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Abstract: In this paper, we study the problem of constructing a fuzzy measure over a product
space when fuzzy measures over the marginal spaces are available. We propose a definition of
independence of fuzzy measures and introduce different ways of constructing product measures,
analyzing their properties. We derive bounds for the measure on the product space and show that it
is possible to construct a single product measure when the marginal measures are capacities of order
2. We also study the combination of real functions over the marginal spaces in order to produce a
joint function over the product space, compatible with the concept of marginalization, paving the
way for the definition of statistical indices based on fuzzy measures.
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1. Introduction

Fuzzy measures, also known as capacities [1], non-additive measures, or monotone measures [2]
emerged as an extension of classic probabilistic measure theory by relaxing the additivity property.
Fuzzy measures started to receive significant interest from the scientific community due to Choquet’s
work on capacities [1], but it was Sugeno [3] who first used the term fuzzy measure in relation to
non-additive measures on finite domains.

Examples of fuzzy measures can also be found in contexts related to probability theory, dating back
to the works by Dempster [4] and Shafer [5], who studied the substitution of the additivity property
by superadditivity and subadditivity, resulting in the so-called belief and plausibility measures,
respectively, and showed that they can be regarded as probability intervals.

In this paper, we are interested in the problem of constructing a fuzzy measure over a product
space when fuzzy measures over the marginal spaces are available. From a practical point of view,
this can be regarded as the extension of particular information, given by the fuzzy measures on the
marginal spaces, to a more general setting, determined by the product space. We also study the
combination of real functions defined on the marginal spaces, in order to obtain a function over the
product space coherent with the initial functions.

The problem of composing fuzzy measures has received remarkable attention in the last years,
but most of the works consider measures defined over the same space, and typically over the
same σ-algebra [6]. With the motivation of reducing the number of parameters involved in the
definition of a fuzzy measure, a variety of particular types of fuzzy measures have been studied,
like m-separable fuzzy measures [7], that take advantage of the structure of the space where the
measure is defined in order to obtain a compact representation. k-maxitive fuzzy measures [8] have
been recently proposed as a way of encoding the interactions between the subsets of the reference
set. Previously, the internal structure of fuzzy measures showing partial additivity was studied in [9].
The combination of the elements in the decomposition is carried out using different aggregation
measures, including copulas [10].
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The problem of combining fuzzy measures from marginal spaces in order to obtain a fuzzy
measure over a product space has been approached from different perspectives, fundamentally based
on the concept of conditioning [11–18]. Recently, the problem has been studied within the context of
game theory as a way of representing coalitions between agents [19]. The measure over the product
space is obtained by combining a fuzzy measure over a given σ-algebra A with a Lebesgue measure
over the Borel σ-algebra on the interval [0, 1].

In this paper, we consider a more general setting, in which the measures to be combined are
general fuzzy measures over potentially different spaces. The rest of the paper is organized as
follows. Section 2 is devoted to give the necessary basic definitions and preliminaries. The original
contributions in this paper are presented in Sections 3 and 4, covering, respectively, the combination of
fuzzy measures and real functions. The paper ends with conclusions in Section 5.

2. Preliminaries

Definition 1. Let X be a set and A be a non-empty class of subsets of X so that X ⊂ A and ∅ ⊂ A. We say
that µ : A −→ [0, 1] is a fuzzy measure if the following conditions hold.

1. µ(∅) = 0.
2. µ(X) = 1.
3. ∀A, B ∈ A such that A ⊆ B it holds that µ(A) ≤ µ(B).

4. If {An}n∈N ∈ A such that A1 ⊆ A2 ⊆ . . . and
∞⋃

n=1

An ∈ A, then

lim
n

µ(An) = µ

(
∞⋃

n=1

An

)
. (1)

5. If {An}n∈N ∈ A such that A1 ⊇ A2 ⊇ . . . and
∞⋂

n=1

An ∈ A, then

lim
n

µ(An) = µ

(
∞⋂

n=1

An

)
. (2)

The triplet (X,A, µ) is a measurable space, and X is called the reference set.
In this paper, we will only consider finite spaces that are sufficient to cover a wide range of

applications domains [20]. Note that, in this case, the continuity conditions in Equations (1) and (2)
always hold. Furthermore, we will also assume that A is the power set of X, i.e., the set of all subsets
of X. In order to simplify the notation, from now on we will write µi for µ({xi}), and µA for µ(A).

It can be shown [21] that a fuzzy measure over a reference set of cardinality n is equivalent to n!
probability functions, each one of them associated with one possible permutation of the elements in
the reference set. We will denote by Xσ the ordering of the elements of X according to permutation σ,
so that Xσ = {x(1), . . . , x(n)}.

Definition 2. [21] Let (X,A, µ) be a measurable space. The probability functions associated with µ and Xσ

are defined as the set Pσ = {pσ(x(1)), . . . , pσ(x(n))} such that

pσ(x(i)) =

{
µ(A(i))− µ(A(i+1)) if i < n,

µ(x(n)) if i = n,
(3)

where A(i) = {x(i), . . . , x(n)}.

It is straightforward to show that 0 ≤ pσ(xi) ≤ 1 and ∑n
i=1 pσ(xi) = 1 for any σ.
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Definition 3. [21] Let (X,A, µ) be a measurable space and let Pσ be the probability function associated with
µ and Xσ. The probability measure generated by µ and Xσ is

Pσ(A) = ∑
x∈A

pσ(x). (4)

When it is clear from the context, we will use Pσ for both the probability function and
probability measure.

Note that there are as many probability measures generated by µ as there are possible
permutations of the element of the reference set. However, not all those measures are necessarily
different.

An important property of the generated probability measure is that it bounds the underlying
fuzzy measure in the extreme cases, as stated in the following proposition [22].

Proposition 1. Let (X,A, µ) be a measurable space and let {Pσ}σ∈Sn be the set of all the probability measures
generated by µ. Then,

min
σ

Pσ(A) ≤ µ(A) ≤ max
σ

Pσ(A). (5)

Two types of fuzzy measures that are specially relevant for this paper are belief functions [4,5]
and capacities of order 2 [1,23].

Definition 4. Let (X,A, µ) be a measurable space. Given a function m : P(X)→ [0, 1] such that m(∅) = 0
and ∑A∈P(X) m(A) = 1, we say that µ is a belief function if

µ(A) = ∑
B∈P(X)|B⊆A

m(B), ∀A ∈ P(X), (6)

where P(X) denotes the power set of X.

From now on, if µ is a belief function we will denote µ(A) as Bel (A).

Definition 5. Let (X,A, µ) be a measurable space. We say that µ is a monotone capacity of order 2 if

µ(A ∪ B) + µ(A ∩ B) ≥ µ(A) + µ(B), ∀A, B ∈ A. (7)

Definition 6. Let (X,A, µ) be a measurable space. We say that µ is an alternating capacity of order 2 if

µ(A ∪ B) + µ(A ∩ B) ≤ µ(A) + µ(B), ∀A, B ∈ A. (8)

The following result [22] links capacities of order 2 with the probability measures generated by
the fuzzy measure and will be key in the proof of one of the results in this paper.

Theorem 1. A fuzzy measure µ is a monotone (alternating) capacity of order 2 if and only if

µ(A) = min
σ

Pσ(A)
(

µ(A) = max
σ

Pσ(A)
)

(9)

for all A ∈ A, being {Pσ}σ∈Sn the set of probability measures generated by µ (see Definition 3).

We will consider two possible scenarios related to a given product space X1 × X2, where ×
denotes the Cartesian product:

• A fuzzy measure defined over the product space is available.
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• Two fuzzy measures, respectively, defined over X1 and X2 are available, but no measure over
X1 × X2 is known.

In the first scenario, we are interested in particularizing the information contained in the fuzzy
measure over the unidimensional spaces. Therefore, we need to define a marginalization operation
over the measure on the product space.

In the second scenario, we focus on building a fuzzy measure over the product space,
by combining the two measures over the marginal spaces. Thus, we need to define an appropriate way
of combining fuzzy measures.

Likewise marginal spaces, in a measurable product space we will assume the product classAX1×X2

to be the power set of X1 × X2, i.e., AX1×X2 = P(X1 × X2), which is not the same as P(X1)×P(X2).
Among the possible elements of a product class, we are particularly interested in those that can be

obtained from sets in the marginal space. They are called rectangles and are formally defined as follows.

Definition 7. Let (X1,AX1) and (X2,AX2) be two spaces where AX1 and AX2 are classes defined on X1 and
X2, respectively. We define the class of rectangles of AX1×X2 as

R = {H ∈ AX1×X2 | H = A× B, where A ∈ AX1 , B ∈ AX2}. (10)

Taking into account that we are assuming AX1×X2 = P(X1 × X2), it is easy to show that R is
closed for intersections, but not for unions.

We will make use of the concept of triangular norm and conorm. Both are operators that raised
within the context of probabilistic metric spaces [24]. They have also been widely used by the theory
of fuzzy sets [25–29] as an extension of classic operations over sets.

Definition 8 ([24]). An operator T : [0, 1]2 −→ [0, 1] is a triangular norm or t-norm for short, if it satisfies
the following conditions.

1. T(0, a) = 0, T(a, 1) = a for all a ∈ [0, 1]. (Boundary conditions)
2. T(a, b) = T(b, a). (Commutativity)
3. If a ≤ c and b ≤ d, then T(a, b) ≤ T(c, d). (Monotonicity)
4. T(T(a, b), c) = T(a, T(b, c)). (Asocciativity)

Example 1. Some examples of t-norms are

1. T0(x1, x2) =

{
min{x1, x2} if max{x1, x2} = 1,

0 otherwise.
2. T1(x1, x2) = max{x1 + x2 − 1, 0}.
3. T2(x1, x2) = x1x2.
4. T3(x1, x2) = min{x1, x2}.

Note that any t-norm T is always bounded by T0 and T3 in the following way.

T0(x1, x2) ≤ T(x1, x2) ≤ T3(x1, x2). (11)

Definition 9 ([24]). An operator T : [0, 1]2 −→ [0, 1] is a triangular conorm or t-conorm for short, if it
satisfies the following properties.

1. S(1, a) = 1, S(a, 0) = a for all a ∈ [0, 1]. (Boundary conditions)
2. S(a, b) = S(b, a). (Commutativity)
3. If a ≤ c and b ≤ d, then S(a, b) ≤ S(c, d). (Monotonicity)
4. S(S(a, b), c) = S(a, S(b, c)). (Asocciativity)
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Given any t-norm T, a t-conorm S can always be constructed as

S(a, b) = 1− T(1− a, 1− b). (12)

Example 2. Applying Equation (12) to the t-norms in Example 1, we obtain the following t-conorms.

1. S0(x1, x2) =

{
max{x1, x2} if min{x1, x2} = 0,

1 otherwise.
2. S1(x1, x2) = min{x1 + x2, 1}.
3. S2(x1, x2) = x1 + x2 − x1x2.
4. S3(x1, x2) = max{x1, x2}.

A similar boundary condition as expressed in Equation (11) for t-norms, holds for t-conorms:

S3(x1, x2) ≤ S(x1, x2) ≤ S0(x1, x2). (13)

A thorough study of the use of t-norms and t-conorms in the context of fuzzy measures and fuzzy
sets can be found in [28].

Functions can be integrated with respect to a fuzzy measure using Choquet integral, which is a
generalization of Lebesgue integral to non-additive monotone measures [1]. In the particular case of
additive measures, Choquet and Lebesgue integrals coincide. It is formally defined as follows.

Definition 10. Let (X,A, µ) be a measurable space, and let h be a measurable real function of X. The Choquet
integral of h with respect to µ is

C
∫

A
h ◦ µ =

∫ 0

−∞
(µ(Hα ∩ A)− 1) dα +

∫ ∞

0
µ(Hα ∩ A) dα (14)

where A ∈ A and Hα are the α-cuts of h, defined as

Hα = {x ∈ X/h(x) ≥ α}. (15)

If the reference set is finite, the integral can be expressed as

C
∫

h ◦ µ = h(x(1))µ(A(1)) +
n

∑
i=2

µ(A(i))[h(x(i))− h(x(i−1))], (16)

where Xσ is an ordering such that h(x(1)) ≤ h(x(2)) ≤ . . . ≤ h(x(n)) and the sets A(i) are of the form
{x(i), x(i+1), . . . , x(n)}.

3. Combining Fuzzy Measures

The main difficulty when combining fuzzy measures from marginal spaces in order to obtain a
fuzzy measure over a product space is that, unlike probability measures, we cannot follow a procedure
based on extending the measures, as additivity is required [11–18].

For instance, for sets of the form A× B, where A ∈ AX1 and B ∈ AX2 , we could define µ(A× B) =
µX1(A)⊗ µX2(B) for some appropriate operator ⊗. In the case of probability measures, this would
suffice as, due to additivity, the measure can easily be extended to arbitrary sets of X1 × X2 using
integrals [30]. More precisely, in the case of additive measures, the product measure for sets of the
form A× B, is given by µX1(A)µX2(B), while for the rest of sets Q ⊆ X1 × X2, the product measure is
computed as
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µ(Q) =
∫

µX2(Qx1)µX1(dx1) =
∫

µX1(Qx2)µX2(dx2) (17)

where Qx1 = {x2 ∈ X2| (x1, x2) ∈ Q} and Qx2 = {x1 ∈ X1| (x1, x2) ∈ Q}.
The same construction is not always possible In the case of non-additive measures, because the

integrals in Equation (17) can be different [14]. It happens, for instance, if we use Choquet integral [1].

3.1. �-Independent Measures

Consider two measurable spaces (X1,AX1 , µ1) and (X2,AX2 , µ2) . Our goal is to construct a fuzzy
measure over the product space in a sensible way. We start off by defining a fuzzy measure over the
product space, compatible with the marginal measures:

Definition 11. A product fuzzy measure of µ1 and µ2 is a function µ12 : AX1×X2 −→ [0, 1] satisfying

1. µ12(∅) = 0, µ12(X1 × X2) = 1.
2. For all A, B ∈ AX1×X2 such that A ⊆ B it holds that µ12(A) ≤ µ12(B).
3. For all A ∈ AX1 , it holds that µ12(A× X2) = µ1(A).
4. For all B ∈ AX2 , it holds that µ12(X1 × B) = µ2(B).

The next step is to guarantee that the composition of measures using the product in Definition 11
is compatible with the concept of independence. More precisely, assuming independence between two
fuzzy measures, their product fuzzy measure should be possible to be obtained using exclusively the
two original fuzzy measures. In this work, we will assume that two fuzzy measures are independent
if they can be composed resulting in a product fuzzy measure within the class R. This is formally
defined through the concept of �-independence.

Definition 12. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces. We say that µ1 and µ2 are
�-independent fuzzy measures if there exists a product fuzzy measure µ�12 satisfying that for any H ∈ R it
holds that

µ�12(H) = µ1(A)� µ2(B), (18)

where H = A× B and � is a t-norm.

From now on we will refer to this measure as the �-independent product of µ1 and µ2.
The next proposition shows that the �-independent product results in a well defined fuzzy

measure onR.

Proposition 2. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces. The �-independent product of µ1

and µ2, µ�12, is a fuzzy measure onR.

Proof. Let H ∈ R such that H = A × B with A ∈ AX1 and B ∈ AX2 . We have to show that the
conditions in Definition 11 are satisfied by µ�12.

1. It is clear that ∅ ∈ R as it can be expressed as ∅ = A× B if at least one of them (A or B) is the
empty set. In such case, µ1(A), µ2(B), or both are equal to zero (since they are fuzzy measures).
Hence, µ�12(∅) = 0 because � is a t-norm.

2. X1 × X2 trivially belongs toR, and thus µ�12(X1 × X2) = µ1(X1)� µ2(X2) = 1� 1 = 1.
3. Let H1 ⊆ H2 ∈ R. Assume that H1 = A1 × B1 and H2 = A2 × B2. Then, A1 ⊆ A2 and B1 ⊆ B2.

As the t-norm � is a monotone operator, it holds that

µ�12(H1) = µ1(A1)� µ2(B1) ≤ µ1(A2)� µ2(B2) = µ�12(H2),

which means that µ�12 is monotone.
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4. Given A ∈ AX1 , it holds that A× X2 ∈ R and therefore

µ�12(A× X2) = µ1(A)� µ2(X2) = µ1(A)� 1 = µ1(A).

5. Analogously, we can see that µ�12(X1 × B) = µ2(B).

Example 3. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be probabilistic spaces. Therefore, µ1 and µ2 are additive
measures and AX1 and AX2 are algebras. By letting � be equal to the product between real numbers, denoted by
×, we can define the ×-independent product of µ1 and µ2 as

µ×12(H) = µ1(A)× µ2(B) (19)

with H = A× B ∈ R. It is known that, in this case, there exists a unique additive product measure defined
over the smaller algebra generated by the corresponding rectangles [30].

Similar examples can be found for different types of fuzzy measures, as for instance,
possibility measures [31,32], illustrating that, given a �-independent fuzzy measure, it is possible to
find a unique product measure compatible with the initial ones. However, uniqueness does not hold in
general, so we will instead pursue the idea of defining bounds where the product fuzzy measure lies.

Definition 13. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces. We define the �-exterior product
measure for any H ∈ AX1×X2 as

µ�12(H) = min
A×B⊇H

µ1(A)� µ2(B) (20)

where � is a t-norm.

Definition 14. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces. We define the �-interior product
measure for any H ∈ AX1×X2 as

µ�
12
(H) = max

A×B⊆H
µ1(A)� µ2(B) (21)

where � is a t-norm.

These definitions are more general than the ones introduced in [13], where the product t-norm
is used instead. Figure 1 shows a representation of the �-interior and exterior product measures
corresponding, respectively, to the contained rectangle of larger measure and the containing rectangle
of lower measure.

The next results shows that both �-interior and exterior product measures are indeed product
fuzzy measures.

Proposition 3. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces. Then, the�-interior (resp. exterior)
product measure is a product fuzzy measure of µ1 and µ2.

Proof. We will show that µ�
12
(H) satifies Definition 11. The proof for the �-exterior product measure

is analogous. Note that

µ�
12
(∅) = max

A×B⊆∅
µ1(A)� µ2(B) = 0,
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as A× B ⊆ ∅, and therefore at least one of them will be equal to ∅. We have also used that, as µ1 and
µ2 are fuzzy measures and � is a t-norm, the value of the �-interior product measure for the empty
set is zero.

The value of the �-interior product measure for X1 × X2 is

µ�
12
(X1 × X2) = max

A×B⊆X1×X2
µ1(A)� µ2(B)

= µ1(X1)� µ2(X2)

= 1� 1 = 1.

Now we will show that monotonicity also holds. Let H1 ⊆ H2 ⊆ X1 × X2, then

µ�
12
(H1) = max

A1×B1⊆H1
µ1(A1)� µ2(B1)

= max
A1×B1⊆H1⊆H2

µ1(A1)� µ2(B1)

≤ max
A2×B2⊆H2

µ1(A2)� µ2(B2)

= µ�
12
(H2).

That is, as H1 ⊆ H2 and � is a t-norm (and thus a monotone operator), in the worst case,
the interior rectangle of larger measure in H2 has, at least, the same measure as the one in H1.

Let us check now the compatibility with marginalization. As A× X2 and X1 × B belong to R,
and taking into account that � is a t-norm, it holds that

µ�
12
(A× X2) = µ1(A)� µ2(X2) = µ1(A),

µ�
12
(X1 × B) = µ1(X1)� µ2(B) = µ2(B).

Figure 1. A representation of internal and external product measures.

Note that, for the particular case of the classR, both measures turn out to be the same, i.e., for all
H ∈ R, it holds that

µ�
12
(H) = µ�12(H) = µ�12(H). (22)
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Finally, the next result states how, in the general case, µ�
12

and µ�12 conform lower and upper
bounds, respectively, for any �-independent product fuzzy measure.

Proposition 4. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces. Given any �-independent product
of µ1 and µ2, it holds that for all C ∈ AX1×X2 ,

µ�
12
(C) ≤ µ�12(C) ≤ µ�12(C). (23)

Proof. We will only develop the proof for the lower bound. The upper bound case is analogous.
As µ�12 is a monotone measure, for any A × B ∈ R, with A × B ⊆ C ∈ AX1×X2 it holds that

µ�12(A× B) ≤ µ(C), and therefore

µ�12(C) ≥ max
A×B⊆C

µ�12(A× B) = max
A×B⊆C

µ1(A)� µ2(B) = µ�
12
(C),

taking into account that µ�12 satisfies that µ�12(A× B) = µ1(A)� µ2(B).

Up to this point, we have only been able to provide a way to obtain a combined fuzzy measure
when working within the classR. Outside it only bounds have been obtained. In the next section we
solve this problem for some particular kinds of fuzzy measures.

3.2. Maximin Product

We will elaborate on an idea introduced in [17] based on an alternative representation of general
fuzzy measures. Given any fuzzy measure, it is always possible to construct classes of measures
bounding it. Such is the case of

MP(µ) = {P ∈ P| P(A) ≥ µ(A) ∀A ∈ A} (24)

and
MBel(µ) = {Bel(A) ∈ B| Bel(A) ≤ µ(A) ∀A ∈ A}, (25)

where P denotes the set of all probability measures and B is the set of all belief measures.
It can be shown [17,18] that any fuzzy measure µ can be represented using elements of the classes

defined above as
µ(A) = max

β∈MBel(µ)
min

P∈MP(β)
P(A), (26)

and the Choquet integral of any function h with respect to µ can also be computed as

C
∫

h ◦ µ = max
β∈MBel(µ)

min
P∈MP(β)

∫
h dP. (27)

In other words, given any fuzzy measure, there is always a probability measure whose value
matches it for a given subset of the reference set.

Taking this representation as a basis, we have the conditions to propose a product fuzzy measure
over X1 × X2 as follows.

Definition 15. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces. We define the maximin product
measure as

µ1 ⊗ µ2(A) = max
βi∈MBel(µi)

i=1,2

min
Pi∈MP(βi)

i=1,2

P1 ⊗ P2(A), (28)

where P1 ⊗ P2 is the standard product for probability measures.
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The main drawback of this definition, from a practical point of view, is that it involves solving
an optimization problem over very general classes of fuzzy measures. However, we will show that
an approximation can be easily obtained taking advantage of the representation of a fuzzy measure
by means of a set of probability measures. Remarkably, for some particular types of fuzzy measures,
we will also show that, rather than just bounds, we can obtain a precise product fuzzy measure.

Definition 16. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces and Pµ1
σ1 and Pµ2

σ2 be the probability
functions associated with Xσ1

1 and Xσ2
2 , respectively. We define the lower product p-measure as

m12(C) = min
σ1,σ2

[
Pµ1

σ1 ⊗ Pµ2
σ2 (C)

]
, (29)

where ⊗ is the standard probabilistic product.

Definition 17. Given the conditions in Definition 16, we define the upper product p-measure as

m12(C) = max
σ1,σ2

[
Pµ1

σ1 ⊗ Pµ2
σ2 (C)

]
, (30)

where ⊗ is the standard probabilistic product.

The construction of these measures comprises the following steps, assuming measurable spaces
(X1,AX1 , µ1) and (X2,AX2 , µ2) with cardinalities n1 and n2, respectively.

• Compute the n1! probability measures associated with µ1 and the n2! corresponding to µ2.
• Compute the n1!× n2! product probability measures using the standard product.
• The product p-measures are computed, for any given set, using the smaller and larger product

probability measure.

In fact, there is no need to know the value of the probabilities for all the possible subsets for all
the permutations, as the probability measures are additive, and therefore it suffices to know the values
for the elementary events (singletones).

Example 4. Consider two measurable spaces, (X1,AX1 , µ1) and (X2,AX2 , µ2) , both with cardinality 3.
Table 1 shows an example of a fuzzy measure with all its possible values specified, as well as the associated
probability measures corresponding to each permutation of the subsets of the reference set.

As both reference sets have cardinality 3, each one of them has three proper sets (i.e., excluding the total and
empty sets). Thus, X1 × X2 contains 9 elements and 29 − 2 = 510 proper subsets. For the sake of readability,
we will use the notation (x1i, x2j) = zij, meaning that

X1 × X2 = {z11, z12, z13, z21, z22, z23, z31, z32, z33}.

Let us see how to compute, from the data in Table 1, the product p-measures for some subsets:

• Consider the unitary subset z11.

m12({z11}) = min
σ1,σ2

Pµ1
σ1 ({x11})Pµ2

σ2 ({x21}) = 0.1 · 0.1 = 0.01.

The calculation for unitary subsets is easy, as it requires just to search the permutation with lower value in
both components, which in this case are Pµ1

(3,1,2) and Pµ2
(2,3,1).
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• Now we will consider a set from classR, namely, {z22, z23},

m12({z22, z23}) = min
σ1,σ2

[Pµ1
σ1 ({x12})Pµ2

σ2 ({x22}) + Pµ1
σ1 ({x12})Pµ2

σ2 ({x23})]

= min
σ1,σ2

[Pµ1
σ1 ({x12})[P

µ2
σ2 ({x22}) + Pµ2

σ2 ({x23})]]

= min
σ1,σ2

[Pµ1
σ1 ({x12})Pµ2

σ2 ({x22, x23})]

= 0.2 · 0.6 = 0.12.

The calculations here are analogous to the unitary set case, as it is enough to find the permutations returning
the minimum value for the projections. In this case, they are Pµ1

(3,2,1) for {x12} and Pµ2
(1,3,2) for {x22, x23}.

• Consider now a subset outside the classR, for instance {z11, z22}. We obtain

m12({z11, z22}) = min
σ1,σ2

[Pµ1
σ1 ({x11})Pµ2

σ2 ({x21}) + Pµ1
σ1 ({x12})Pµ2

σ2 ({x22})]

= 0.3 · 0.1 + 0.2 · 0.6 = 0.15.

This case is more complicated, as it requires exploring all the possible combination of products and finding
the permutation returning the lowest value. In this case, they are Pµ1

(3,2,1) and Pµ2
(2,3,1).

Table 1. Probability measures generated by two sample fuzzy measures.

P(X1) µ1 Pµ1

(1,2,3) Pµ1

(1,3,2) Pµ1

(2,1,3) Pµ1

(2,3,1) Pµ1

(3,1,2) Pµ1

(3,2,1)

x11 0.3 0.2 0.2 0.15 0.3 0.1 0.3
x12 0.4 0.35 0.4 0.4 0.4 0.4 0.2
x13 0.45 0.45 0.4 0.45 0.3 0.5 0.5

x11, x12 0.5 0.55 0.6 0.55 0.7 0.5 0.5
x11, x13 0.6 0.65 0.6 0.6 0.6 0.6 0.8
x12, x13 0.8 0.8 0.8 0.85 0.7 0.9 0.7

P(X2) µ2 Pµ2

(1,2,3) Pµ2

(1,3,2) Pµ2

(2,1,3) Pµ2

(2,3,1) Pµ2

(3,1,2) Pµ2

(3,2,1)

x21 0.1 0.4 0.4 0.2 0.1 0.2 0.1
x22 0.5 0.4 0.5 0.6 0.6 0.5 0.6
x23 0.2 0.2 0.1 0.2 0.3 0.3 0.3

x21, x22 0.7 0.8 0.9 0.8 0.7 0.7 0.7
x21, x23 0.4 0.6 0.5 0.4 0.4 0.5 0.4
x22, x23 0.6 0.6 0.6 0.8 0.9 0.8 0.9

The calculations are similar for the upper product p-measure, resulting in

m12({z11}) = 0.12,

m12({z22, z23}) = 0.36,

m12({z11, z22}) = 0.32.

Note that the product p-measures provide an interval of measure over the product space, but they
are obtained in a rather different way than the exterior and interior product measures defined in
Equations (20) and (21). We will analyze now some remarkable properties of product p-measures,
first of all checking that they are actually fuzzy measures.
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Proposition 5. m12 and m12 are fuzzy measures.

Proof. Consider m12(C) = min
σ1,σ2

Pµ1
σ1 ⊗ Pµ2

σ2 (C). As ⊗ is the standard probabilistic product and we are

assuming the reference set to be finite, it holds that there exist two permutations σ1 and σ2 such that

m12(C) = ∑
(x1i ,x2j)∈C

pσ1(x1i)pσ2(x2j).

Given C ⊂ H, it follows from Definition 16 that there exist two permutations τ1 and τ2 such that

m12(H) = ∑
(x1i ,x2j)∈H

pτ1(x1i)pτ2(x2j)

= ∑
(x1i ,x2j)∈C

pτ1(x1i)pτ2(x2j) + ∑
(x1i ,x2j)∈H−C

pτ1(x1i)pτ2(x2j).

As σ1 and σ2 are the permutations that minimize the product probability of C, it holds that

m12(H) ≥ ∑
(x1i ,x2j)∈C

pσ1(x1i)pσ2(x2j) + ∑
(x1i ,x2j)∈H−C

pτ1(x1i)pτ2(x2j)

= m12(C) + ∑
(x1i ,x2j)∈H−C

pτ1(x1i)pτ2(x2j)

and thus the measure is monotone. The proof for the upper product p-measure is analogous.

However, m12 and m12 are not, in general, product fuzzy measures of µ1 and µ2 since they can
often fail to be consistent with the marginalization, i.e.

m12(A× X2) = min
σ1,σ2

Pµ1
σ1 ⊗ Pµ2

σ2 (A× X2) = min
σ1

Pµ1
σ1 (A),

that is not guaranteed to be equal to µ1(A). The same happens to m12. However, these measures
conform a bound of a product measure, as stated in the next proposition.

Proposition 6. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces and let µ×12 be the ×-independent
product of µ1 and µ2. Then, for any H = A× B ∈ R it holds that

m12(H) ≤ µ×12(H) ≤ m12(H). (31)

Moreover, for any C ∈ AX1×X2 ,

µ×
12
(C) ≤ m12(C),

m12(C) ≤ µ×12(C).
(32)

Proof. According to Proposition 1,

min
σ1

Pµ1
σ1 (A) ≤ µ1(A) ≤ max

σ1
Pµ1

σ1 (A)

and
min

σ2
Pµ2

σ2 (B) ≤ µ2(B) ≤ max
σ2

Pµ2
σ2 (B).

Multiplying both inequalities, we obtain
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min
σ1

Pµ1
σ1 (A)min

σ2
Pµ2

σ2 (B) ≤ µ1(A)µ2(B) ≤ max
σ1

Pµ1
σ1 (A)max

σ2
Pµ2

σ2 (B)

⇒ min
σ1,σ2

Pµ1
σ1 (A)Pµ2

σ2 (B) ≤ µ1(A)µ2(B) ≤ max
σ1,σ2

Pµ1
σ1 (A)Pµ2

σ2 (B)

⇒ m12(H) ≤ µ×12(H) ≤ m12(H),

as H = A× B and µ×12(H) = µ1(A)µ2(B). This proves Equation (31).
Now consider two sets C ∈ AX1×X2 and G ∈ R with G ⊆ C. As m12 is a fuzzy measure, and thus

monotone, it holds that m12(G) ≤ m12(C), which together with Equation (31) yields

µ×12(G) ≤ m12(G) ≤ m12(C). (33)

As Equation (33) holds for any G ∈ R with G ⊆ C, in particular we can write

max
G∈R
G⊆C

µ×12(G) ≤ m12(C). (34)

Note that, according to Definition 14, the left hand side of inequality (34) is the interior product measure
constructed with the product t-norm, i.e., µ×

12
(C), which means that µ×

12
(C) ≤ m12(C). The remaining

inequality is proven in a similar way.

The next proposition relates the concept of product p-measure with standard probabilistic product.

Proposition 7. Let (X1,AX1 , P1) and (X2,AX2 , P2) be probabilistic spaces. Then, m12 and m12 are equal to
the standard probabilistic product.

Proof. If P1 and P2 are probability measures (and thus fuzzy measures after all), it follows from
Definitions 2 and 3 that all the associated probability measures are the same, and therefore m12 = m12

and they are equal to the standard probabilistic product.

The next theorem states that, for a particular class of fuzzy measures, constructing a single product
measure from two marginal measures is indeed possible.

Theorem 2. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces such that µ1 and µ2 are monotone
(alternating) capacities of order 2, then m12 (m12) is a product fuzzy measure of µ1 and µ2.

Proof. According to Proposition 5, both m12 and m12 are fuzzy measures. We only have to prove that
they are consistent with the marginalization, which is straightforward taking into account that, if µ1

and µ2 are capacities of order 2, it follows from Theorem 1 that

µi(A) = min
σ

Pµi
σ (A), i = 1, 2 (for monotone capacities),

µi(A) = max
σ

Pµi
σ (A), i = 1, 2 (for alternating capacities).

Thus, m12(A×X2) = minσ Pµ1
σ (A) = µ1(A) and m12(X1× B) = minσ Pµ2

σ (B) = µ2(B). The result
for alternating capacities is analogously obtained.

Corollary 1. If µ1 and µ2 are monotone (alternating) capacities of order 2 and A× B ∈ R, then

m12(A× B) = µ1(A)µ2(B) (for monotone capacities),

m12(A× B) = µ1(A)µ2(B) (for alternating capacities).
(35)
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These results indicate that the composition of capacities of order 2 can be constructed using the
product p-measures, so that if both marginals are monotone capacities of order 2, the product measure
is m12, while it is m12 if the marginals are alternating capacities of order 2.

4. Functions over Product Spaces

After studying the problem of composing fuzzy measures, the next step is to consider the
construction of functions over product spaces, from functions defined on the marginal spaces.

4.1. Composition of Functions

Our starting point consists of two non-negative functions h1 and h2 defined over the reference
sets X1 and X2, respectively. We propose the use of t-norms for carrying out the composition of the
functions, and therefore we will assume, without loss of generality, that they take values on [0, 1].

Definition 18. Let h1 and h2 be functions defined on X1 and X2, respectively, and taking values on interval
[0, 1]. We say that h?12 : X1 × X2 −→ [0, 1] is the ?-composition of h1 and h2 if ∀(x1, x2) ∈ X1 × X2,

h?12(x1, x2) = h1(x1) ? h2(x2), (36)

where ? is a t-norm.

Example 5. Consider the functions h1 and h2 defined on X1 and X2 given in Table 2. Using the t-norm min,
we find that the min-composition of h1 and h2, denoted as hmin

12 , is the function specified in Table 3.

Table 2. An example of two functions defined over the marginal spaces.

X1 h1 X2 h2

x11 0.3 x21 0.4
x12 0.6 x22 0.9
x13 0.5 x23 0.2

Table 3. Min-composition of the functions in Table 2.

x21 x22 x23

x11 0.3 0.3 0.2
x12 0.4 0.6 0.2
x13 0.4 0.5 0.2

Note that h?12 is not symmetric. A possible interpretation of the composed function is the worst value of a
pair (x1i, x2j) regarding both marginal spaces simultaneously. For instance, a value of h?12(x12, x21) equal to 0.4
would indicate that both h1(x12) ≥ 0.4 and h2(x21) ≥ 0.4.

Proposition 8. Let h1 and h2 be functions defined on X1 and X2, respectively, and taking values on [0, 1].
Then, the α-cuts generated by hmin

12 , belong to the class of rectangles,R.

Proof. The α-cuts of any function h in X1 × X2 are (see Equation (15))

Hα = {(x1, x2) ∈ X1 × X2|h(x1, x2) ≥ α}.



Mathematics 2020, 8, 1605 15 of 18

Considering the min t-norm, and thus h = hmin
12 , we find that

Hα = {(x1, x2) ∈ X1 × X2|hmin
12 (x1, x2) ≥ α}

= {(x1, x2) ∈ X1 × X2|min{h1(x1), h(x2)} ≥ α}
= {(x1, x2) ∈ X1 × X2|h1(x1) ≥ α y h2(x2) ≥ α}
= {x1 ∈ X1|h1(x1) ≥ α} × {x2 ∈ X2|h2(x2) ≥ α} ∈ R.

Proposition 8 guarantees that, when composing functions using the min t-norm, the resulting
function generates α-cuts belonging to classR, which facilitates the calculation of a product measure
as the interior and exterior product measures are the same in this case.

4.2. Marginalization

The marginalization operation acts in the opposite direction to composition, i.e., from a function
defined on a product space, by applying marginalization we should obtain functions defined over the
marginal spaces. In what follows, we pursue the definition of a well founded marginalization process.

Definition 19. Let h be a function defined on X1× X2 and taking values on [0, 1]. We define the ⊕-marginals
of h as

h⊕X1
(x1i) =

⊕
x2j∈X2

h(x1i, x2j) = h(x1i, x21)⊕ h(x1i, x22)⊕ . . .⊕ h(x1i, x2m), (37)

h⊕X2
(x2j) =

⊕
x1i∈X1

h(x1i, x2j) = h(x11, x2j)⊕ h(x12, x2j)⊕ . . .⊕ h(x1n, x2j), (38)

where ⊕ is a t-conorm, n is the cardinality of X1 and m is the cardinality of X2.

For instance, if we consider the max t-conorm, the marginalization process would result in

hmax
X1

(x1i) = max{h(x1i, x21), h(x1i, x22), . . . , h(x1i, x2m)}.

Example 6. Consider a function h defined on X1 × X2 as specified in Table 4. The corresponding marginals
when the max t-conorm is used are shown on the last column and row. Table 5 illustrates the opposite process,
where the marginals have been combined usind the min t-conorm.

Table 4. Specification of a function h(x1i, x2j) and its marginals using the max t-conorm.

x21 x22 x23 hmax
X1

x11 0.5 0.1 0.2 0.5
x12 0.7 0.6 0.4 0.7
x13 0.3 0.5 0.2 0.5

hmax
X2

0.7 0.6 0.4

Table 5. Composition of the marginals in Table 4 using the min t-conorm.

x21 x22 x23 hmax
X1

x11 0.5 0.5 0.4 0.5
x12 0.7 0.6 0.4 0.7
x13 0.5 0.5 0.4 0.5

hmax
X2

0.7 0.6 0.4
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We can notice how, in Example 6, the function obtained by composing the marginals bounds from
above the original function over the product space. The next proposition shows that this property
holds in rather general settings.

Proposition 9. Let h be a function defined on X1 × X2 and taking values on [0, 1], and let h⊕X1
and h⊕X2

be the
⊕-marginals of h. Then, for any arbitrary t-conorm ⊕ it holds that

h(x1i, x2j) ≤ min{h⊕X1
(x1i), h⊕X2

(x2j)}, ∀(x1i, x2j) ∈ X1 × X2. (39)

Proof. According to Definition 19,

h⊕X1
(x1i) = h(x1i, x21)⊕ h(x1i, x22)⊕ . . .⊕ h(x1i, x2m). (40)

As the max t-conorm bounds any other conorm from below,

h⊕X1
(x1i) ≥ max{h(x1i, x21), h(x1i, x22), . . . , h(x1i, x2m)} = hmax

X1
(x1i). (41)

Likewise, it holds that
h⊕X2

(x2j) ≥ hmax
X2

(x2j). (42)

On the other hand, it is clear that

h(x1i, x2j) ≤ min{hmax
X1

(x1i), hmax
X2

(x2j)}, (43)

as hmax
X1

(x1i) is the maximum value of h(x1i, x2j) for a fixed value x1i of X1, and hmax
X2

(x2j) is the
maximum value of h(x1i, x2j) for a fixed value x2j of X2. Therefore, combining Equation (43) with
Equations (41) and (42), we obtain Equation (39).

Corollary 2. Assuming the conditions in Proposition 9, given an arbitrary t-conorm ⊕ it holds that, for any
(x1i, x2j) ∈ X1 × X2

h(x1i, x2j) ≤ hmin
12 (x1i, x2j). (44)

5. Conclusions

In this paper, we have studied the problem of constructing fuzzy measures over product domains,
when fuzzy measures over the marginal spaces are available. We have proposed a definition of
independence of fuzzy measures and different ways of constructing product measures that are
consistent with the defined concept of independence. Even though, in general, we have only been able
to give bounds for the measure on the product space when we work outside the class of rectangles
R, we show in Theorem 2 that it is possible to construct a single product measure if the marginal
measures are capacities of order 2.

Our proposal for combining real functions over the marginal spaces in order to produce a joint
function over the product space satisfies that the resulting function yields α-cuts within the class of
rectangles R, if the min t-norm is used. The importance of this property is that within the class R,
we are able to compute a unique product fuzzy measure, as the interior and exterior product measures,
which conform the bound of the product fuzzy measure, are the same in this case.

The results in the paper show that we are able to handle marginal spaces endowed with a
fuzzy measure and a real function, and work on the product space with product measures and
functions containing the information in the marginal case. Likewise, the marginal functions can be
measured using, for instance, Choquet integral; the joint function can also be measured in the same
way, by integrating with respect to the product measure. This provides the basic tools for defining
statistical indices, as for instance indices of association, based on fuzzy measures.
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