponentially decaying errors [33–36]. Recently, Yegneh et al.
effectively utilized the sinc-collocation method to approximate the solutions of the above IDBVP [24].
By transforming the IDBVP into a system of discrete equations using the sinc method, they obtained
approximate solutions of IDBVPs. In their paper, Yegneh et al. used the conventional strategy of
implementing sinc method which typically interpolates the unknown variable and obtained higher
derivatives via numerical differentiation. In the current approach the sinc-derivative collocation
is used to interpolate the derivative of the unknown variable and obtain the unknown variable
and the integral terms via sinc numerical integration [37]. The advantage of the sinc-derivative
collocation approach is to average and damp out the inherent numerical errors often associated with
numerical differentiation [37,38]. By improving the accuracy of the unknown derivative variable,
the sinc-derivative collocation method has been shown to provide highly accurate solutions [39–41].

We use the sinc-derivative collocation approach to approximate the IDBVP given by Equation (1)
in which variable transformation is used to reduce nonhomogeneous boundary conditions to
homogeneous ones. Several illustrative examples that have been considered in earlier literatures that
use comparable numerical methods are used to investigate the effectiveness of the current approach.
The investigation demonstrates that our approach is effective and accurate.

Following Section 2 where a brief discussion on the preliminaries of the sinc-numerical method
is presented, the sinc-derivative collocation approach for solving IDBVPs is presented in Section 3.
Illustrative examples that were considered in recent literature are presented in Section 4 in order to
demonstrate the performance of our approach. A brief conclusion is provided in Section 5.

2. Sinc Preliminaries

The sinc function is defined by

sinc(x) =

{ sin(πx)
πx if x 6= 0

1 x = 0
(2)

For a function f : R→ R and a mesh-size h, the infinite series

C( f , h)(x) =
∞

∑
k=−∞

f (kh)S(k, h)(x) (3)

where

S(k, h)(x) = sinc
(

x− kh
h

)
(4)

is known as the Whittaker cardinal expansion of the function f whenever it converges [34].
For computational purposes, the sinc approximation is truncated using 2N + 1 collocation points as

CN( f , h)(t) ≡
N

∑
i=−N

f (ih)S(i, h)(t) (5)

where N is a positive integer . As established via Theorems 1–4 which are presented after the following
definition [33], there is a class of functions for which errors associated with sinc approximations
decay exponentially.
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Definition 1. B (Dd) represents a the class of analytic functions f in Dd which satisfy

I( f , Dd) ≡ lim
ε→0

∫
∂Dd(ε)

| f (z)||dz| < ∞

where
Dd =

{
z = s + it

∣∣∣ |t| < d <
π

2

}
,

Dd(ε) =

{
z = s + it

∣∣∣∣|s| < 1
ε

, |t| < d(1− ε)

}
, 0 < ε < 1,

and ∂Dd represents the boundary of Dd.

For functions that decay single exponentially, we have the following theorem, due to Stenger [33].

Theorem 1. (Stenger [33]). If f (t) ∈ B(Dd) and for constants α > 0 and β > 0

| f (t)| ≤ αexp (−β|t|) ∀t ∈ R

then:

sup
−∞≤t≤∞

∣∣∣∣∣ f (t)− N

∑
i=−N

S(i, h)(t) f (ih)

∣∣∣∣∣ ≤ C
√

Nexp
(
−
√

dπβN
)

for some constant C > 0 and taking the mesh-size h for the sinc-collocation to be:

h =

√
dπ

βN
.

While for double exponentially decaying functions we have the following theorem due to
Sugihara [42]

Theorem 2. (Sugihara [42]). If f (t) ∈ B(Dd) and for constants α > 0 and β > 0

| f (t)| ≤ αexp (−βexp(γ|t|)) ∀t ∈ R

then:

sup
−∞≤t≤∞

∣∣∣∣∣ f (t)− N

∑
i=−N

S(i, h)(t) f (ih)

∣∣∣∣∣ ≤ Cexp
(

−πγNd
log(πγNd/β)

)
for some constant C > 0 and taking the mesh-size h for the sinc-collocation to be:

h =
log(πγNd/β)

Nγ
.

For using these interpolations over Γ, we use a variable transform φ : [a, b]→ R and an associated
inverse transform ψ : R → [a, b]. Combined with the variable transform, the truncated cardinal
expansion of a function over an interval [a, b] can be written as

C( f , h)N(t) =
N

∑
i=−N

f (ψ(ih))(S(i, h) ◦ φ)(t) (6)

The theorems below which follow directly from Theorems 1 and 2 above quantify the error bound
associated with this interpolation [33,42].
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Theorem 3. If t = ψ(ξ) and f (ψ(ξ)) ∈ B(Dd) and for constants α > 0 and β > 0

| f (ψ(ξ))ψ′(ξ)| ≤ α exp(−β|ξ|)) ∀ξ ∈ R

then:

sup
−∞≤t≤∞

∣∣∣∣∣ f (t)− N

∑
i=−N

f (ψ(ih))(S(k, h) ◦ φ)(t)

∣∣∣∣∣ ≤ C
√

Nexp
(
−
√

dπβN
)

for some constant C > 0 in which the mesh-size h for the sinc-collocation is taken as:

h =

√
dπ

βN
.

Theorem 4. If t = ψ(ξ) and f (ψ(ξ)) ∈ B(Dd) and for constants α > 0 and β > 0

| f (ψ(ξ))ψ′(ξ)| ≤ α exp(−β exp(γ|ξ|)) ∀ξ ∈ R

then:

sup
−∞≤t≤∞

∣∣∣∣∣ f (t)− N

∑
i=−N

f (ψ(ih))(S(i, h) ◦ φ)(t)

∣∣∣∣∣ ≤ Cexp
(

−πγNd
log(πγNd/α)

)
for some constant C > 0 and taking the mesh-size h for the sinc-collocation to be:

h =
log(πγNd/α)

Nγ
.

The frequently used single exponential transformations φS(x) is given by [33]

ξ = φS(x) = log
(

x− a
b− x

)
(7)

with the corresponding inverse:

x = ψS(ξ) =
b + a

2
+

b− a
2

tanh (ξ) . (8)

Similarly the double exponential transformation φD(x) is given by ([35])

ξ = φD(x) = log
(

G +
√

G2 + 1
)

, G =
1
π

φS(x) (9)

with the corresponding inverse:

x = ψD(ξ) =
b + a

2
+

b− a
2

tanh
(π

2
sinh(ξ)

)
. (10)

3. The Derivative Interpolation Method for IDBVPs

In order to use the sinc-derivative approach to solve the IDBVP given by (1), we approximate the
derivative of the unknown variable y(x) as

y′N(x) = u′N(x) + r′(x) (11)

where u′N(x) is the collocation part of the solution’s derivative which is given by:

u′N(x) =
N

∑
k=−N

ck(S(k, h) ◦ φ)(x) (12)
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where the cks are 2N + 1 unknown sinc coefficients that need to be determined and r(x) is a quadratic
polynomial defined as:

r(x) = cN+1

(
(b− a)2 − (b− x)2

2(b− a)

)
+ cN+2

(
(x− a)2

2(b− a)

)
+ r(a) (13)

so that:

r′(x) = cN+1

(
b− x
b− a

)
+ cN+2

(
x− a
b− a

)
. (14)

Here, we define

cN+1 = y′N(a), cN+2 = y′N(b), and r(a) = yN(a) = γl . (15)

which imply that:

r′(a) = cN+1 = y′N(a), r′(b) = cN+2 = y′N(b), uN(a) = 0 (16)

so that the boundary conditions associated with the sinc collocation part, u′N(x) transform into
homogenous ones:

u′N(a) = u′N(b) = 0. (17)

Moreover
uN(b) + r(b) = uN(b) + cN+1

b− a
2

+ cN+2
b− a

2
+ γl = γr (18)

Hence the boundary condition on u′N becomes homogeneous as desired and the right-end
boundary condition (18) will be imposed when the IDBVP is discretized. This particular approach
of transforming the IDBVP into a homogeneous boundary conditions has been used by other
researchers [43,44].

Evaluating the expression in (11) at the collocation points given by

xl = ψ(lh) l = −N, . . . , N (19)

gives

u′N(xl) =
N

∑
k=−N

ckδ
(0)
l,k (20)

where

δ
(0)
k,l =

{
1 if k 6= l

0 if k = l

which yields
u′N(xl) = cl (21)

the second derivative is approximated by differentiating (11) as follows:

y′′N(x) =
N

∑
k=−N

ck
d

dx
((S(k, h) ◦ φ)(x)) + r′′(x) (22)

=
N

∑
k=−N

ck
d

dφ
((S(k, h) ◦ φ)(x)) φ′(x) + r′′(x).

Hence at the sinc nodes xl

y′′N(xl) =
N

∑
k=−N

ckδ
(1)
k,l φ′(xl) + r′′(xl) = u′′(xl) + r′′(xl) (23)
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where
d

dφ
((S(k, h) ◦ φ)(x)

∣∣∣∣
x=xl

= δ
(1)
k,l =

1
h

0 k = l
(−1)l−k

(l−k) k 6= l.
(24)

The expression for the solution yN(x) is obtained by integrating Equation (11) [37]:

yN(x) =
∫ x

a
u′N(s)ds + r(x). (25)

Hence

yN(xl) =
∫ xl

a
u′N(s)ds + r(xl) (26)

=
∫ xl

a

N

∑
k=−N

(ck(S(k, h) ◦ φ)(s)) ds + r(xl)

=
N

∑
k=−N

ck

∫ xl

a
((S(k, h) ◦ φ)(s)) ds + r(xl)

=
N

∑
k=−N

 ckδ
(−1)
l,k

φ′(xk)

+ r(xl) = u(xl) + r(xl) (27)

where

δ
(−1)
l,k = h

{
1
2 + Si(π(l−k))

π if k 6= l
1
2 if k = l

(28)

and Si(z) is given by

Si(z) =
∫ z

0

sin(t)
t

dt.

3.1. Evaluating the Integral Terms

Consider the first integral in Equation (1):∫ x

a
k1(x, t)u(t)dt

Separate this integral into the parts k1(x, t) and u(t) and perform an integration by parts to get

∫ x

a
k1(x, t)u(t)dt = M1(x, t)u(t)

∣∣∣∣x
a
−
∫ x

a
M1(x, t)u′(t)dt (29)

where M1(x, t) is the antiderivative of k1(x, t) with respect to the variable t. Therefore, due to the
homogeneous boundary conditions we get:∫ x

a
k1(x, t)u(t)dt = M1(x, x)u(x)−

∫ x

a
M1(x, t)u′(t)dt (30)

Evaluating this expression at the collocation points xl and using (27) we obtain:∫ xl

a
k1(xl , t)u(t)dt =M1(xl , xl)u(xl)−

∫ xl

a
M1(xl , t)u′(t)dt (31)

=M1(xl , xl)
N

∑
k=−N

 ckδ
(−1)
l,k

φ′(xk)

+
N

∑
k=−N

 ck M1(xl , xk)δ
(−1)
l,k

φ′(xk)

 . (32)
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Similarly, the second integral term evaluated at the collocation points xl becomes:

∫ b

a
k2(xl , t)u(t)dt =M2(xl , b)u(b)−

∫ b

a
M2(xl , t)u′(t)dt (33)

=M2(xl , b)
N

∑
k=−N

(
ck

φ′(xk)

)
+

N

∑
k=−N

(
ck M2(xl , xk)

φ′(xk)

)
(34)

where M2(x, t) is the antiderivative of k2(x, t) with respect to the variable t.

3.2. Discretizing the IDBVP

Applying the decomposition given by (11) the IDBVP of Equation (1) become:

u′′(x) + p(x)u′(x) + q(x)u(x) + λ1

∫ x

a
k1(x, t)u(t)dt + λ2

∫
Γ

k2(x, t)u(t)dt = ĝ(x, u(x)) (35)

such that x, t ∈ Γ = [a, b], u(a) = u(b) = 0

where

ĝ(x, u(x)) = g(x, u(x) + r(x))− r′′(x)− p(x)r′(x)− q(x)r(x)− λ1
∫ x

a k1(x, t)r(t)dt− λ2
∫

Γ k2(x, t)r(t)dt (36)

Hence, the discretized version of the IDBVP of Equation (1) at the 2N + 1 sinc nodes,
xl , l = −N,−N + 1, ..., N − 1, N, become:

N

∑
k=−N

Al,kck = Fl = ĝ(xl , u(xl)) (37)

where

Al,k = δ
(1)
k,l φ′(xl) + p(xl) +

Bl,k
φ′(xk)

, k = −N,−N + 1, ..., N − 1, N, Al,N+1 = Al,N+2 = 0 (38)

Bl,k = δ
(−1)
l,k [q(xl) + λ1 (M1(xl , xl) + M1(xl , xk))] + λ2 (M2(xl , xl) + M2(xl , xk)) .

The boundary conditions (18) become:

N

∑
k=−N

AN+1,kck + AN+1,N+1cN+1 + AN+1,N+2cN+2 = FN+1 = γr − γl (39)

where
AN+1,k =

1
φ′(xk)

, AN+1,N+2 = AN+1,N+2 =
b− a

2
(40)

Note that Equations (37) and (39) entail a system of 2N + 2 equations for 2N + 3 unknowns
ck, k = −N,−N + 1, ..., N + 1, N + 2. Therefore, we need an additional equation in order to close
the system and solve for the n = 2N + 3 unknowns. This is done by applying a discretization at an
additional sinc point, xL, L = −N − 1 which yields:

N

∑
k=−N

AL,kck = FL = ĝ(xL, u(xL)) (41)

AL,k = δ
(1)
k,L φ′(xL) +

BL,k
φ′(xk)

, k = −N,−N + 1, ..., N − 1, N, AL,N+1 = AL,N+2 = 0 (42)

BL,k = δ
(−1)
L,k [q(xL) + λ1 (M1(xL, xL) + M1(xL, xL))] + λ2 (M2(xL, xL) + M2(xL, xk)) .
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Define the n× 1 vector C by:

C = [c−N , ...c0, ..., cN , cN+1, cN+2]
T (43)

= [u′N(x−N)...u′N(x0), ...u′N(xN), y′N(a), y′N(b)]
T. (44)

Therefore, Equations (37), (39) and (41) consist of n equations for the n unknowns which are given
by the matrix equation

AC = F (45)

where the matrix entries of the matrix A and the vector function F are as described above.
Once Equation (45) is solved, the coefficients are used to compute the unknown variable yN(x) at the
sinc nodes using Equation (27). Note that the values of y′N(a) and y′N(b) are also directly determined.

Note that, in the special case where the function g in the IDBVP is independent of y(x),
Equation (45) represents a linear matrix equation which can be solved using standard methods.
However, in general g(x, y(x)) is a nonlinear function of y(x) and therefore Equation (45) is a nonlinear
system which must be solved using Newton’s method or other nonlinear solvers.

4. Numerical Illustrations

In order to demonstrate the enhanced rate of convergence and accuracy of the sinc-derivative
collocation method with respect to other approaches, we solve the following problems considered
in recent literatures. All the computations of the sinc-derivative results are performed using
Mathematica 11.3.

Example 1. The first equation we attempt to solve is an integro-differential equation considered in [24,45].

y′′(x) +
1√
x

y′(x) +
1
x

y(x) +
∫ x

0
(t + x)y(t)dt +

∫ 1

0
txy(t)dt

− 1
1 + sin(y2(x))

− ey9(x) + y11(x) = f (x), x ∈ [0, 1] (46)

subject to y(0) = 0, y(1) = 0 (47)

where

f (x) =
1√
x
(
(2
√

x + x− 4x
√

x− x2) cos(x)

+(1−
√

x− 2x− 2x
√

x + x2√x) sin(x)
)
+ 2(1− 4x− x2 + x3) cos(x)

+(6 + 3x− 5x2) sin(x)− (2 + 4 cos(1)− 5 sin(1))x− 1

1 + sin
(
((x− x2) sin(x))2

)
−e((x−x2) sin(x))

9
+
(
(x− x2) sin(x)

)11
+ 2(x− 1). (48)

The solution to this equation is y(x) = (x− x2) sin(x).
Comparison of the current approach with other approaches is depicted in Table 1, which represents

the absolute error of y(x) for N = 25. The result is compared with that of [45] which approximates
solutions in the reproducing kernel space and with [24] which uses sinc-collocation method.
As demonstrated in the table, the current method is highly accurate in the entire domain of the
solution. The plot of the absolute errors y(x) using the sinc-derivative method described in Section 3 is
depicted in Figure 1 for various values of N. The result is highly accurate with a maximum absolute
errors of the solution 4.7 × 10−15 for N = 40. The plot of the absolute errors of y′(x) using the
sinc-derivative method is depicted in Figure 2 for various values of N.
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The logarithm plot of the maximum error as a function of the number of sinc nodes N using the
current method and that of [24] is shown in Figure 3. For the result of [24] , only the portion of the
graph that was reported in their paper is displayed. The plot shows the exponential decrease of the
errors with respect to N and confirms that the sinc-derivative approach is a highly accurate method
for solving IDBVPs.

Table 1. Comparison of absolute error in y(x) for Example 1.

x Current Method Method of [45] Method of [24]

0.08 1.23476× 10−10 4.6259× 10−5 2.8293× 10−6

0.16 1.15291× 10−10 4.81776× 10−5 8.9730× 10−6

0.32 1.67924× 10−10 4.16774× 10−5 7.3063× 10−6

0.48 1.28785× 10−10 3.48007× 10−5 1.2008× 10−5

0.64 5.02378× 10−11 2.96533× 10−5 8.7603× 10−6

0.80 1.55245× 10−10 2.69251× 10−5 4.9231× 10−6

0.96 9.52025× 10−11 2.39306× 10−5 1.0128× 10−6

0.0 0.2 0.4 0.6 0.8 1.0
0

1.×10-6

2.×10-6

3.×10-6

4.×10-6

5.×10-6

x

A
bs
ol
ut
e
E
rr
or

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0

2.×10-8

4.×10-8

6.×10-8

8.×10-8

1.×10-7

1.2×10-7

x

A
bs
ol
ut
e
E
rr
or

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0

2.×10-11

4.×10-11

6.×10-11

8.×10-11

1.×10-10

x

A
bs
ol
ut
e
E
rr
or

(c)

0.0 0.2 0.4 0.6 0.8 1.0
0

1.×10-15

2.×10-15

3.×10-15

4.×10-15

x

A
bs
ol
ut
e
E
rr
or

(d)

Figure 1. Plots of the absolute error of y(x) for Example 1 using the sinc-derivative interpolation for
various values of N. (a) N = 10; (b) N = 15; (c) N = 25; (d) N = 40.
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Figure 2. Plots of the absolute error of y′(x) for Example 1 using the sinc-derivative interpolation for
various values of N. (a) N = 10; (b) N = 15; (c) N = 25; (d) N = 40.
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Figure 3. Log of the max absolute errors for the method used in [24] and the current sinc-drivative
method as a function of the number of nodes (N) for Example 1 .

Example 2. The second IDBVP we attempt to solve is one that is considered in [46].

y′′(x)− 2y(x)−
∫ 1

−1
te−t cos(x)y(t)dt = x, x ∈ [0, 1]

subject to y(−1) = −1, y(1) = 1 (49)
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The solution to this equation is y(x) = c1e
√

2x + c2e−
√

2x + c3 cos(x) − 1
2 x, where c1 =

0.4206057265..., c2 = −0.3545613032... and c3 = −0.2662525683....
The plot of the absolute errors of the sinc-derivative solution for Example 2. is depicted in Figure 4.

for N = 25 and N = 40. The maximum absolute errors are 4.4× 10−10 for N = 25 and 2.9× 10−14

for N = 40. The best result presented in [46] has a maximum absolute error of 1.4× 10−6. Hence the
present method performs extremely well.
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Figure 4. Plots of the absolute error of y(x) for Example 2 using the sinc-derivative interpolation for
(a) N = 25 and (b) N = 40.

Example 3. The third IDBVP we attempt to solve is one that is considered in [24,47].

y′′(x) +
1

1 + y2(x)
+ xey(x) +

∫ x

0
xty(t)dt = f (x), x ∈ [0, 1]

subject to y(0) = 1, y(1) = 2, (50)

where

f (x) = 2 +
1

1 + (1 + x2)2 + xe1+x2
+

x3

4
(2 + x2) (51)

The solution to this equation is y(x) = x2 + 1
The maximum absolute errors reported for this problem in [24] are 1.9× 10−5 for N = 15 and

8.1× 10−8 for N = 30. Since Equation (13) gives r(x) = x2 + 1 for this IDBVP which is identical to the
exact solution y(x), the current numerical scheme for this problem naturally leads to the exact solution.

Finally, we note that the current numerical method resulted in a similar level of accuracies for
many other examples considered in the literature further demonstrating its excellent performance.

5. Conclusions

In this paper, the sinc-derivative collocation method was used to approximate the solution of
second order nonlinear integro-differential boundary value problems. In the sinc-derivative approach,
the unknown variable derivative is interpolated via sinc numerical methods and the desired solution
is obtained through numerical integration. Non-homogeneous boundary conditions are converted to
homogeneous ones via suitable transformations. The efficiency as well as the accuracy of the method
is demonstrated using illustrative examples which were recently considered using other approaches.
The results demonstrate the excellent performance of the sinc-derivative interpolation method for
solving integro-differential boundary value problems.

Author Contributions: Data curation, G.R.; Formal analysis, K.A.; Investigation, K.A.; Methodology, G.R.; Project
administration, K.A.; Software, G.R.; Supervision, K.A.; Validation, G.R.; Visualization, G.R.; Writing—original
draft, K.A.; Writing—review and editing, K.A. All the authors have equal contribution. All authors have read and
agreed to the published version of the manuscript.



Mathematics 2020, 8, 1637 12 of 13

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cushing, J.M. Integrodifferential Equations and Delay Models in Population Dynamics; Springer: Berlin/Heidelberg,
Germany, 1977.

2. Gushing, J.M. Volterra Integrodifferential Equations in Population Dynamics; Springer: Berlin/Heidelberg,
Germany, 2010.

3. Cushing, J.M. Periodic Time-Dependant Predator-Prey Systems. SIAM J. Appl. Math. 1977, 32, 82–95.
[CrossRef]

4. Mogilner, A.; Edelstein-Keshet, L. A non-local model for a swarm. J. Math. Biol. 1999, 38, 534–570. [CrossRef]
5. Kraemer, M.A.; Kalachev, L.V. Analysis of a Class of Nonlinear Integro-Differential Equations Arising in a

Forestry Application. Q. Appl. Math. 2003, 61, 513–535. [CrossRef]
6. Agranovicha, G.; Litsynb, E.; Slavova, A. Dynamical behavior of integro-differential boundary value

problems arising in nano-structures via Cellular Nanoscale Network approach. J. Comput. Appl. Math. 2019,
352, 62–71. [CrossRef]

7. Calvo-Garrido M.C.; Ehrhardt, M.; Carlos, V. Jump-diffusion models with two stochastic factors for pricing
swing options in electricity markets with partial-integro differential equations. Appl. Numer. Math. 2019,
139, 77–92. [CrossRef]

8. Shavlakadze, N. The effective solution of two-dimensional integro-differential equations and their
applications in the theory of viscoelasticity. ZAMM-J. Appl. Math. Mech. 2015, 95, 1548–1557. [CrossRef]

9. French, D.A. Identification of a free energy functional in an integro-differential equation model for neuronal
network activity. Appl. Math. Lett. 2004, 17, 1047–1051. [CrossRef]

10. Athavale, P.; Tadmor, E. Novel integro-differential equations in image processing and its applications.
In Computational Imaging VIII, Proceedings of the SPIE—The International Society for Optical Engineering, San Jose,
CA, USA, 17–21 January 2010; International Society for Optics and Photonics: Bellingham, WA, USA, 2010;
Volume 7533.

11. Poorooshasb, H.B.; Alamgir, M.; Miura, N. Application of an integro-differential equation to the analysis of
geotechnical problems. Struct. Eng. Mech. 1996, 4, 227–242. [CrossRef]

12. Pouchol, C.; Clairambault, J.; Lorz, A.; Trélat, E. Asymptotic analysis and optimal control of an
integro-differential system modelling healthy and cancer cells exposed to chemotherapy. J. Math. Pures Appl.
2015, 116, 268–308. [CrossRef]

13. Rodríguez, N. On an integro-differential model for pest control in a heterogeneous environment. J. Math. Biol.
2015, 70, 1177–1206. [CrossRef]

14. Abu Arqub, O.; Al-Smadi, M.; Shawagfeh, N. Solving Fredholm integro–differential equations using
reproducing kernel Hilbert space method. Appl. Math. Comput. 2013, 219, 8938–8948.

15. Lakestani, M.; Razzaghi, M.; Dehghan, M. Semiorthogonal spline wavelets approximation for Fredholm
integro-differential equations. Math. Probl. Eng. 2006, 2006, 1–12. [CrossRef]

16. Dehghan, M.; Saadatmandi, A. Chebyshev finite difference method for Fredholm integro-differential
equation. Int. J. Comput. Math. 2008, 85, 123–130. [CrossRef]

17. Sakran, M.R.A. Numerical solutions of integral and integro-differential equations using Chebyshev
polynomials of the third kind. Appl. Math. Comput. 2019, 351, 66–82.
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