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Abstract: The dynamic behavior of n-firm oligopolies is examined without product differentiation
and with linear price and cost functions. Continuous time scales are assumed with best response
dynamics, in which case the equilibrium is asymptotically stable without delays. The firms are
assumed to face both implementation and information delays. If the delays are equal, then the model
is a single delay case, and the equilibrium is oscillatory stable if the delay is small, at the threshold
stability is lost by Hopf bifurcation with cyclic behavior, and for larger delays, the trajectories show
expanding cycles. In the case of the non-equal delays, the stability switching curves are constructed
and the directions of stability switches are determined. In the case of growth rate dynamics, the local
behavior of the trajectories is similar to that of the best response dynamics. Simulation studies verify
and illustrate the theoretical findings.

Keywords: implementation delay; information delay; stability switching curve; Cournot oligopoly;
growth rate dynamics

1. Introduction

Examining oligopoly models is a very frequently studied research area in mathematical economics.
Based on the pioneering work of Cournot [1], many researchers were devoted to this interesting and
challenging model and its variants and extensions. One frequently studied extension is obtained by
considering the dynamic behavior of the firms. These models can be divided into several categories
including linear and nonlinear models, discrete and continuous time scales, best response, and gradient
adjustments. For discrete time scales Theocharis [2] showed that the equilibrium of n-firm linear
oligopolies without product differentiation is asymptotically stable if n = 2, marginally stable if
n = 3 and unstable if n > 3. For continuous time scales, McManus and Quandt [3] showed that
the equilibrium is always asymptotically stable in the linear case regardless of the values of the
positive speeds of adjustments. These classical results already indicated that the dynamic properties
of the equilibrium strongly depends on the selection of time scales. Several generalizations and
extensions were then introduced and studied in the literature. The early results up to the mid-70s
are summarized in Okuguchi [4] and their multiproduct generalizations are presented in Okuguchi
and Szidarovszky [5]. Different aspects of the classical Theocharis model were then examined by
several authors including Canovas et al. [6], Hommes et al. [7], Lampart [8], Puu [9,10], Matsumoto
and Szidarovszky [11] among others. Nonlinear models are discussed in Bischi et al. [12] and their
extensions including delays are examined in Matsumoto and Szidarovszky [13].

In this paper, we reconsider the classical Theocharis model by examining the dynamic behavior
of linear n-firm oligopolies without product differentiation and with the additional assumption that
the firms face both implementation and information delays. As it is well known that in the linear case
best response and gradient adjustment processes are equivalent with different speeds of adjustments,
we deal only with best response dynamics. It is assumed that the firms face equal delays in both types.
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If the implementation and information delays are equal, then the model is equivalent with a single delay
case mathematically. In this case, we show that the equilibrium is oscillatory asymptotically stable if the
common delay is sufficiently small, at the threshold Hopf bifurcation occurs with cyclic and for larger
delays expanding cyclic trajectories. If the delays are different, then a two-delay model is obtained.
The stability switching curves are first constructed and then the directions of stability switches are
determined. Growth rate dynamics result in nonlinear systems, their local linearizations around the
equilibrium result in linear dynamics, that is equivalent to the best response case. So the local dynamics
of the two systems are equivalent. Simulation studies verify and illustrate the theoretical findings of
the paper. Even in the very special case of linear models, our analysis discovered several aspects of the
dynamics which were not studied in the literature before. The importance of examining linear models is
verified in addition to the fact that linearized nonlinear models have the same mathematical structures.

This paper develops as follows. Section 3 introduces the best response dynamics. First stability
switching curves are constructed and then the case of equal delays is discussed in detail. Growth rate
dynamics are introduced in Section 4. First, the stability switching curves are shown and then the
directions of stability switches are determined. In both sections, numerical results and simulation
studies verify and illustrate the theoretical results. Section 5 offers conclusions and outlines further
research directions.

2. Model

The classical oligopoly model is presented reconsidering the classical results of Theocharis [2]
and McManus and Quandt [3]. In the model, n firms are producing a homogeneous output. The price
function is assumed to be linear,

p = a− b
n

∑
j=1

xj

where a > 0 is the maximum price, b > 0 is the slope of the price function and xj is firm j’s output.
The production cost is also assumed to be linear with no fixed cost. The marginal cost of firm j is
denoted by cj, being positive. The profit function of firm i is defined by

πi =

(
a− b

n

∑
j=1

xj

)
xi − cixi.

Under the Cournot competition, the firms decide how much to produce. As we focus only on
interior solutions (If the optimal output level of a firm is zero, then the firm leaves the industry, so we
can igonore such firms), the first-order condition of firm i for profit maximization is

∂πi
∂xi

= a− 2bxi − b
n

∑
j 6=i

xj − ci = 0

and the second-order condition is satisfied,

∂2πi

∂x2
i

= −2b < 0.

The best reply function is obtained through the first-order condition and depends on the choices
of other firms,

x∗i =
a− ci − b ∑n

j 6=i xj

2b
.

Let us introduce a new notation,

αi =
a− ci

2b
, β =

1
2

and Q =
n

∑
j=1

xj
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and make the conventional assumption:

Assumption 1. ci = c for all i and a > c.

Assumption 1 implies αi = α > 0 for all i. As each firm makes an optimal choice at the Cournot
equilibrium, its best reply function is written as

x∗i =
α− βQ∗

1− β
.

The aggregate output of all firms is obtained by adding the individual outputs,

Q∗ =
n

∑
i=1

x∗i = n
α− βQ∗

1− β

that is solved for Q∗ to have
Q∗ =

nα

1 + (n− 1) β
.

Substituting Q∗ into the best reply gives the individual output values at the Cournot equilibrium,

xe
i =

α

1 + (n− 1) β
for i = 1, 2, ..., n.

3. Best Reply Dynamics

Dynamic interpretation of the oligopoly model depends on how to define a learning process on
how each firm observes its competitors’ choices. Theocharis (1960) constructs the best reply dynamics
with naive expectations in discrete time scales,

xi(t + 1) = α− β
n

∑
j 6=i

xj(t)

where the adjustment to the optimal output in each period is perfect. His provocative result shows that
the stability of the Cournot equilibrium is determined only by the number of the firms in an industry
as mentioned in the Introduction. McManus and Quandt (1961) makes two reasonable modifications
of Theocharis’ assumptions: the discrete-time scales are replaced with continuous-time scales and the
imperfect adjustment assumption is adopted in which the direction of output change is proportional
to the discrepancy between the optimal and actual values,

ẋi(t) = ki

[
α− β

n

∑
j 6=i

xj(t)− xi(t)

]
with ki > 0.

It is demonstrated that the Cournot equilibrium is always stable when the adjustment speeds are
the same (i.e., ki = k). Their result is in sharp contrast to Theocharis’ result. We also note that this
result remains true if all adjustment speeds are positive.

3.1. Stability Switching

In this study, we move one step forward from the McManus and Quandt model and introduce
implementation delays (i.e., τ1 > 0) on the firm’s own production and information delays (τ2 > 0) on
the competitors’ productions,

ẋi(t) = k

[
α− β

n

∑
j 6=i

xj(t− τ2)− xi(t− τ1)

]
for i = 1, 2, ..., n. (1)
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Notice that dynamic system (1) has the Cournot equilibrium as the steady-state and its
homogeneous part is

ẋi(t) = k

[
−xi(t− τ1)− β

n

∑
j 6=i

xj(t− τ2)

]
for i = 1, 2, ..., n. (2)

The characteristic equation is

ϕ(λ) =


λ + ke−λτ1 kβe−λτ2 · · · kβe−λτ2

kβe−λτ2 λ + ke−λτ1 · · · kβe−λτ2

· · · · · · · ·
kβe−λτ2 kβe−λτ2 · · · λ + ke−λτ1

 = 0.

With new notation,

D = diag
(

λ + ke−λτ1 − kβe−λτ2 , ..., λ + ke−λτ1 − kβe−λτ2
)
(n,n)

a =
(

kβe−λτ2
)
(n,1)

and b = (1)(n,1),

the characteristic equation can be written as

ϕ(λ) = det
(

D + abT
)

,

= det D det
(

I + D−1abT
)

,

= det D
[
1 + bT D−1a

]
.

Hence

ϕ(λ) =
[
λ + ke−λτ1 − kβe−λτ2

]n
[

1 +
nkβe−λτ2

λ + ke−λτ1 − kβe−λτ2

]
=

(
λ + ke−λτ1 − kβe−λτ2

)n−1 (
λ + ke−λτ1 + kβ(n− 1)e−λτ2

)
.

It follows that we have two possibilities to solve ϕ(λ) = 0,

(i) λ + ke−λτ1 − kβe−λτ2 = 0,

(ii) λ + ke−λτ1 + kβ(n− 1)e−λτ2 = 0.

Without delays τ1 = τ2 = 0, the eigenvalues are negative,

λ1 = −k(1− β) < 0 and λ2 = −k [1 + β(n− 1)] < 0,

implying that the equilibrium is asymptotically stable.
For positive delays, we follow the method discussed in Matsumoto and Szidarovszky [13] based

on Gu et al. [14]. Consider equation (i) first. As λ = 0 does not solve equation (i), it can be rewritten as

1 + a1(λ)e−λτ1 + a2(λ)e−λτ2 = 0 (3)

where
a1(λ) =

k
λ

and a2(λ) = −
kβ

λ
.

Equation (3) must have a pair of pure imaginary solutions when a stability switch occurs. Hence let
λ = iω with ω > 0 (It is possible to take its conjugate with ω < 0. Even so, we can arrive at the same
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result.) and we may consider the three terms in (3) as three vectors in the complex plane with the
magnitudes 1, |a1(iω)| and |a2(iω)|, respectively. Equation (3) means that if we put these vectors head
to tail, they form a triangle with the internal angles θ1 and θ2 as illustrated in Figure 1.

Without delays �1 = �2 = 0; the eigenvalues are negative,

�1 = �k(1� �) < 0 and �2 = �k [1 + �(n� 1)] < 0;

implying that the equilibrium is asymptotically stable.
For positive delays, we follow the method discussed in Matsumoto and Szi-

darovszky (2018) based on Gu et al. (2005). Consider equation (i) �rst. Since
� = 0 does not solve equation (i), it can be rewritten as

1 + a1(�)e
���1 + a2(�)e

���2 = 0 (3)

where

a1(�) =
k

�
and a2(�) = �

k�

�
:

Equation (3) must have a pair of pure imaginary solutions when a stability
switch occurs. Hence let � = i! with ! > 02 and we may consider the
three terms in (3) as three vectors in the complex plane with the magnitudes
1; ja1(i!)j and ja2(i!)j, respectively. Equation (3) means that if we put these
vectors head to tail, they form a triangle with the internal angles �1 and �2 as
illustrated in Figure 1.

Figure 1. Triangle conditions

These vectors form a triangle if and only if the sum of the lengths of any
two adjacent line segments is not shorter than the length of the remaining line
segment:

ja1(i!)j+ ja2(i!)j � 1
and

�1 � ja1(i!)j � ja2(i!)j � 1:
For � = i!;

a1(i!) = �i
k

!
and a2(�) = i

k�

!
2 It is possible to take its conjugate with ! < 0. Even so, we can arrive at the same result.

6

Figure 1. Triangle conditions.

These vectors form a triangle if and only if the sum of the lengths of any two adjacent line
segments is not shorter than the length of the remaining line segment:

|a1(iω)|+ |a2(iω)| ≥ 1

and
−1 ≤ |a1(iω)| − |a2(iω)| ≤ 1.

For λ = iω,

a1(iω) = −i
k
ω

and a2(λ) = i
kβ

ω

where the absolute values are

|a1(iω)| = k
ω

and |a2(iω)| = kβ

ω

and the arguments are

arg [a1(iω)] =
3π

2
and arg [a2(iω)] =

π

2
.

From the triangle conditions, we have the interval of ω for which λ = iω can be a solution of
equation (i) for some τ1 and τ2,

ω ∈ I =
[

1
2

k,
3
2

k
]

.

The internal angles of θ1 and θ2 are calculated by the law of cosine as

θ1(ω) = cos−1
[

4ω2 + 3k2

8kω

]
and

θ2(ω) = cos−1
[

4ω2 − 3k2

4kω

]
.

For any ω ∈ I, we may find all pairs of (τ1, τ2) satisfying (3) as follows:

τ±1 (ω, `1) =
1
ω

[
3
2

π + (2`1 − 1)π ± θ1(ω)

]
(4)
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and

τ∓2 (ω, `2) =
1
ω

[
1
2

π + (2`2 − 1)π ∓ θ2(ω)

]
. (5)

Since a symmetric triangle can be formed below the horizontal axis in Figure 1, four inner angles
are defined, ±θ1(ω) and ∓θ2(ω) (double-sign correspondence). By the definitions of the interior
angles, we have the followings:

arg
(

a1(ω)e−iωτ1
)
+ 2`1π ± θ1(ω) = π

and
arg

(
a2(ω)e−iωτ2

)
+ 2`2π ∓ θ2(ω) = π

for `1 = 0, 1, 2, ... and `2 = 0, 1, 2, ... Solving these equations for τ1 and τ2 yields (4) and (5). So we have
two sets of line segments,

C+
1 (`1, `2) =

{
(τ+

1 (ω, `1), τ−2 (ω, `2))
∣∣ ω ∈ I, (`1, `2) ∈ Z

}
and

C−1 (`1, `2) =
{
(τ−1 (ω, `1), τ+

2 (ω, `2))
∣∣ ω ∈ I, (`1, `2) ∈ Z

}
.

As `1 is the horizontal shift parameter and `2 is the vertical shift parameter, changing these values
shifts these segments accordingly. Connecting these segments creates the stability switching curve
(SSC, henceforth) under equation (i).

We now turn attention to equation (ii) that can be written as

1 + b1(λ)e−λτ1 + b2(λ)e−λτ2 = 0 (6)

where

b1(λ) =
k
λ

and b2(λ) =
kβ(n− 1)

λ
.

With λ = iω,

b1(iω) = −i
k
ω

and b2(iω) = −i
kβ(n− 1)

ω
,

their absolute values are

|b1(iω)| = k
ω

and |b2(iω)| = kβ(n− 1)
ω

,

and their arguments are

arg (b1(iω)) =
3
2

π and arg (b2(iω)) =
3
2

π.

By the triangle conditions, the domains of ω are defined, respectively, by

I2 =

[
1
2

k,
3
2

k
]

if n = 2

and

In =

[
n− 3

2
k,

n + 1
2

k
]

if n ≥ 3.

As in the same way, the internal angles denoted as θ̄1 and θ̄2 generated under equation (ii) are
obtained as

θ̄1(ω) = cos−1
[

4ω2 − k2 (n− 3) (n + 1)
8kω

]
and

θ̄2(ω) = cos−1
[

4ω2 + k2 (n− 3) (n + 1)
4k(n− 1)ω

]
.
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For any ω ∈ I2 or In, we may find all pairs of (τ1, τ2) satisfying (6) as follows:

τ̄±1 (ω, m1) =
1
ω

[
3
2

π + (2m1 − 1)π ± θ̄1(ω)

]
(7)

and

τ̄∓2 (ω, m2) =
1
ω

[
3
2

π + (2m2 − 1)π ∓ θ̄2(ω)

]
. (8)

As before, we have again two sets of line segments,

C+
2 (m1, m2) =

{
(τ̄+

1 (ω, m1), τ̄−2 (ω, m2))
∣∣ ω ∈ I2 or In, (m1, m2) ∈ Z

}
and

C−2 (m1, m2) =
{
(τ̄−1 (ω, m1), τ̄+

2 (ω, m2))
∣∣ ω ∈ I or In, (m1, m2) ∈ Z

}
which are shifted horizontally and vertically by changing the values of m1 and m2. Connecting these
segments creates again the stability switching curves under equation (ii).

3.2. Equal Delays

Having found the delays’ critical values, we may draw attention to the equal delay case before
proceeding further with the different delay case. When the delays are equal, conditions (i) and (ii) are
changed to

(i)’ λ + ke−λτ − kβe−λτ = 0,

(ii)’ λ + ke−λτ + kβ(n− 1)e−λτ = 0.

For λ = iω with ω > 0, equation (i)’ is

iω + k(1− β) (cos ωτ − i sin ωτ) = 0.

Separating the real and imaginary parts gives the equations,

k(1− β) cos ωτ = 0

k(1− β) sin ωτ = ω

from which
cos ωτ = 0, sin ωτ = 1 and ω =

k
2

.

Hence the critical values of τ for equation (i)’ are determined as

τ∗` =
2
k

(π

2
+ 2`π

)
for ` = 0, 1, 2, ... (9)

Similarly, for equation (ii)’, we have

cos ωτ = 0, sin ωτ = 1 and ω =
k (n + 1)

2
.

Hence the critical values of τ are determined as

τ∗m(n) =
2

k(n + 1)

(π

2
+ 2mπ

)
for m = 0, 1, 2, ... (10)

It is confirmed that
τ∗0 (n) < τ∗0 for any n ≥ 2.
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Therefore stability switching occurs when τ = τ∗0 (n). To check the direction of stability
switches, we select τ as the bifurcation parameter and consider the eigenvalues as functions of
τ, λ = λ(τ). Then we differentiate equation (ii)’ with respect to τ,

λ′ + k(1 + (n− 1)β)eλτ
(
−λ′τ − λ

)
= 0

and solving this for λ′ gives

λ′ =
−λ2

1 + λτ
.

The sign of the real part for λ = iω is positive,

Re
[(

λ′
)

λ=iω

]
=

ω2

1 + (ωτ)2 > 0.

As equations (i)’ is obtained from (ii)’ with n = 0, this derivation also applies to equation (i)’.
Hence we have the following result when the delays are equal:

Theorem 1. The Cournot equilibrium is locally asymptotically stable for τ < τ∗0 (n), loses its stability at
τ = τ∗0 (n) and stability cannot be regained for τ > τ∗0 (n) where

τ∗0 (n) =
π

k(n + 1)
.

Theorem 1 is numerically confirmed when

α = 10, k = 0.5.

We perform simulations with three different values of n, n = 2, n = 3, and n = 4. The simulations
are done with Mathematica, ver. 12.1. The corresponding critical values of τ are

τ∗0 (2) =
2π

3
, τ∗0 (3) =

π

2
and τ∗0 (4) =

2π

5

which imply that the stability region becomes smaller as n increases. This is also clear from the form of
τ∗0 (n) in Theorem 1. In each simulation below, we take τ = τ∗0 (n)− 0.2 for the red convergent curve
and τ = τ∗0 (n) + 0.1 for the divergent green curve and assume constant functions for t ≤ 0.
In duopoly, the initial functions are defined as

ϕ1(t) = xe
1 − 3 and ϕ2(t) = xe

2 − 2 for t ≤ 0.

In tiropoly and quartopoly, the appropriate functions are similarly defined and the initial values
are selected from the neighborhood of the equilibrium point. Although it is clear that the simulation
results strongly depend on the model’s specification, we can see the followings from those simulations
illustrated in Figure 2A–C:

(1) Theorem 1 is numerically confirmed for n = 2, 3, 4; it is seen that the Cournot equilibrium is
stable for τ < τ∗0 (n), loses stability, and bifurcates to a cyclic oscillation for τ = τ∗0 (n).

(2) The trajectories are oscillatory because only complex roots can solve the characteristic equations.
(3) It is further confirmed that the trajectories are oscillatory expanding for τ > τ∗0 (n) and thus

sooner or later become negative, losing economic meaning.
(4) The time at which the negative production takes place the first time becomes smaller as n

increases. Indeed, the green curve first crosses the horizontal axis at t ' 32.012 in triopoly in
Figure 2B and at t ' 25.423 in quartopoly in Figure 2C. Although it is not illustrated in Figure 2A,
the trajectory becomes negative at t ' 59.641 in duopoly.
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Results (3) and (4) are inevitable because the best reply functions are linear and the resultant
dynamical system does not have enough nonlinearities to prevent the trajectories from becoming
negative. We also have essentially the same results in the case of different delays.

Results (3) and (4) are inevitable because the best reply functions are linear
and the resultant dynamical system does not have enough nonlinearities to
prevent the trajectories from becoming negative. We also have essentially the
same results in the case of di¤erent delays.

Figure 2(A). Oscillatory dynamics in duopoly

Figure 2(B) Oscillatory dynamics in triopoly

11

(A)

Results (3) and (4) are inevitable because the best reply functions are linear
and the resultant dynamical system does not have enough nonlinearities to
prevent the trajectories from becoming negative. We also have essentially the
same results in the case of di¤erent delays.

Figure 2(A). Oscillatory dynamics in duopoly

Figure 2(B) Oscillatory dynamics in triopoly

11

(B)

Figure 2(C). Oscillatory dynamics in quartopoly

4 Growth Rate Dynamics

In this section, we make one modi�cation to the delay best reply dynamical
system, (1), and pursue the possibility of bounded dynamics when the system
includes some nonlinearities. In particular, the growth rate adjustment is as-
sumed in which the growth rate of output is controlled by the di¤erence between
the optimal output and the actual output,

_xi(t)

xi(t)
= k

24�� xi(t� �1)� � nX
j 6=i

xj(t� �2)

35 for i = 1; 2; :::; n: (11)

System (11) has the same stationary point as system (1). The homogeneous part
of its linearized version is

_xi(t) = K

24�xi(t� �1)� � nX
j 6=i

xj(t� �2)

35 for i = 1; 2; :::; n; (12)

where
K = kxe:

Comparing (12) with (2) reveals that only the adjustment parameters are di¤er-
ent. Thus, the formulas for the critical delays in (4), (5), (7) and (8) obtained
in the best reply dynamic system can be applied to the growth rate dynamical
system (12) if k is replaced with K:
The remaining part of this section is divided into two: the stability switching

curves under the growth rate dynamics are constructed and numerical simula-
tions are performed in the �rst subsection and the stability index is examined
to provide theoretical backgrounds with the directions of stability switches for
the numerical results in the second.

12

(C)

Figure 2. (A) Oscillatory dynamics in duopoly. (B) Oscillatory dynamics in triopoly. (C) Oscillatory
dynamics in quartopoly.

4. Growth Rate Dynamics

In this section, we make one modification to the delay best reply dynamical system, (1), and pursue
the possibility of bounded dynamics when the system includes some nonlinearities. In particular,
the growth rate adjustment is assumed in which the growth rate of output is controlled by the difference
between the optimal output and the actual output,

ẋi(t)
xi(t)

= k

[
α− xi(t− τ1)− β

n

∑
j 6=i

xj(t− τ2)

]
for i = 1, 2, ..., n. (11)
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System (11) has the same stationary point as system (1). The homogeneous part of its linearized
version is

ẋi(t) = K

[
−xi(t− τ1)− β

n

∑
j 6=i

xj(t− τ2)

]
for i = 1, 2, ..., n, (12)

where
K = kxe.

Comparing (12) with (2) reveals that only the adjustment parameters are different. Thus, the formulas
for the critical delays in (4), (5), (7) and (8) obtained in the best reply dynamic system can be applied to
the growth rate dynamical system (12) if k is replaced with K.

The remaining part of this section is divided into two. The stability switching curves under the
growth rate dynamics are constructed and numerical simulations are performed in the first subsection.
The stability index is examined to provide theoretical backgrounds with the directions of stability
switches for the numerical results in the second part.

4.1. Stability Switching Curves

It is assumed henceforth that K replaces k. Then the pairs of (τ+
1 (ω, `1), τ−2 (ω, `2)) and

(τ−1 (ω, `1), τ+
2 (ω, `2)) in (4) and (5) satisfy the following characteristic equation,

λ + Ke−λτ1 − Kβe−λτ2 = 0 (13)

where the definitions of θ1 and θ2 should be changed to

θ1(ω) = cos−1
[

4ω2 + 3K2

8Kω

]
, (14)

θ2(ω) = cos−1
[

4ω2 − 3K2

4Kω

]
(15)

and the interval ω is redefined by

I =
[

1
2

K,
3
2

K
]

.

We then have two sets of line segments in the first quadrant of the (τ1, τ2) plane,

L+
1 (`1, `2) =

{
(τ+

1 (ω, `1), τ−2 (ω, `2))
∣∣ ω ∈ I, (`1, `2) ∈ Z

}
(16)

and
L−1 (`1, `2) =

{
(τ−1 (ω, `1), τ+

2 (ω, `2))
∣∣ ω ∈ I, (`1, `2) ∈ Z

}
(17)

similar to the case of best reply dynamics. Lemma 1 characterizes the relations of the segments
L+

1 (`1, `2) and L−1 (`1, `2) for the extreme values of ω in interval I.

Lemma 1. L+
1 (`1, `2 + 1) = L−1 (`1, `2) holds for the initial point of I, ω = K/2, and L−1 (`1, `2) = L+

1 (`1, `2)

holds for the terminal point of I, ω = 3K/2.

Proof. Substituting ω = K/2 into (14) and (15) gives

θ1(K/2) = cos−1(1) = 0 and θ2(K/2) = cos−1(−1) = π

implying that

τ±1 (K/2, `1) =
2
K

(
3
2

π + (2`1 − 1)π

)
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and

τ+
2 (K/2, `2 + 1) = τ−2 (K/2, `2) =

2
K

(
1
2

π + 2`2π

)
.

Hence L+
1 (`1, `2 + 1) = L−1 (`1, `2) at the initial point of I. In the same way, for ω = 3K/2,

θ1(3K/2) = cos−1(1) = 0 and θ2(3K/2) = cos−1(1) = 0

implying that

τ+
1 (3K/2, `1) = τ−1 (3K/2, `1) =

2
3K

(
3
2

π + (2`1 − 1)π

)
and

τ−2 (3K/2, `2) = τ+
2 (3K/2, `2) =

2
3K

(
1
2

π + (2`2 − 1)π

)
.

Hence L+
1 (`1, `2) = L−1 (`1, `2) at the terminal point of I. This completes the proof.

Pairs of (τ̄+1 (m1), τ̄−2 (m1)) and (τ̄−1 (m2), τ̄+2 (m2)) from (7) and (8) satisfy the characteristic equation,

λ + Ke−λτ1 + Kβ(n− 1)e−λτ2 = 0 (18)

where the definitions of θ̄1 and θ̄2 should be changed to

θ̄1(ω) = cos−1
[

4ω2 − K2 (n− 3) (n + 1)
8Kω

]
(19)

and

θ̄2(ω) = cos−1
[

4ω2 + K2 (n− 3) (n + 1)
4K(n− 1)ω

]
(20)

and the interval for ω is defined, respectively, by

I2 =

[
1
2

K,
3
2

K
]

if n = 2

and

In =

[
n− 3

2
K,

n + 1
2

K
]

if n ≥ 3.

We also have two line segments of (τ1, τ2),

L+
2 (m1, m2) =

{
(τ̄+

1 (ω, m1), τ̄−2 (ω, m2))
∣∣ ω ∈ I2 or In, (m1, m2) ∈ Z

}
(21)

and
L−2 (m1, m2) =

{
(τ̄−1 (ω, m1), τ̄+

2 (ω, m2))
∣∣ ω ∈ I or In, (m1, m2) ∈ Z

}
(22)

similarly to the case of best reply dynamics. Similarly to Lemma 1, we have the followings:

Lemma 2. In the case of n = 2, L+
2 (m1, m2 + 1) = L−2 (m1, m2) holds for the initial point of I2, ω = K/2,

and L−2 (m1, m2) = L+
2 (m1, m2) holds for the terminal point of I2, ω = 3K/2.

Notice that for n = 3,

lim
ω→0

τ±1 (ω, m1) = ∞ and lim
ω→0

τ±2 (ω, m2) = ∞.

The equality of the segments does not hold at the initial point of I3 but only at the terminal point
which can be proved similarly to Lemma 1.
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Lemma 3. In the case of n = 3, L+
2 (m1, m2) = L−2 (m1, m2) holds for the terminal point of I3, ω = 2K.

If n ≥ 4, then the following result holds.

Lemma 4. In the case of n ≥ 4, L+
2 (m1, m2) = L−2 (m1 + 1, m2) holds for the initial point of In, ω =

(n− 1)K/2 and L+
2 (m1, m2) = L−2 (m1, m2) holds for the terminal point ω = (n + 1)K/2.

In the following, we will construct stability switching curves. To this end, we specify the
parameters’ values as α = 10 and k = 0.1. In Figure 3, the dotted red loci are described by L−1 (`1, `2)

with `1 = 0 and `2 = 0, 1 and the dotted blue locus by L+
1 (0, 1). The black point a′ is the initial point of

L+
1 (0, 1) and L−1 (0, 0) and its coordinates are

a′ =
(

3
2

π,
3
2

π

)
at which L+

1 (0, 1) = L−1 (0, 0) holds by Lemma 1. The black point b′ is the terminal point of L+
1 (0, 1)

and L−1 (0, 1) and its coordinates are

b′ =
(

1
2

π,
3
2

π

)
at which L+

1 (0, 1) = L−1 (0, 1) holds by Lemma 1. The blue and red solid curves are described by L+
2 (0, 0)

and L−2 (0, 0). They are connected at point a,

a =

(
1
2

π,
1
2

π

)
at which L+

2 (0, 0) = L−2 (0, 0) by Lemma 2.
The dotted and solid curves are smoothly connected as is seen in Figure 3. As a result, the (τ1, τ2)

region is divided into two subregions by the stability switching curve connecting the left-most parts
among the segments of L±2 (0, 0), L±1 (0, 1), and L−1 (0, 1). As the Cournot equilibrium is stable when
there are no delays, it is stable in the region including the origin and left to the connecting curve.

there are no delays, it is stable in the region including the origin and left to the
connecting curve.

Figure 3. SSC with n = 2

We want to investigate the in�uence of �1 and �2: Two simulations in the
case of n = 2 are performed with initial functions,

'1(t) = x
e
1 � 2 and '2(t) = xe2 + 1 for t � 0:

The �rst simulation result along the diagonal is presented in Figure 4(A). The
delays increase from � i = 0 to � i = 3:4 with an increment of 0:003 along the
diagonal. The Cournot equilibrium is asymptotically stable for smaller delays
and becomes unstable through a Hopf bifurcation at

�ai = �
�
0(2) =

1

2
� for i = 1; 2;

producing a limit cycle that further bifurcates to a multi-periodic cycle for larger
delays. The second result with the di¤erent two delays is given in Figure 4(B).
The value of �1 increases from �1 = �A1 (' 1:423) to �1 = �B1 (= 3:4) along
the dotted horizontal line at �2 = 3.7 The resulting bifurcation diagram shows
that the dynamic system experience similar dynamics. The stability of the

7More precisely, the bifurcation diagrams with two delays are constructed in the following
procedure with Mathematica, version 12.1. The value of �2 is �xed at 3; and the value of �1
is increased from �min = �A1 to �min = �B1 with an increment (�max � �min)=1000. For each
value of �1; dynamic system (11) runs for 0 � t � T (= 2000); and the data for t � T � 100
are discarded to get rid of the initial disturbance. The local maxima and minima out of the
remaining data are plotted against this �1 value. Then the value of �1 is increased and then
the same procedure is repeated until �1 arrives at �max: The following bifurcation diagrams
are obtained in the same way.

16

Figure 3. Stability switching curve (SSC) with n = 2.
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We want to investigate the influence of τ1 and τ2. Two simulations in the case of n = 2 are
performed with initial functions,

ϕ1(t) = xe
1 − 2 and ϕ2(t) = xe

2 + 1 for t ≤ 0.

The first simulation result along the diagonal is presented in Figure 4A. The delays increase
from τi = 0 to τi = 3.4 with an increment of 0.003 along the diagonal. The Cournot equilibrium is
asymptotically stable for smaller delays and becomes unstable through a Hopf bifurcation at

τa
i = τ∗0 (2) =

1
2

π for i = 1, 2,

producing a limit cycle that further bifurcates to a multi-periodic cycle for larger delays. The second
result with the different two delays is given in Figure 4B. The value of τ1 increases from τ1 =

τA
1 (' 1.423) to τ1 = τB

1 (= 3.4) along the dotted horizontal line at τ2 = 3. More precisely,
the bifurcation diagrams with two delays are constructed in the following procedure with Mathematica,
version 12.1. The value of τ2 is fixed at 3, and the value of τ1 is increased from τmin = τA

1 to
τmax = τB

1 with an increment (τmax − τmin)/1000. For each value of τ1, dynamic system (11) runs for
0 ≤ t ≤ T(= 2000), and the data for t ≤ T − 100 are discarded to get rid of the initial disturbance.
The local maxima and minima out of the remaining data are plotted against this τ1 value. Then the
value of τ1 is increased and then the same procedure is repeated until τ1 arrives at τmax. The following
bifurcation diagrams are obtained in the same way. The resulting bifurcation diagram shows that
the dynamic system experience similar dynamics. The stability of the equilibrium point is confirmed
for the zero delay and holds for τ1 < τA

1 and τ2 = 3. In both diagrams (and the following diagrams),
notation x̃e = log [xe] is used.

equilibrium point is con�rmed for the zero delay and holds for �1 < �A1 and
�2 = 3: In both diagrams (and the following diagrams), notation ~xe = log [xe]
is used.

(A) Equal delays (B) Di¤erent delays

Figure 4. Bifurcation diagrams with n = 2

We now increase the number of �rms to 3: Figure 5(A) shows the stability
switching curves. The line segments of L+2 (0; 0) (i.e., the solid blue curve)
and L�2 (0; 0) (i.e., the solid red curve) take the L-shaped pro�le and rotate
counter-clockwise at point a to the extent that the solid red curve is located
furthermost to the left. By Lemma 4, both line segments head to point a; the
terminal point as ! increases to 2K: We simulate the model (11) along the
diagonal (i.e., �1 = �2) and the dotted horizontal line at �2 = 3 (i,e., �1 6= �2)
in Figure 5(A). Since we �nd qualitatively no big di¤erences between these
simulation results as in Figures 4(A) and 4(B), we depict only the bifurcation
diagram with di¤erent delays in Figure 5(B). It is seen that alá "period-doubling
bifurcation" occurs in which the Cournot equilibrium is asymptotically stable
for �1 < �A1 (' 1:136); loses stability at �1 = �A1 and bifurcates to a limit
cycle from which new limit cycles emerge having a doubled period of the cycle
as �1 increases from �A1 : We also see that further increasing �1 gives rise to
complicated dynamics that suddenly shrinks to a limit cycle with multiple local

17

(A) Equal delays (B) Different delays

Figure 4. Bifurcation diagrams with n = 2.

We now increase the number of firms to 3. Figure 5A shows the stability switching curves.
The line segments of L+

2 (0, 0) (i.e., the solid blue curve) and L−2 (0, 0) (i.e., the solid red curve) take
the L-shaped profile and rotate counter-clockwise at point a to the extent that the solid red curve is
located furthermost to the left. By Lemma 4, both line segments head to point a, the terminal point as ω

increases to 2K. We simulate the model (11) along the diagonal (i.e., τ1 = τ2) and the dotted horizontal
line at τ2 = 3 (i.e., τ1 6= τ2) in Figure 5A. As we find qualitatively no big differences between these
simulation results as in Figure 4A,B, we depict only the bifurcation diagram with different delays in
Figure 5B. It is seen that alá “period-doubling bifurcation” occurs in which the Cournot equilibrium is
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asymptotically stable for τ1 < τA
1 ('1.136), loses stability at τ1 = τA

1 and bifurcates to a limit cycle from
which new limit cycles emerge having a doubled period of the cycle as τ1 increases from τA

1 . We also
see that further increasing τ1 gives rise to complicated dynamics that suddenly shrinks to a limit cycle
with multiple local maxima and minima at some critical point.
maxima and minima at some critical point.

(A) SSC (B) Bifurcation diagram

Figure 5. Dynamic properties of equation (11) with n = 3

In the case of n = 4, as is seen in Figure 6(A), the solid red and blue
segment rotates counter-clockwise further at point a; leading to that the red
segment crosses the vertical axis. In Figure 6(B), we see that the bifurcation
diagram gets more complicated and various dynamics can emerge.

(A) SSC (B) Bifurcation diagram

Figure 6. Dynamic properties of equation (11) with n = 4

Lastly, we simulate system (11) with n = 9: The shape of the stability switch-
ing curve is di¤erent from those with smaller n. In Figure 7(A), the positive-
sloping dotted line is the diagonal, the dotted-red line is L�2 (0; 0) as before and

18
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Figure 5. Dynamic properties of Equation (11) with n = 3.

In the case of n = 4, as is seen in Figure 6A, the solid red and blue segments rotate counter-clockwise
further at point a, leading to that the red segment crosses the vertical axis. In Figure 6B, we see that the
bifurcation diagram gets more complicated and various dynamics can emerge.

maxima and minima at some critical point.
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Figure 5. Dynamic properties of equation (11) with n = 3

In the case of n = 4, as is seen in Figure 6(A), the solid red and blue
segment rotates counter-clockwise further at point a; leading to that the red
segment crosses the vertical axis. In Figure 6(B), we see that the bifurcation
diagram gets more complicated and various dynamics can emerge.

(A) SSC (B) Bifurcation diagram

Figure 6. Dynamic properties of equation (11) with n = 4

Lastly, we simulate system (11) with n = 9: The shape of the stability switch-
ing curve is di¤erent from those with smaller n. In Figure 7(A), the positive-
sloping dotted line is the diagonal, the dotted-red line is L�2 (0; 0) as before and

18

(A) SSC (B) Bifurcation diagram

Figure 6. Dynamic properties of Equation (11) with n = 4.

Lastly, we simulate system (11) with n = 9. The shape of the stability switching curve is
different from those with smaller n. In Figure 7A, the positive-sloping dotted line is the diagonal,
the dotted-red line is L−2 (0, 0) as before and the black dots are the starting or ending points of the
segments. A remarkable difference is that the solid red-blue segments consist of the wave-shaped
curve. Accordingly, the bifurcation diagram is obtained along the horizontal dotted line at τ2 = 2
and exhibits a different route to chaos. The stability of the Cournot equilibrium is lost at τ1 = τA

1
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('0.646), regained at τ1 = τB
1 ('5.441), and then lost again at τ1 = τC

1 ('7.306). Unstable oscillatory
trajectories get complicated for τ1 > τD

1 ('7.697). It is known that time delays destabilize dynamic
systems. This simulation, however, indicates that time delays can also stabilize the systems.

the black dots are the starting or ending points of the segments. A remarkable
di¤erence is that the solid red-blue segments consist of the wave-shaped curve.
Accordingly, the bifurcation diagram is obtained along the horizontal dotted line
at �2 = 2 and exhibits a di¤erent route to chaos. The stability of the Cournot
equilibrium is lost at �1 = �A1 (' 0:646), regained at �1 = �B1 (' 5:441) and then
lost again at �1 = �C1 (' 7:306). Unstable oscillatory trajectories get compli-
cated for �1 > �D1 (' 7:697). It is known that time delays destabilize dynamic
systems. This simulation, however, indicates that time delays can stabilize the
systems.

(A) SSC (B) Bifurcation diagram

Figure 7. Dynamic properties of equation (11) with n = 9

Dynamic system (11) examines the birth of complicated dynamics through
a period-doubling bifurcation and the occurrence of the stability loss and gain.
Needless to say, time delays play prominent roles. In addition, taking account of
the fact that only the �rm�s number is di¤erent in those numerical studies, the
larger number could in�uence the system�s dynamics by increasing the degree
of interactions among the �rms.

4.2 Stability Index

We compute the stability index to provide a theoretical background for �nding
directions of stability switches. First, we denote the second and third vectors
of (3) by Q1 and Q2;

Q1 = a1(i!)e
�i!�1 = �iK

!
(cos!�1 � i sin!�1)

and

Q2 = a2(i!)e
�i!�2 = i

K�

!
(cos!�2 � i sin!�2) :

19

(A) SSC (B) Bifurcation diagram

Figure 7. Dynamic properties of Equation (11) with n = 9.

Dynamic system (11) examines the birth of complicated dynamics through a period-doubling
bifurcation and the occurrence of stability loss and gain. Needless to say, time delays play prominent
roles. In addition, taking account of the fact that only the firm’s number is different in those
numerical studies, the larger number could influence the system’s dynamics by increasing the degree
of interactions among the firms.

4.2. Stability Index

We compute the stability index to provide a theoretical background for finding directions of
stability switches. First, we denote the second and third vectors of (3) by Q1 and Q2,

Q1 = a1(iω)e−iωτ1 = −i
K
ω

(cos ωτ1 − i sin ωτ1)

and
Q2 = a2(iω)e−iωτ2 = i

Kβ

ω
(cos ωτ2 − i sin ωτ2) .

Having Q1 and Q2, we further denote the real and imaginary parts by the followings:

R1 = ReQ1 = −K
ω

sin ωτ1 and I1 = ImQ1 = −K
ω

cos ωτ1

and
R2 = ReQ2 =

Kβ

ω
sin ωτ2 and I2 = ImQ2 =

Kβ

ω
cos ωτ2.

Finally, the stability index is defined as follows:

S = R2 I1 − R1 I2

=
K2β

ω2 (sin ωτ1 cos ωτ2 − cos ωτ1 sin ωτ2) ,
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hence

S =
K2β

ω2 sin [ω (τ1 − τ2)] . (23)

In the same way, we denote the second and third vectors of (6) by Q̄1 and Q̄2,

Q̄1 = b1(iω)e−iωτ1 = −i
K
ω

(cos ωτ1 − i sin ωτ1)

and

Q̄2 = b2(iω)e−iωτ2 = −i
Kβ(n− 1)

ω
(cos ωτ2 − i sin ωτ2) .

The real and imaginary parts are the followings:

R̄1 = ReQ̄1 = −K
ω

sin ωτ1 and Ī1 = ImQ̄1 = −K
ω

cos ωτ1

and

R̄2 = ReQ̄2 = −Kβ(n− 1)
ω

sin ωτ2 and Ī2 = ImQ̄2 = −Kβ(n− 1)
ω

cos ωτ2,

moreover, the stability index is as follows:

S̄ = R̄2 Ī1 − R̄1 Ī2

= −K2β(n− 1)
ω2 (sin ωτ1 cos ωτ2 − cos ωτ1 sin ωτ2) .

Hence

S̄ = −K2β(n− 1)
ω2 sin [ω (τ1 − τ2)] . (24)

We call the direction of the curve that corresponds to increasing ω the positive direction. We also
call the region on the left-hand side the region on the left when we head in the positive direction of the
curve. Region on the right is defined similarly. Concerning the stability changes, we have the following
result from Matsumoto and Szidarovszky (2018) that is based on Gu et al. (2005):

Theorem 2. Let (τ1, τ2) be a point on the stability switching curves, when iω is a simple pure complex
eigenvalue. Assume we look toward increasing values of ω on the curve, and a point (τ1, τ2) moves from the
region on the right to the region on the left. A pair of eigenvalues crosses the imaginary axis to the right if S > 0
or S̄ > 0. If S < 0 or S̄ < 0, then crossing is in the opposite direction.

The condition of the theorem is satisfied if all iω egenvalues are single. It can be proved that
the multiple eigenvalues, if any, are isolated from each other, so do the corresponding points on the
stability switching curve. Hence at these points, the directions of stability switching are the same as
those in the points of their neighborhoods.

We now compute the stability index on the solid red segment of the stability switching curve in
Figure 3. The red segment is a locus of the following points,

L−2 (0, 0) =
{(

τ̄−1 (ω, 0), τ̄+
2 (ω, 0)

) ∣∣ ω ∈
[

1
2

K,
3
2

K
]}

From (7) and (8), we have

ω
(
τ̄−1 (ω, 0)− τ̄+

2 (ω, 0)
)

=

[
3
2

π − π − θ̄1(ω)

]
−
[

3π

2
− π + θ̄2(ω)

]
= −

[
θ̄1(ω) + θ̄2(ω)

]
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implying
sin [ω (τ1 − τ2)] = − sin

[
θ̄1(ω) + θ̄2(ω)

]
< 0

when θ1 + θ2 < π. If θ1 + θ2 = π, then the triangle reduces to a line such that

|a1(iω)| − |a2(iω)| = ±1.

That is, in Equation (13),
K
ω
− Kβ

ω
=

K
2ω

= 1

showing that ω = π/2 being the left endpoint of interval I, given for ω, which gives the common
starting point of two line segments. In the case of Equation (18),

K
ω
− Kβ(n− 1)

ω
=

K
ω

(
3− n

2

)
.

If n = 2, this equals +1 if ω = K/2, which is the initial point of I. If n = 3, then this expression
is always zero, so cannot be +1 or −1. If n > 3, then this expression can be only −1, when ω =

K(n− 3)/2, which is the left endpoint of interval In which gives again the common starting point of
two line segments. In these points, the direction of stability switching is the same as that in the two
connecting segments. So in the rest of the discussion, we will assume that θ1 + θ2 < π. Hence the
stability index S̄ is positive on the solid red segments of the stability switching curve. In Figure 3,
the arrows on the solid red segment indicate the positive direction and the red R and L mean the right
and left regions along the red segment. As (τ1, τ2) moves from the R-region to the L-region and S̄ > 0,
Theorem 2 implies that a solution pair of (18) crosses the imaginary axis to the right. That is, stability is
lost. As seen in Figure 4B, the stability is lost at point A with τ1 = τA

1 when τ1 increases along the
horizontal dotted line at τ0

2 = 3.
Similarly, we can compute the stability index on the solid blue segment,

L+
2 (0, 0) =

{(
τ̄+

1 (ω, 0), τ̄−2 (ω, 0)
) ∣∣ ω ∈

[
1
2

K,
3
2

K
]}

.

From (7) and (8) with K,

ω
(
τ̄+

1 (ω, 0)− τ̄−2 (ω, 0)
)

=

[
3
2

π − π + θ̄1(ω)

]
−
[

3π

2
− π − θ̄2(ω)

]
= θ̄1(ω) + θ̄2(ω).

Then
sin
[
ω
(
τ̄+

1 (ω, 0)− τ̄−2 (ω, 0)
)]

= sin
[
θ̄1(ω) + θ̄2(ω)

]
> 0.

The stability index S̄ is negative,

S̄ = −K2β(n− 1)
ω2 sin

[
θ̄1(ω) + θ̄2(ω)

]
< 0.

The blue L and R denote the right-region and the left-region with respect to the solid blue segment.
Hence the stability is lost when a pair of (τ1, τ2) crosses the blue segment from the L-region to the
R-region.

Consider the stability switching on the dotted red segment located in the upper-left corner of
Figure 3. The segment is described by

L−1 (0, 1) =
{(

τ−1 (ω, 0), τ+
2 (ω, 1)

) ∣∣ ω ∈
[

1
2

K,
3
2

K
]}

.
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Then
ω
(
τ−1 (ω, 0)− τ+

2 (ω, 1)
)
= −π − (θ1(ω) + θ2(ω)) .

The stability index is positive

S =
K2β

ω
sin [θ1(ω) + θ2(ω)] > 0

showing that crossing these segments from R to L, stability is lost.
In the lower part of Figure 3, there is a small segment of L−1 (0, 0) where

L−1 (0, 0) =
{

τ−1 (ω, 0), τ+
2 (ω, 0)

∣∣ ω ∈
[

1
2

K,
3
2

K
]}

,

so

ω
(
τ−1 (ω, 0)− τ+

2 (ω, 0)
)

=

[
3
2

π − π − θ1(ω)

]
−
[

1
2

π + π − θ2(ω)

]
= π − [θ1(ω) + θ2(ω)] .

Then
sin
[
ω
(
τ−1 (ω, 0)− τ+

2 (ω, 0)
)]

= sin
[
θ̄1(ω) + θ̄2(ω)

]
> 0

meaning that crossing this segment from the stable region, at least one eigenvalue changes the sign of
its real part from negative to positive, implying stability loss.

5. Concluding Remarks

In this paper, n-firm dynamic oligopolies were examined without product differentiation and
with linear price and cost functions. Continuous time scales were assumed reconsidering the classical
dynamic model of McManus and Quandt (1961) with the best response dynamics. Without delays,
the equilibrium is always asymptotically stable without delays regardless of the values of the positive
adjustment speeds. We examined how this stability is lost when the firms face implementation and
information delays. For the sake of mathematical simplicity, it was assumed that the firms have the
same marginal costs and identical delays in both types. If these delays are equal, then a single-delay
model is obtained. If the delay is sufficiently small, then the equilibrium is oscillatory stable, at the
threshold, the trajectories show cyclic behavior and for larger delays, the cycles become expanding.
If the delays are different, then in the resulting two-delay case the stability switching curves were first
constructed and then the directions of the stability switches were determined. Growth rate dynamics
brought nonlinearities into the model, but their linearized version is identical with best response
dynamics, so shows similar local dynamics. Numerical results and simulation studies verify and
illustrate the theoretical findings.

This research can be continued in two different ways. One is the consideration of different model
modifications such as product differentiation, multi-product models, oligopsonies, labor-managed,
and rent seeking oligopolies, including market saturation to mention only a few. The other research
direction could be to examine nonlinear models, the local dynamics are similar to that of linear models,
however with very different global dynamic behavior.
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