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Abstract: In this study, we introduce set-valued Presi¢ type almost contractive mapping, Presic¢ type
almost F-contractive mapping and set-valued Presi¢ type almost F-contractive mapping in metric
space and prove some fixed point results for these mappings. Additionally, we give examples to
show that our main theorems are applicable. These examples show that the new class of set-valued
Presi¢ type almost F-contractive operators is not included in Presic¢ type class of set-valued Presi¢
type almost contractive operators.
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1. Introduction

Banach [1] introduced a famous fundamental fixed point theorem, also known as the Banach
contraction principle. There are various extensions and generalizations of the Banach contraction
principle in the literature. Presi¢ [2] gave a contractive condition on the finite product of metric spaces
and proved a fixed point theorem. Additionally, Ciri¢ and Presic¢ [3], Abbas et al. [4], Shehzad et al. [5],
Pacular [6], and Yesilkaya et al. [7] have extended and generalized these results. Some generalizations
and applications of the Presi¢ theorem can be seen in [8-11].

Considering the convergence of certain sequences S. B. Presi¢ [2] generalized Banach contraction
principle as follows:

Theorem 1. Let (X,d) be a complete metric space, k a positive integer and T : X* — X a mapping satisfying
the following contractive type condition

d(T(x1, %2, Xk), T(X2, X3, o0y Xg1)) < q1d(x1, X2) + q2d(x2, X3) + .. 4 qpd (X, Xg41), 1)

for every x1,xy, ..., Xgr1 in X, where g1, 4>, ..., qx are non negative constants such that g1 +qa + ... + q < 1.
Subsequently, there exist a unique point x in X such that T(x, x,...,x) = x. Moreover, if x1,x3, ..., X,
are arbitrary points in X and for n € N,

Xn+k = T(xnz Xn41r s xn+k—l)/ (n = 1/2/)
then the sequence {x,}"_, is convergent and

limx, = T(lim xy,, lim x,,, ..., lim x;,).
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Remark that condition (1) in the case k = 1 reduces to the well-known Banach contraction
mapping principle. Accordingly, Theorem 1 is a generalization of the Banach fixed point theorem.
Ciri¢ and Presi¢ [3] generalized the above result as follows:

Theorem 2. Let (X,d) be a complete metric space, k a positive integer and T : X* — X a mapping satisfying
the following contractive type condition

d(T(x1, %2, Xk), T(X2, X3, 00) Xp41)) < A max {d(xi, xi41)}, )

where A € (0,1) is constant and x1, X, ..., X11 are arbitrary elements in X. Subsequently, there exist a point x
in X such that T(x,x, ..., x) = x. Moreover, if x1, Xy, ..., Xy, are arbitrary points in X and for n € N,

Xk =T (Xn, Xpt1, oo Xpak—1), (m=1,2,..),
then the sequence {x,};_, is convergent and
limx, = T(lim xy,, lim x,,, ..., lim x;,).
If, in addition, we suppose that on a diagonal A\ < X*
A(T(u,u,..,u),T(v,v,..,v)) <d(u,o) (3)
holds for all u,v € X, with u # v, then x is the unique point in X with T(x, x, ..., x) = x.

In 1969, using Pompeiu-Hausdorff metric, Nadler [12] introduced the notion of set-valued
contraction mapping and proved a set-valued version of the well known Banach contraction principle.
Since then the metric fixed point theory of single-valued mappings has been extended to set-valued
mappings, see for examples [13-17]. Denote by P(X) the family of all nonempty subsets of X, CB(X)
the family of all nonempty, closed and bounded subsets of X and K(X) the family of all nonempty
compact subsets of X. It is well known that, H : CB(X) x CB(X) — R is defined by,

H(K,L) = max<{supd(k,L),supd(l,K)
kek leL

for all K, L € CB(X). Then H is a metric on CB(X), which is called the Pompeiu-Hausdorff metric
induced by d. For K, L € CB(X), we defined D(k, L) = inf{d(k,I) : | € L} and D(K, L) = sup{D(k, L) :
k € K}. We will use the following lemma:

Lemma 1. Let (X, d) metric spaces and K compact subsets of X. Afterwards, for x € X, there exists k € K,
such that
d(x, k) = D(x,K).
Lemma 2. [12] Let K and L be nonempty closed and bounded subsets of a metric space. Therefore, for any k € K,
D(k,L) < H(K,L).

Lemma 3. [12] Let K and L be nonempty closed and bounded subsets of a metric space and h > 1. Subsequently,
forall k € K, there exists | € L such that

d(k,1) < hH(K, L).
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Berinde [18-20] defined almost contraction (or (J, L)-weak contraction) mappings in a metric space.
In the same paper, Berinde [15] introduced the concepts of set-valued almost contraction (the original
name was set-valued (4, L)-weak contraction) and proved the following nice fixed point theorem:

Theorem 3. [15] Let (X, d) be a complete metric spaces, M : X — CB(X) be a set-valued almost contraction,
which is, there exist two constants 6 € (0,1) and L > 0, such that

H(Mx, My) < éd(x,y) + LD(y, Mx)
forall x,y € X. Subsequently, M is a set-valued almost contraction operator.

One of the most interesting generalizations of it was given by Wardowski [21]. First, we recall the
concept of F-contraction, which was introduced by Wardowski.
Let F be the set of all functions F : Ry — R satisfying the following conditions:

(F1) Fis strictly increasing. Thatis, B <y = F(B) < F(y) forall B,y € Ry
(F2) For every sequence {B}nen in Ry, limy, o B = 0if and only if limy,—,o0 F(Br) = —0
(F3) There exists a number z € (0, 1), such that limg_,o+ fF(p) = 0.

Definition 1. [21] Let (X, d) be a complete metric space and F € F. A mapping T : X — X is said to be an F-
contraction on X if there exists T > 0, such that

d(Tx, Ty) > 0 implies that T+ F(d(Tx, Ty)) < F(d(x,y))
forall x,y € X.

For more study on F-contractions, one may refer to [16,22-24]. Additionally, Altun et al. [17]
introduced set-valued F-contraction mappings and fixed point result for these type mappings on
complete metric space was given as:

Definition 2. [17] Let (X, d) be a complete metric space and F € F. A mapping T : X — CB(X) is said to be
a set-valued F- contraction if F € F and there exists T > 0 such that

H(Tx, Ty) > 0 implies that T+ F(H(Tx,Ty)) < F(d(x,y))
forall x,y € X.

Theorem 4. [17] Let (X, d) be a complete metric spaces and T : X — K(X) be a set-valued F-contraction,
then T has a fixed point in X.

Altun et al. [17] showed that we can get CB(X) instead of K(X), by adding the condition (F4) on
F, as follows:
(F4) F(inf M) = inf F(M) for all M < (0,0) with infM > 0.

If F satisfies (F1), then, it is satisfies (F4) if and only if it is right continuous. Let 7 be the family
of all functions F satisfying (F1) — (F4).

Altun et al. [16] using the concept of F-contractive mappings introduced the concept of set-valued
almost F-contractive mappings in metric spaces and proved fixed point theorems for such mappings.

In Section 1, some basic definitions, lemmas, and theorems in the literature that will be used
later in the paper are given. In Section 2, inspired and motivated by Nadler [12], Wardowski [21],
Berinde [15,18-20] and Altun et al. [16,24], and Abbas et al. [4], we consider appropriate conditions
for a class of mappings on Presi¢ type, set-valued almost contraction, single and set-valued almost
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F-contraction and establish some new fixed point results. We also present examples to illustrate our
main theorems. In the last section, we give conclusions.

2. Main Results

In this section, we give a fixed point theorem for set-valued Pres$i¢ type almost contractive
mapping. Later, we introduce Pres$i¢ type almost F-contractive mapping and set-valued Presi¢ type
almost F-contractive mapping in metric space and prove some fixed point results for these mappings.
Firstly, let us start with the definition of set-valued PreSi¢ type almost contractive mapping.

Definition 3. Let (X, d) be a metric space. We say that M : X" — CB(X) is a set-valued Presi¢ type almost
contraction mapping, where r is a positive integer, if there exist 6 € (0,1) and A = 0 such that

H(M(x1,x2, ..., X¢),M(x2, X3, ..., Xr41))

<6 d(xi, A min {D(x;.1, M(x1, %2, ..., X))}, 4
12%{ (xt, xp11)} + 1%12{ (xt41, M(x1, %2, ., Xr)) } 4)

forall (x1,x2,-- ,%,41) € X" HL.

Theorem 5. Let (X, d) be a complete metric spaces and M : X" — CB(X) be a set-valued Presi¢ type almost
contraction mapping, where v is a positive integer. If x1, xy, ..., X, are arbitrary points in X and

Xntr € M(Xpn, Xp11, s Xpar—1), (m=1,2,..) 5)
then, the sequence (x,,) converges to some a € X and a is a fixed point of M, that is, a € M(a, a, ..., a).

Proof. Let B > 1, x, € X and x,41 € M(xq1,x2,...,%;). If H(M(x1,x2, ..., xr), M(X2, X3, ..., X;41)) =
0 then x,4q € M(xy41,Xr41,---,%41) that is, x,11 is a fixed point of M.
Let H(M(x1,x2, ..., xr), M(x2,x3, ..., X,41)) # 0. By Lemma 3 there exists x,17 € M(x2,%3,..., Xr4+1)
such that

d(Xp41, Xp42) < BH(M(x1, X2, ..., Xr), M(X2, X3, ..., X 41)).

By (4), we have

(%21, %42) < B8 max (d(xi, ¥i41)} + A min (D41, M(x1, 32, 3,)

<t<r

Using the fact that x,,1 € M(xq, xp, ..., x;) implies

12}27{D(xt+11 M(xlr X2y ey xr))} =0.

Subsequently, we obtain

d(Xri1,Xr42) < B0 1n<1§1<xr{d(xt, Xt41)}-

SIS

We take B > 1 such that y = Bé < 1 and so,

A(xri1, Xr42) < v max {d(xy, xp41)}- ©®)

Similarly, there exists x,4» € M(x2, x3, ..., X,41) such that

d(Xy42, Xr43) < 13[52;?5)(“”(% Xe1)} + )\KI{Q?H{D(XHLM(XZ/ X3, 00y Xp41))}]-
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Using the fact that x,, 5 € M(xp, x3, ..., X,41) implies

i D =0.
25251“{ (xt41, M(x2, %3, -, Xr41))} = 0

Continuous this condition, we have

d < d .
(Xr42,243) <7 ggﬂ{ (xt, xp41)}

If we continue recursively, for x4 € M(xy, Xy 41, ..., Xn4r—1) We obtain

d(Xptr, Xngre1) < B[O nstgffrfl{d(xt, Xey1)f +A nstgilr—l{D(xt+1’ M (X, Xpg1) oor Xngr—1)) }]-

Using the fact that x,,» € M(xy, X 41, .., Xptr—1) implies

ngtg}’liﬂrfl{D(xt-i_l, M(xn/ Xn41r s xn-i—r—l))} =0.

Accordingly, we obtain

A(Xnpr, Xntr+1) < r)/ngtrgf—&)-(r—l{d(xt' Xt+1)}- @)

For simplicity, let w,, = d(xy, x,41) foralln e N, A = max{%, %, ey %}, where s = ')/%. We shall

prove by induction that for each n € N

wy, < As™. (8)

According to the definition of A it is clear that (8) is true for n = 1,2, ..., 7. Now, let the following
r inequalities:

Wy < As",  wyq < A", w1 < AsTTTT

be the induction hypothesis. According to (7) we obtain

Wnr =d(Xntr, Xpiry1)

< max d(xs, x
\’Yn<t<n+r_1{ (xt, X 41)}

=y Max{Wn, Wy 41, -, Wpyr—1}
<ymax{As", As"tl As”+r—1}
=yAs"

:ASnJrV’
Let n,m € N with m > n, Using the fact that (8) implies

A(xp, xm) <A(xXn, Xy41) + (X101, Xng2) + -+ d(X—1, Xm)
KWy + Wyg1 + 0+ Wy—1
<As" + As"H 4 L+ As™T

As"

1-s

<As"(1+s+8°+..) =

Since s = ')/% < 1, thus, f—i — 0 as n — oo. Hence, (x) is a Cauchy sequence. Because (X, d) is
complete, there exists a € X such that limy, ;y— a0 d(xy, X)) = limy—o0 d(xy,a) = 0.
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Now, we prove that a is a fixed point of M. Then, for any integer n, we have

D(a,M(a,a,...,a)) <d(a,xn4+r) + D(xy+r, M(a,a,...,a))

<d(a, xp4r) + HIM(Xy, X1, oor Xptr—1), M(a, a, ..., a))

<d(a, xp+r) + H(M(Xn, X1, o Xnr—1), M(Xn11, X425 0s Xpr—1,0))
+ H(M(Xp41, Xn42, o Xnr—1,4), M(Xn42, X435 s Xpr—1,,0))
+ ..+ HM(xy4y-1,4,...,a), M(a,a, ..., a))

and by (4), we obtain

D(a, M(a,a,...,a)) <d(a, xy+r) + max{d(x,, X,11),d(Xp11, Xnt2), o A(Xpar—1,0)}+
Amin{D(xy 1, M(Xn, X415 s Xntr—1)), D(Xn12, M(Xn, X1, -os Xnr—1)),
vy D(a, M(Xn, Xpg1, oo Xntr—1))}
+max{d(x,11, Xn+2), d(Xu12, Xn43), s (X 1r—1,4),d(a, a) }+
Amin{D (xy42, M(Xp 11, Xut2, s Xnr—1,4)),

D(xy43, M(Xn41, Xn42, s Xngr—1,8)) oo D(@, M(X341, X142, o) Xnir—1,4)) }
+ ...+ max{d(x,4,_1,a),d(a,a)} + Amin{D(a, M(x,,41,4,...,4,a))}.

Letting n — oo in the above inequality, we obtain D(a, M(a, 4, ...,a)) < 0, which implies that
ae M(a,a,..,a), whcih is, a is a fixed point of M. Therefore, this completes the proof. [

Definition 4. Let (X, d) be a metric space. We say that M : X" — X is a Presi¢ type almost F-contraction
mapping, where r is a positive integer, if F € F, and there exist T > 0 and A > 0, such that

T+ F(d(M(x1, x2, ..., xr),M(x2, X3, .., Xp41)))

< F(lrgtaér{d(xt, Xpp1)} + /\lréltlgr{d(Xt+1,M(x1,x2, e X)), 9)
forall (x1,x2,-- ,%,41) € X'+,

Theorem 6. Let (X, d) be a complete metric spaces, M : X" — X be a Presi¢ type almost F-contraction
mapping, where r is a positive integer. If x1, x2, ..., X, are arbitrary points in X and

Xntr = M(Xp, X110 Xpar—1), (m=1,2,.) (10)

then, the sequence (x,) converges to a € X and a is a fixed point of M, that is,a = M(a, a, ..., a).

Example 1. Let X = {x, = 2’22+’, r € N} u {0}, (X, d) be a complete metric spaces and d(a,b) =| a—1b |.
Define the mapping M : X> — X by

Xr +Yr

M(xy,yr) = >

for all x,,y, € X.
We claim that M is a Presi¢ type almost F-contractive with respect to F(v) = v + In(v) and T = 1. To see

this, we shall prove that M satisfies the condition (9). Subsequently, we obtain

F(d<M(xr—l/xr)/ M(X;», xr—i—l))) <F(rnax{['i(xr—lrxr)rd(xr/ xr+1)}
+ Amin{d(x,, M(x,_1, %)), d(x,01, M(x,_1,%))}) — T. (11)
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Accordingly, we obtain

d(M(x;—1,xr), M(xr, Xr41))
ed(M(x,,l,xr),M(xr,x,Jrl))—max{d(xr,l,x,),d(xr,x,Jrl)}—)\ min{d (xr, M(x,_1,%r)),d(xr41,M(x,—1,%))}
4r+1 w41 w43 41
e 2 2 I
2
ge_l (max{d(x,—1, x¢),d(xr, xp41)} + Amin{d(x,, M(x,_1, x;)), d(xXp41, M(X,-1, %)) }).

Thus, the inequality (11) is satisfied with A = 1. Therefore, Theorem 6 shows that M has a unique fixed
point, which is, M(0,0) = 0.

Now, we give a fixed point theorem for set-valued Presi¢ type almost F-contractive mapping in
metric space. Let us start with the definition of the set-valued Presi¢ type almost F-contractive mapping.

Definition 5. Let (X, d) be a metric space. We say that M : X" — CB(X) is a set-valued Presi¢ type almost
F-contraction mapping, where r is a positive integer, if F € F, and there exist T > 0 and A > 0, such that

T+ F(H(M(x1,x2, ..., X),M(x2, X3, ..., Xr41)))
< F(lnglflgxr{d(xt' Xpq1)}+ A 1Igigr{D(xtH, M(x1,x2,...,x¢))}), (12)

forall (x1,%x2,--+ ,%,41) € X'H1L.

Theorem 7. Let (X,d) be a complete metric spaces, M : X" — K(X) be a set-valued Presi¢ type almost
F-contraction mapping, where r is a positive integer. If x1, x3, ..., X, are any arbitrary points in X and

Xntr € M(Xpn, Xp11, s Xpar—1), (B=1,2,..) (13)
then, the sequence (x,,) converges to some a € X and a is a fixed point of M, that is, a € M(a, qa, ..., a).

Proof. Firstly, we shows that M has a fixed point. Let x1,x, ..., x;, be arbitrary r elements in X.
Define the sequence (x;) in X by

Xntr € M(Xn, Xpa1, -+ Xnar—1), (n=12,...).

If for some t € {1,2,...r}, we have x;1 = x;4p, then, we have x; 11 € M(X¢41,X¢41,...,%4+1) that
is, x¢41 is a fixed point of M and the proof is finished. We assume that x4, # x,,1,41 foralln € N.
Subsequently, as M(xy, x3, ..., X,41) is closed, we have D(x,11, M(x2, X3, ..., Xy+1)) > O for any arbitrary
points x2, x3, ..., X,41 € X. From Lemma 2, we obtain

0 < D(xp41, M(x2,x3, ..., Xp31)) < H(M(x1, X2, ..., Xr), M(x2, X3, ..., Xp11))-
From (F1), we have
F(D(xr41, M(x2, 3, ..., Xr41))) < F(H(M(x1, X, ..., Xr), M(X2, X3, ..., X41))),
and from (12), we can write that

F(D(xp41,M(x2, X3, .. Xr41)))
< F(H(M(x1, X2, ..., X¢), M(x2, X3, ..., Xp11)))

< F( mta<xr{d(xt, Xt+1)} +A 1121‘12r{D(xt+1’ M(xl, XD, ey xr))}) —T. (14)

xlIx
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Denote
W = min {D(x;1, M(x1, X2, ..., X))},

1<t<r

so, we have x,1 € M(x1,x2,..., Xr). So, we obtain W = 0. Moreover, since M(x, x3, ..., X4+1) is compact,
then from Lemma 1 there exists x4 € M(x2, X3, ..., X,+1) such that
d(xp41, Xr42) = D(xp41, M(x2, x3, ..., Xp41))- Additionally, denote,

P = max{d(x1,x2),d(x2,x3),...,d(xs, xr41)}
then we have P > 0. From (14), we obtain

F(d(xp41, Xr42)) (H(M(x1,x2, ..., x¢), M(x2, X3, ..., X,11)))

(max {d(x, ¥141)} +0) ~ T

<F
<F
=F(P)—rt.

If we continue recursively, we obtain a sequence x,1, € X, such that x,4, €
M(xn/ Xpglsoer Xpgr—1), and

F(d(Xn+r, Xntr+1)) (H(M(xn, X415 os Xnr—1), M(Xp41, X142, oo X))

<F
< F(P)—nt (15)
for n € N. On taking limit as n — oo, we obtain
nh_IBOF(d(xn+rr Xntr+1)) = —0.
Thus, from (F2), we have

nlglgo d(Xntr, Xnir41) = 0.

From (F3), there exists h € (0,1), such that

lim (d(xp+r, xn+r+1))hF(d(xn+rr Xntr+1)) = 0. (16)

n—0o0

By (15), we have

(d(xXn-tr, xn+r+1))hF(d(xn+rr Xptr+1)) — (d(Xntr, xn+r+1))hF(P) < —(d(xXn+r, xn+r+1))h”T <0. (17)

On taking limit as n — co, we obtain

lim 1(d(Xp4r, Xngr41))" = 0. (18)

n—0o0

Thus, from (18), there exists 19 € N such that n(d(xy1r, X, 1,41))" < 1 for all n > ng. Accordingly,
we have

1

T (19)
nh

d(Xntr, Xngri1) <
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for all n > ny. In order to show that (x,) is a Cauchy sequence, consider n, m € N, such that m > n > ny.
Using the triangular inequality for the metric and from (19), we have

A(Xntr, Xmtr) <A(Xnr, Xngr41) +A(Xntr+1 Xngr42) + oo+ d(Xgr—1, Xmtr)

m—1 m—1 1
S Z A(Xtgr, Xppr41) < Z - —0.
t=n t=n th

This shows that (x,) is a Cauchy sequence in (X, d). Since (X, d) is complete metric spaces,
there exists a € X, such that

lim d(xy, xp) = lim d(x,,a) =0.
n,m— 00 n—oo

Now, we prove that 4 is a fixed point of M. From (12) for any arbitrary points x1, xo, ..., x, € X with
H(M(x1,x2, ..., xr), M(x2, X3, ..., X,41)) > 0, we get

H(M(xq,x2, ..., X¢),M(x2, X3, ..., Xp11))

< max {d(xt, x + A min {D(x;41, M(x1,x2,..., %)) }.
1<t<r{ (xt, xp41) } thr{ (xt41, M(x1,x2, -, X1)) }

Subsequently, we obtain

D(xp4r, M(a,a,...,a)) < HM(xn, Xy11, s Xpar—1), M(a,a, ...,a))

max  {d(x¢,a)} + AD(a, M(Xp, Xp41, s Xntr—1))

n<t<n+r—1

max  {d(x¢,a)} + AD(a, Xp4r)

n<t<n+r—1

<
<

N

Letting n — oo in the above inequality we get D(a, M(a, 4, ...,a)) = 0, that is, a is a fixed point of
M. Therefore, this completes the proof. [

Remark 1. Note that, in Theorem 7, M(x1, X2, ..., Xr) is compact for any arbitrary points xq,xy, ..., x, € X.
Thus, we can present the following problem: let (X, d) be a complete metric space and M : X" — CB(X) bea
set-valued Presi¢ type almost F-contraction mapping. Does M have a fixed point? By adding the condition (F4)
on F, we can give a answer to this problem, as follows:

Corollary 1. Let (X, d) be a complete metric space, r a positive integer and M : X" — CB(X) be a given
mapping. Suppose that F € F = and there exist T > 0 and A = 0 such that

T+ F(H(M(x1,x2, ..., X),M(x2, X3, ..., Xp41)))

< P(lrgtaér{d(xt, Xt41)} + A 1ré1tigr{D(xt+1, M(x1,x2,...,%))}),  (20)

forall (x1,xp,- -+ ,X;41) € Xr+1, Then, for arbitrary points x1, X2, ..., Xy € X the sequence (x,) defined by
Xntr € M(Xn, Xp11, s Xpar—1), (m=1,2,..) (21)
converges to a € X and a is a fixed point of M, that is, a € M(a, a, ..., a).

Proof. Firstly, we show that M has a fixed point. Let xq,x2, ..., x;, be arbitrary r elements in X.
Define the sequence (x;) in X by

Xntr € M(Xn, X1, o) Xptr—1), (n=1,2,...).
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If for some t € {1,2,...r}, we have x;.1 = x;1 then, we have x;11 € M(X¢41, Xp41, .-+, X¢41)
that is, x;11 is a fixed point of M. We assume that x,4, # x,4,41 for all n e N.
Subsequently, as M(xy, x3, ..., X,41) is closed, we obtain D (x,41, M(x2, x3, ..., X,4+1)) > 0 for any arbitrary
points x2, x3, ..., X,41 € X. From Lemma 2, we obtain

0 < D(xp41, M(x2,x3, ..., Xp41)) < H(M(x1, X2, ..., X), M(x2, X3, ..., Xp11)).
From (F1), we have
F(D(xyq1, M(x2,x3, ..., Xp11))) < F(H(M(x1,x2, ..., X¢), M(x2, X3, ..., Xr41))),
and from (20), we can write that

F(D(xr-‘rl/M(xZ/ X3y eees xr+1)))
< F(H(M(x1, X2, ..., X¢), M(x2, X3, ..., Xp11)))

< F(lrn?<xr{d(xt, Xep1)} + A 12}2r{D(xt+1' M(xq,x2,...,%))}) — T. (22)

xlIx

Denote
W = min {D(xtH,M(xl,xz,..., xr))},

1<t<r

then we have x,,1 € M(x1, x2, ..., X;). Accordingly, we obtain W = 0. Subsequently, we can write

F(D(xy41,M(x2,x3, ..., X11)))
< F(H(M(xl,xz,..., xr), M(Xz, X3, ey Xr+1)))
< F( max {d(xt,x¢41)} +0) — 7. (23)

1<t

From (F4), we can obtain

F(D(xp11, M(x2,x3, ..., Xp41))) = inf F(d(x,11,u))

UEM(X2,X3,..,Xp41)
and, thus, from (23), we obtain

inf F(d(x,41,u)) < F(max {d(x;, x1+1)}) — T (24)

uEM (x2,X3,..., Xy 41 1<t<r

Therefore, from (24) there exists x,12 € M(x3, X3, ..., X;41) such that

F(d(%y11,%r42)) < F(max {d(xi, x21)}) - T. (25)

1<t<r
The rest of the proof can be completed as in the proof of Theorem 7. [

Example 2. Let X = {x, = ’22“, r € N} u {0}, (X, d) be a complete metric spaces and d(a,b) =| a—Db |.

Define the mapping M : X*> — CB(X) by

Ty, ifx=x =x
M 3 _ 2 7 Ty y r+1
(. y) { {0}, otherwise

We claim that M is a set-valued Presic type almost F-contractive mapping with respect to F(v) = v+ In(v),
T=1land A = r%l, where F € F+. To see this, we shall prove that M satisfies the condition (12). Subsequently,
we obtain
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T+ F(H(M(xy, Xp41), M(Xy41, Xr42))) < F(max{d(xy, x, 1), d(xr 1, Xr42)}
+A mln{D(xr+1/ M(xr/ xr+1))r D<xr+2’ M(xr, xr+1)>})' (26)
Afterwards, for r = 1, we obtain

T+ F(H(M(x1,x2), M(x2,x3))) < F(max{d(x1, x2),d(x2, x3)}
+ Amin{D(x2, M(x1,x2)), D(x3, M(x1,x2))})- (27)

Accordingly, we have

H(M(x1,x2), M(x2,x3))

_ X1+ X2 X2 + X3
n({eep )

_ . X3—X1 X1+X2| . X3 — X1 X2+ X3
—max{mf{z Ty },mf{z Ty }}

X3 — X1 5

2 2

Therefore, we obtain

H(M(x1,x2), M(x2,x3))

H(M(x1,x2),M(x2,x3) ) —max{d(x1,x2),d(x2,x3) } —A min{D (x2,M(x1,x2) ), D (x3,M(x1,%2)) }

<e™(max{d(x1, x2), d(x2, x3)} + Amin{D(x2, M(x1, x2)), d(x3, M(x1,%2))})-
Thus, the inequality (27) is satisfied with A = 1. Moreover, for r > 3, we obtain
H(M(xy, Xp 1), M(xr41, Xr42))

_H({xr+xr+1,0},{xr+1+xr+2 })
2
inf

. X Xy Xp+ X X Xr X +Xx
=max{mf{ r+22 r, r r+l} { r4+2 — r, r+12 r+2}}

X2 — Xy
2

H(M(xr, xr—i—l)/ M(xr-‘rl/ xr+2))
e HM(xr, X4 1), M (% 1,%p12)) —max{d (xr, Xy 11) A (X 41, %r42) }—Amin{ D (xp41,M(xr, Xy 11)), D (xp 12, M(xr,Xr41)) }

243 2 ()

<e ! (max{d(x;, xr41), d(Xr 41, %r12)} + Amin{D (¥, 1, M(xy, Xp41)), d(¥r12, M(%r, X41))})-

Thus, the inequality (26) is satisfied with A = ﬂ%l Therefore, Theorem 7 implies that M has two fixed
point, which is, M(0,0) = 0, M(1,1) = 1.
On the other hand, it is not set-valued Presic type almost contraction in metric spaces, to see this, we obtain

lim H(M(xr, Xp41), M(Xr41, Xr42)) — Amin{D (xy4.1, M(xr, Xy41)), D(xp42, M(xp, Xp41)) }
r—© max{d(xy, Xy41),d(Xr41, Xp42)}
2r+1
TS24
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Subsequently,

H(M(xr,%,41), M(xy+1, %r42)) <6 max{d (xr, Xy1), d(x, 41, %r42)}
+ Amin{D(x,41, M(xr, %41)), D(Xr2, M(xr, Xr41)))

does not hold for 6 € (0,1). Hence, the condition of Theorem 5 is not satisfied. This example shows the new class
of set-valued Presic type almost F-contractive operators is not included in Presic type class of set-valued Presi¢
type almost contractive operators.

3. Conclusions

Berinde [15,18-20] defined almost contraction (or (4, L)-weak contraction) and set-valued almost
contraction mappings in metric space. Altun et al. [16,24], handling the concept of F-contractive,
introduced the concept of almost F-contractive mappings and set-valued almost F-contractive
mappings in metric spaces. Abbas et al. [4] introduced a certain fixed point theorem for the Presi¢ type
F-contractive mapping. In this article is introduced new some fixed point theorems, by combining the
ideas of Berinde, Altun et al. and Abbas et al. We prove a fixed point theorem for set-valued Presi¢ type
almost contractive mapping. After we give Presi¢ type almost F-contractive mapping and set-valued
Presi¢ type almost F-contractive mapping in metric space and prove several fixed point results for
these mappings. Additionally, we introduce examples showing that our main results are applicable.
The second of these examples show the new class of set-valued Presi¢ type almost F-contractive
operators is not included in Presi¢ type class of set-valued Presi¢ type almost contractive mappings.
These results extend the main results of many comparable results from the current literature.
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