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Abstract: We provide explicit graded constructions of orbifold del Pezzo surfaces with rigid orbifold
points of type

{
ki × 1

ri
(1, ai) : 3 ≤ ri ≤ 10, ki ∈ Z≥0

}
as well-formed and quasismooth varieties

embedded in some weighted projective space. In particular, we present a collection of 147 such
surfaces such that their image under their anti-canonical embeddings can be described by using
one of the following sets of equations: a single equation, two linearly independent equations, five
maximal Pfaffians of 5× 5 skew symmetric matrix, and nine 2× 2 minors of size 3 square matrix. This
is a complete classification of such surfaces under certain carefully chosen bounds on the weights of
ambient weighted projective spaces and it is largely based on detailed computer-assisted searches by
using the computer algebra system MAGMA.

Keywords: orbifold del pezzo surfaces; hypersurfaces; complete intersections; pfaffians; graded ring
constructions

1. Introduction

A del Pezzo surface is a two dimensional algebraic variety with an ample anti-canonical divisor
class. The classification of nonsingular del Pezzo surfaces is well known and there are 10 deformation
families of such surfaces: P1 × P1, P2 and the blow up of P2 in d general points for 1 ≤ d ≤ 8. An
orbifold del Pezzo surface X is a del Pezzo surface with at worst isolated orbifold points, classically
known as a log del Pezzo surface with cyclic quotient singularities. We describe X to be locally
qGorenstein(qG)-rigid if it contains only rigid isolated orbifold points, i.e., the orbifold points are rigid
under qG-deformations. If it admits a qG-degeneration to a normal toric del Pezzo surface then it is
called a del Pezzo surface of class TG. The Fano index of X is the largest integer I such that KX = ID
for an element D in the class group of X.

The classification of orbifold del Pezzo surfaces has been an interesting area of research from
various points of view, such as the existence of Kahler–Einstein metric [1,2]. Recently, the classification
of orbifold del Pezzo surfaces has received much attention, primarily due to the mirror symmetry
program for Fano varieties by Coates, Corti et al. [3]. The mirror symmetry for orbifold del Pezzo
surface has been formulated in [4] in the form of a conjecture expecting a one to one correspondence
between mutation equivalence classes of Fano polygons with the (qG)-deformation equivalence classes
of locally qG-rigid del Pezzo surfaces of class TG. Therefore the construction of rigid orbifold del Pezzo
surfaces has important links with the mirror symmetry due to this conjecture. The conjecture has been
proved for smooth del Pezzo surfaces by Kasprzyk, Nill and Prince in [5]. Corti and Heuberger [6]
gave the classification of locally qG-rigid del Pezzo surfaces with 1

3 (1, 1) singular points. The del
Pezzo surfaces with a single orbifold point of type 1

r (1, 1) have been classified by Cavey and Prince [7].
The mutation equivalence classes of Fano polygons with rigid singularities of type{

k1 ×
1
3
(1, 1), k2 ×

1
6
(1, 1) : k1 > 0, k2 ≥ 0

}
and

{
k× 1

5
(1, 1) : k > 0

}
(1)
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have been computed in [8]. This is equivalent to the classification of del Pezzo surfaces of class
TG with the above given baskets; though it may be missing surfaces which do not admit a toric
degeneration and having one of the above type of baskets of singularities. By using birational
techniques, the classification of orbifold del Pezzo surfaces with basket consisting of a combination of
1
3 (1, 1) and 1

4 (1, 1) orbifold points was given by Miura [9].
In [6] the classification gave a total of 29 deformation families of del Pezzo surfaces with 1

3 (1, 1)
orbifold points which were divided into 6 different cascades; one of the cascades was first studied by
Reid and Suzuki in [10]. Moreover, good model constructions for all 29 surfaces were presented as
complete intersections inside the so called rep-quotient varieties (mainly simplicial toric varieties):
A geometric quotient V//G of a representation V of a complex Lie group G . Among those, six
of them can be described as a hypersurface in P3(ai) or as a complete intersection in P4(ai) or as
complete intersection in weighted Grassmannian wGr(2, 5) [11]. This motivated us to classify rigid del
Pezzo surfaces with certain basket of singularities which can be described by relatively small sets of
equations.

1.1. Summary of Results

We classify polarized rigid del Pezzo surfaces, under the bounds chosen in Section 3.2, which
contain baskets of orbifold points{

ki ×
1
ri
(1, ai) : 3 ≤ ri ≤ 10, ki ≥ 0

}
;

such that their images under their anti-canonical embedding can be described by one of the following
ways.

(i) as a hypersurface, i.e., by a single weighted homogenous equation; Xd ↪→ P3(ai).
(ii) as a codimension 2 weighted complete intersection, i.e., by 2 weighted homogeneous equations;

Xd1,d2 ↪→ P4(ai).
(iii) as a codimension 3 variety described by using five maximal Pfaffians of a 5× 5 skew symmetric

matrix;
Xd1,...,d5 ↪→ P5(ai).

In other words they are weighted complete intersections in weighted Grassmannian wGr(2, 5)
or (weighted) projective cone(s) over it [11–13].

(iv) as a codimension 4 variety described by using nine 2× 2 minors of a size 3 square matrix

Xd1,...,d9 ↪→ P6(ai).

Equivalently, they are weighted complete intersections in some weighted P2 × P2 variety or
(weighted) projective cone(s) over it [14].

We summarize the classification in form of the following theorem.

Theorem 1. Let X be an orbifold del Pezzo surface having at worst a basket

B =

{
ki ×

1
r
(1, a) : 3 ≤ r ≤ 10, ki ≥ 0

}
of rigid orbifold points and their image X ↪→ P(ai) under their anti-canonical embedding can be described as a
hypersurface or as a codimension 2 complete intersection or as a weighted complete intersection in wGr(2, 5) or
as a weighted complete intersection of weighted P2 × P2 variety. Then, subject to Section 3.2, X is one of the
del Pezzo surfaces listed in Tables A1–A4. In total there are 147 families of such del Pezzo surfaces, divided as
follows in each codimension.
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Hypersurface Complete intersection 4× 4 Pfaffians 2× 2 Minors

81 25 21 20

We construct these examples by first computing all possible candidate varieties with required
basket of orbifold points using an algorithmic approach developed in [15,16], under the bounds given
in Section 3.2. In case of codimension 1 and 2, the equations of these varieties are generic weighted
homogeneous polynomials of given degrees. In cases of codimension 3 and 4 they are induced from the
equations of the corresponding ambient weighted projective variety. We perform a detailed singularity
analysis of equations of these candidate varieties to prove the existence or non-existence of given
candidate surface. We calculate the qG-deformation invariants like the anti-canonical degree −K2

X and
first plurigenus h0(−KX) in all cases. We calculate their Euler number and Picard rank in hypersurface
case. In complete intersection case, we were able to calculate their Euler number and identify the
non-prime examples, i.e., those with the Picard rank greater than 1 by computing their orbifold Euler
number.

The computer search used to find these surfaces, based on the algorithm approach of [15,16], is an
infinite search. The search is usually performed in the order of increasing sum of the weights (W = ∑ ai
of the ambient weighted projective spaces. In each codimension and for each Fano index I, we provide
complete classification of rigid del Pezzo surfaces X ⊂ P(ai) satisfying W − I ≤ N where N ≥ 50
. If the last candidate example for computer search appears for W − I = q then we search for all
cases with N = maximum(50, 2q), to minimize the possibility of any further examples. This indeed
does not rule out a possibility of further other examples for larger value of W and I. It is evident
that for larger values of W most weights of P(ai) will be larger than 10, the highest local index of
allowed orbifold points in our classification, consequently the basket of orbifold points will very likely
contain orbifold points of local index r ≥ 11. In cases of hypersurfaces and complete intersections,
the classifications of tuples (dj; ai) which give rise to a quasismooth del Pezzo surfaces can be found
in [17,18] where dj denote the degrees of the defining equations and ai are weights of the ambient
weighted projective space. These classifications of tuples can perhaps be analyzed to give the bound
free proof of completeness of our results in codimension 1 and 2. However, their classification neither
contains computation of any of the invariants like h0(−KX),−K2

X and e(X) and nor do they compute
the basket of orbifold points lying on those surfaces.

1.2. Links with Existing Literature

A part of our search results recovers some existing examples in the literature, though a significant
subset of them have not been previoudly described in terms of equations. For example, the classification
of Fano polygons (equivalently of rigid del Pezzo surfaces of class TG) with basket of orbifold points
(1) is given in [8]. We give descriptions in terms of equations for six of their examples; listed as
14, 16, 23, 85, 109 and 130 in our tables. We also recover the classical smooth del Pezzo surfaces of
degrees 1, 2, 3, 4, 5, 6 and 8; listed as 3, 2, 1, 82, 107, 128 and 12 respectively in Tables A1–A4. Moreover, 7
of the 29 examples from [6] also appear in our list with one of them seemingly having a new description
as a complete intersection in a w(P2 × P2) variety, listed as 129 in Table A4. Some examples of Fano
index 1 and 2 in codimension 3 and 4 given in Tables A3 and A4 can be found in [19], primarily
appearing implicitly as a part of some infinite series of orbifold del Pezzo surfaces.

2. Background and Notational Conventions

2.1. Notation and Conventions

• We work over the field of complex numbers C.
• All of our varieties are projectively Gorenstein.
• For two orbifold points where 1

r (1, a) = 1
r (1, b) we choose a presentation 1

r (1, min(a, b)).
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• In all the tables, integers appearing as subscripts of X denote the degree of the defining
equations of the given variety, where dm means that there are m equations of degree d. Similarly,
P(· · · , am

i , · · · ) means that there are m weights of degree ai.
• We use the same notation for canonical divisor class KX and canonical sheaf ωX , if no confusion

can arise. We usually write KX = O(k) to represent KX = kD.

2.2. Graded Rings and Polarized Varieties

We call a pair (X, D) a polarized variety if X is a normal projective algebraic variety and D a
Q-ample Weil divisor on X, i.e., some integer multiple of D is a Cartier divisor. One gets an associated
finitely generated graded ring

R(X, D) =
⊕
n≥0

H0 (X,OX(nD)) .

It is called a projectively Gorenstein if the ring R(X, D) is a Gorenstein ring. A surjective morphism
from a free graded ring k[x0, ..., xn] to R(X, D) gives the embedding

i : X = ProjR(X, D) ↪→ P(a0, · · · , an)

where ai = deg(xi) and with the divisorial sheaf OX(D) being isomorphic to OX(1) = i∗OP(1).
The Hilbert series of a polarized projective variety (X, D) is given by

P(X,D)(t) = ∑
m≥0

h0(X, mD) tm, (2)

where h0(X, mD) = dim H0(X,OX(mD)). We usually write PX(t) for the Hilbert series and by the
standard Hilbert–Serre theorem [20] (Theorem 11.1), PX(t) has the following compact form

PX(t) =
N(t)

a

∏
i=0

(1− tai )

, (3)

where N(t) is a palindromic polynomial of degree q, as X is projectively Gorenstein.

2.3. Rigid Del Pezzo Surfaces

Definition 1. An isolated orbifold point Q of type 1
r (a1, . . . , an) is the quotient of An by the cyclic group µr,

ε : (x1, . . . , xn) 7→ (εa1 x1, . . . , εan xn)

such that GCD(r, ai) = 1 for 1 ≤ i ≤ n, 0 < ai < r, and ε is a primitive generator of µr.

A del Pezzo surface X is a two dimensional algebraic variety with an ample anti-canonical divisor
class −KX . If, at worst, X contains isolated orbifold points then we call it an orbifold or a log del Pezzo
surface. The Fano index I of X is the largest positive integer I such that −KX = I · D for some divisor
D in the divisor class group of X. An orbifold del Pezzo surfaces X ⊂ P(ai) of codimension c is
well-formed if the singular locus of X consists of at most isolated points. It is quasismooth if the affine
cone X̃ = SpecR(X, D) ⊂ An+1 is smooth outside its vertex 0.

A singularity admitting a Q-Gorenstein smoothing is called a T-singularity [21]. A singularity
which is rigid under Q-Gorenstein smoothing is called a rigid or R-singularity [22]. The following
characterization of a T-singularity and R-singularity are useful in our context [7].

Definition 2. Let Q = 1
r (a, b) be an orbifold point and take m = GCD(a + b, r), s = (a + b)/m and

k = r/m then Q has a form 1
mk (1, ms − 1). Moreover Q is called a T-singularity if k | m [21] and an

R-singularity if m < k [22].
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In the two dimensional case, any orbifold point 1
r (a, b) can be represented as 1

r (1, a′) by choosing
a different primitive generator of the cyclic group µr and the following Lemma follows from it.

Lemma 1. Let Q1 = 1
r (1, a) and Q2 = 1

r (1, b) be isolated orbifold points. Then Q1 = Q2 if and only if
a = b or ab ≡ 1 mod r.

By using the fact that each orbifold point on a surface can be written as 1
r (1, a) and by applying

Lemma 1 on the all possible isolated rigid orbifold points of type 1
r (1, a); 3 ≤ r ≤ 10, we get to the

following Lemma.

Lemma 2. Let 3 ≤ r ≤ 10 then any isolated rigid orbifold point
1
r
(a, b) is equivalent to one of the following.


1
3 (1, 1), 1

5 (1, 1), 1
5 (1, 2), 1

6 (1, 1), 1
6 (1, 5), 1

7 (1, 1), 1
7 (1, 2),

1
7 (1, 3), 1

8 (1, 1), 1
8 (1, 5), 1

9 (1, 1), 1
9 (1, 4), 1

10 (1, 1), 1
10 (1, 3)


2.4. Ambient Varieties

In this section we briefly recall the definition of weighted Grassmannian wGr(2, 5) and w(P2×P2)
which we use, apart from weighted projective spaces, as rep-quotient varieties for the construction of
our rigid orbifold del Pezzo surfaces; following the notion introduced in [6].

2.4.1. Weighted Grassmannian wGr(2, 5)

This part is wholly based on material from ([11], Section 2). Let w := (w1, · · · , w5) be a tuple of
all integers or all half integers such that

wi + wj > 0, 1 ≤ i < j ≤ 5,

Then the quotient of the affine cone over Grassmannian minus the origin G̃r(2, 5)\{0} by C× given by:

ε : xij 7→ εwi+wj xij

is called weighted Grassmannians wGr(2, 5) where xij are Plücker coordinates of the embedding

Gr(2, 5) ↪→ P
(∧2 C5

)
. Therefore we get the embedding

wGr(2, 5) ↪→ P
(
aij : 1 ≤ i < j ≤ 5, aij = wi + wj

)
.

The image of Gr(2, 5) and wGr(2, 5) under the Plücker embedding is defined by five 4× 4 Pfaffians of
the 5× 5 skew symmetric matrix 

x12 x13 x14 x15
x23 x24 x25

x34 x35
x45

 , (4)

where we only write down the upper triangular part. Explicitly, the defining equations are:

Pfi = xjkxlm − xjl xkm + xjmxlm,

where 1 ≤ j < k < l < m ≤ 5 are four integers and i makes up the fifth one in {1, 2, 3, 4, 5}. In examples
we usually write down the corresponding matrix of weights, replacing xij with aij to represent the
given wGr(2, 5).
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If wGr(2, 5) is wellformed then the orbifold canonical divisor class is

KwGr(2,5) =

(
−1

2 ∑
1≤i<j≤5

aij

)
D, (5)

for a divisor D in the class group of wGr(2, 5).

2.4.2. Weighted P2 × P2

This section recalls the definition of weighted P2 × P2 from [14,23]. Let b = (b1, b2, b3) and
c = (c1, c2, c3) be two integer or half integer vectors satisfying

b1 + c1 > 0, bi ≤ bj and ci ≤ cj for 1 ≤ i ≤ j ≤ 3,

and ΣP denotes the Segre embedding P2 × P2 ↪→ P8(xij). If Σ̃P is the affine of this Segre embedding,
then the weighted P2 × P2 variety wΣP is the quotient of the punctured affine cone Σ̃P\{0} by C×:

ε : xij 7→ εbi+cj xij, 1 ≤ i, j ≤ 3.

Thus for a choice of b, c, written together as a single input parameter p = (b1, b2, b3; c1, c2, c3), we get
the embedding

wΣP ↪→ P8(aij : aij = bi + cj; 1 ≤ i, j ≤ 3).

The equations are defined by 2× 2 minors of a size 3 square matrix which we usually refer to as the
weight matrix and write it asa11 a12 a13

a21 a22 a23
a31 a32 a33

 where aij = bi + cj; 1 ≤ i, j ≤ 3. (6)

If wΣP is wellformed then the canonical divisor class is given by

KwΣP =

(
−∑

i=j
aij

)
D, (7)

for a divisor D in the class group of wΣP.

3. Computational Steps of The Proof

In this section we provide details of various steps of our calculations which together provide
the proof of Theorem 1. In summary, for each codimension and Fano index, we first search for the
list of candidate varieties using the algorithmic approach of [15,16]. The candidate lists comes with a
suggestive basket(s) of orbifold points and invariants. Then we perform theoretical analysis of each
candidate to establish the existence or non-existence of candidate surfaces with given basket and
invariants.

3.1. Algorithm

We briefly recall the algorithm from [16] which we used to compute the candidate lists of examples.
The key part of it is based on the orbifold Riemann–Roch formula of Bukcley, Reid and Zhou [24]
which provides a decomposition of the Hilbert series of X into a smooth part and a singular part.
It roughly states that if X is an algebraic variety with basket B = {ki × Qi : mi ∈ Z>0} of isolated
orbifold points then its Hilbert series has a decomposition into a smooth part Psm(t) and orbifold part
∑ kiPQi (t);

PX(t) = Psm(t) + ∑ kiPQi (t). (8)
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The algorithm searches for all orbifolds of fixed dimension n having fixed orbifold canonical class
KX = O(k) in a given ambient rep-quotient variety. Indeed, if X is a Fano variety of index I then
k = −I. The algorithm has the following steps.

(i) Compute the Hilbert series and orbifold canonical class of ambient rep-quotient variety.
(ii) Find all possible embeddings of n-folds X with ωX = O(k) by applying the

adjunction formula.
(iii) For each possible n-fold embedding of X, compute the Hilbert series PX(t) and the smooth

term Psm(t).
(iv) Compute the list of all possible n-fold isolated orbifold points from the ambient weighted

projective space containing X.
(v) For each subset of the list of possible orbifold points determine the multiplicities ki given in

Equation (8) of the orbifold terms PQi (t).
(vi) If ki ≥ 0 then X is a candidate n-fold with suggested basket of isolated orbifold points.

3.2. Bounds on Search Parameters

We perform our search in the order of increasing sum of the weights on the ambient weight
projective space P(a0, . . . , an) containing X. The search is theoretically unbounded in each codimension
in two directions: there is no bound on the sum of weights W = ∑ ai of the ambient weighted projective
space containing X and the Fano index I is also unbounded.

In each codimension, we at least search for polarized rigid del Pezzo surfaces X ↪→ P(ai) such that

W − I ≤ 50, for 1 ≤ I ≤ 10.

If the last candidate example is found for the adjunction number q = W − I of the Hilbert numerator
N(t), then we further search for all possible cases such that

W − I ≤ N where N = maximum(2q, 50),

to absolutely minimize the possibility of any missing examples. Similarly, in each codimension if we
find the last example in search domain W − I ≤ 50 for index I > 5 then we search for examples up to
index 2I. For example, in the hypersurface case the maximum value of I across all candidates was 8, so
we searched until index 16 in this case. Similarly, for index 2 hypersurfaces we got the last candidate
when W − 2 = 36 so we searched for all cases with W − 2 ≤ 72. Further details in each case can be
found in Table 1.

Table 1. The following table summarises the number of surfaces we obtained for each Fano index I in
each codimension and exact search domain in each case. First column contains the codimension of each
surface and the rest of the columns contain a pair of numbers. First number is the number of examples
of given index and the second one gives the maximum value of q = Wmax − I for which the last
candidate surface was found; the classification is complete until N = maximum(50, 2q). The entries
with no second number means that no examples were found for q ≤ 50.

Codimension
Fano Index, (q)

1 2 3 4 5 6 7 8 9–16

1 11 (28) 44 (36) 6 (15) 6 (21) 6 (21) 2 (16) 2 (17) 4 (15) 0

2 15 (22) 8 (29) 1 (26) 1 (22) 0 0 0 0

3 12 (33) 7 (43) 1 (19) 1 (26) 0 0 0 0

4 12 (42) 6 (48) 0 0 1 (30) 0 0 1 (42) 0

3.3. Computing Invariants

We describe how we calculate each of the following qG-deformation invariants appearing in
Tables A1–A4.
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(i) First plurigenus h0(−KX): If it is equal to zero then we can easily conclude that X does not
admit a qG-deformation to a toric variety and such surfaces are not of class TG. We compute it
as the coefficient of tI in the Hilbert series (2) where I is the Fano index of X.

(ii) Intersection number −K2
X: It can be defined as an anti-canonical degree of X which we

calculate from the Hilbert series PX(t) of X. In a surface case

PX(t) =
H(t)

(1− t)3 ,

where H(t) is a rational function with only positive coefficients. Then for a generic divisor D
in the class group, we have D2 = H(1). Consequently for an orbifold del Pezzo surface of
index I, we have −K2

X = I2D2.
(iii) Euler Characteristics e(X): We were able to compute the Euler characteristics of X in

hypersurface and complete intersection cases by using Blache’s formula ([25], 2.11-14);

e(X) = eorb(X) + ∑
r(Q)∈B

r− 1
r

(9)

where r is the local index of each orbifold point. It was applied in the Appendix of [26] to
illustrate the computation for a hypersurface. The formula has natural generalization to the
cases of complete intersections

Xd1,...,dk
⊂ P(a0, . . . , an)

in higher codimension. We can computer eorb(X) as:

eorb(X) = coefficient of tn−k in the series expansion of
(

∏(1 + ait)
∏(1 + dit)

deg(X)

)
. (10)

(iv) Picard rank ρ(x): We were able to calculate it explicitly when X is a hypersurface in P3(ai) by
using ([27], Sec. 4.4.1). Given a hypersurface

Xd ↪→ P(a0, a1, a2, a3),

let

l = coefficient of t2d−∑ ai in the series expansion of

(
∏

td−ai − 1
tai − 1

)
,

then ρ(X) = l + 1. In cases of complete intersection examples we were able to identify those
examples which are not prime, i.e., the Picard rank greater than 1. From [28], we know that
if the Picard rank of a log del Pezzo surface is 1 then 0 < eorb(X) ≤ 3. Therefore, for each
codimension 2, we complete the intersection in Table A2, we list eorb(X) and those with
eorb(X) > 3 have Picard rank greater than 1.

3.4. Theoretical Singularity Analysis

The last step of the calculation is the theoretical singularity analysis of each candidate orbifold.
We prove that the general member X in each family is wellformed and quasismooth. We first compute
the dimensions of intersection of all orbifold strata with X to establish that X is wellformed. This
should be less than or equal to zero for a surface to be wellformed, i.e., it does not contain any singular
lines.

The next step is to show that X is quasismooth. This is not so difficult when X is a hypersurface
or complete intersection: one can use the criteria given in ([29], Sec. 8). In cases of codimension 3 and 4
examples, we consider X as complete intersections in wGr(2, 5) or in the Segre embedding of weighted
P2 × P2 or in some projective cone(s) over either of those ambient varieties. So X may not only have
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singularities from the ambient weighted projective but it may also contain singularities on the base
loci of linear systems of the intersecting weighted homogeneous forms. In such cases we mostly prove
the quasismoothness on the base locus by using computer algebra system MAGMA [30]. We write
down explicit equations for X over the rational numbers and show that it is smooth, see ([19], Sec. 2.3)
for more details. To prove quasismoothness on an orbifold point Q of type 1

r (a, b), which is mostly a
coordinate point corresponding to some variables xi with deg(xi) = r, we proceed as follows. If c is
the codimension of X then we find c tangent variables xm [31], i.e., we find c polynomials having a
monomial of type xl

i xm. We can locally remove these variables by using the implicit function theorem.
Moreover, if two other variables have weights a and b modulo r then Q is a quasismooth point of type
1
r (a, b).

4. Sample Calculations

In this section we provide sample calculations of examples given in Tables A1–A4.

Example 1. #81 Consider the weighted projective space P(1, 5, 7, 10) with variables x, y, z and w respectively,
then the canonical class KP = O(−23). The generic weighted homogenous polynomial of degree 15,

f15 = k1 x15 + k2 y3 + k3 yw + k4 xz2 + · · · , ki ∈ C;

defines a del Pezzo surface X15 ↪→ P(x, y, z, w) of Fano index 8, i.e., KX = O(−8). The polynomial f15
does not contain monomials of pure power in w and z so X contains the orbifold points p1 = (0, 0, 0, 1) and
p2 = (0, 0, 1, 0). By applying the implicit function theorem we can remove the variable y near the point p1 by
using the monomial yw and x, z are local variables near this point. Therefore X contains an orbifold point of
type 1

10 (1, 7) = 1
10 (1, 3)(Lemma 1). Similarly, near p2 the local variables are y and w, so we get an orbifold

point of type
1
7
(5, 10) =

1
7
(3, 5) =

1
7
(1, 4) =

1
7
(1, 2).

The coordinate point of weight 5 does not lie on X but one dimensional singular stratum P1(y, w) intersects
with X non-trivially and by ([29], Lemma 9.4) the intersection is in two points. One of them is p1 and the other
can be taken as p3 = (0, 1, 0, 0) which corresponds to weight 5 variable. By using the above arguments we can
show that it is a singular point of type 1

5 (1, 2). Thus X contains exactly the same basket of singularities as given
by the computer search and it is a wellformed and quasismooth rigid del Pezzo surface of Fano index 8. Moreover,
the vector space

H0(X,−KX) = H0(X, 8D) =< x8, x3y, xz >,

so h0(−KX) = 3.

Example 2. #126 Consider the weighted Grassmannian wGr(2, 5)

wGr(2, 5) ↪→ P(12, 33, 54, 7) with weight matrix


1 1 3 3

3 5 5

5 5

7

 ,

Then by Equation (5) the canonical divisor class KwGr(2,5) = O(−19). The weighted complete intersection
of wGr(2, 5) with two forms of degree 3 and two forms of degree 5;

X = wGr(2, 5) ∩ ( f3) ∩ (g3) ∩ ( f5) ∩ (g5) ↪→ P(x1,x2,y1,z1,z2,w1)
(12, 3, 52, 7)
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is a del Pezzo surface with KX = O(−19 + (3 + 3 + 5 + 5)) = O(−3). We can take X to be defined by the
maximal Pfaffians of 

x1 x2 f3 g3

y1 f5 g5

z1 z2

w1

 , (11)

where f3, g3, f5 and g5 are general weighted homogeneous forms in given variables and they remove the variables
of the corresponding degrees from the ambient wGr(2, 5). The coordinate point corresponding to w1 lies on
X. From the equations we have x1, x2 and y1 as tangent variables and z1, z2 as local variables. Therefore it is
an orbifold point of type 1

7 (5, 5) = 1
7 (1, 1). The locus X ∩ P(5, 5) is locally a quadric in P1 which defines two

points. By similar application of implicit function theorem we can show that each is an orbifold point of type
1
5 (1, 2). The restriction of X to weight 3 locus is an empty set, so X contains no further orbifold points. To show
the quasismoothness on the base locus we use the computer algebra and write down equations for X. For example,
if we choose

f3 = 3x3
1 + 3x3

2, f5 = x5
2 + x2

1y1 + x2
2y1 + z1 + z2,

g3 = x3
2 + y1, g5 = x5

1 + 2x2
1y1 + 3x2

2y1 + 3z2

then the Pfaffians of (11) gives a quasismooth surface. Thus X is an orbifold del Pezzo surface of Fano index 3
with singular points; 2× 1

5 (1, 2) and 1
7 (1, 1).

As we mentioned in Section 3.4 that we prove the existence of given orbifold del Pezzo surface
by theoretical singularity analysis. Then only those which are quasismooth, wellformed and having
correct basket of singularities appear in tables of examples. There are in total 8 candidate examples
which fails to be quasismooth and we discuss one of them below in detail. No candidate example fails
for not being wellformed.

Example 3. (Non working candidate) A computer search also gives a candidate complete intersection orbifold
del Pezzo surface of Fano index 2 given by

X6,30 ↪→ P(x,y,z,t,u)(1, 3, 9, 10, 15).

Then F6 = f (x, y) (since other variables have weight higher than 6) and

F30 = x30 + x27y + yz3 + · · ·

are the defining equations of X. The coordinate point p = (0, 0, 1, 0, 0) lies on X as no pure power of z appear in
F30. Now we can not find two tangent variables to z in the equations of X which implies that the rank of the
Jacobian matrix of X at p is equal to 1 which is less than its codimension, so X is not quasismooth at p. Thus, X
is a del Pezzo surface which is not quasismooth and does not appear in the following tables.

Concluding Remark: One can use this approach to construct and classify orbifold del Pezzo surfaces with any
quotient singularity in a given fixed format, under certain bounds. Moreover, we can also construct examples
with rigid orbifold points of type 1

r (1, a) for r ≥ 11 but as the weights higher the computer search output becomes
slower due to the nature of algorithm. Therefore, we restrict ourself to the cases with r ≤ 10.
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and Minerals via a grant number SB. 191029.
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Appendix A. Table of Examples

Notations in Tables

• The column X represents a del Pezzo surface and the corresponding weighted projective space
containing X; the subscripts give the equation degrees of X. The column I lists the Fano index of
X.

• The next two columns contain the anti-canonical degree −K2
X and the first plurigenus h0(−KX).

If h0(−KX) = 0 the X is not of class TG.
• e(X) denotes the topological Euler characteristics of X, ρ(X) is the rank of Picard group of

X, and eorb(X) denotes the orbifold Euler number of X. ρ(X) is only listed in Table A1 of
hypersurfaces and eorb(X) only in Table A2 of complete intersections, as discussed in Section 3.3.

• The column B represents the basket of singular points of X.
• In Tables A3 and A4, the last column represents the matrix of weights, which provides weights of

ambient weighted projective space containing wGr(2, 5) or weighted P2 × P2 variety.
• We provide references to those examples which appeared in [6,8], primarily in a toric setting.

Table A1. Hypersurfaces in wP3.

S.No X I −K2
X h0(−KX) e(X) ρ(X) Basket B

1 X3 ⊂ P(14) 1 3 4 9 7

2 X4 ⊂ P(13, 2) 1 2 3 10 8

3 X6 ⊂ P(12, 2, 3) 1 1 2 11 9

4 X10 ⊂ P(1, 2, 3, 5) 1 1/3 1 11 9 1
3 (1, 1) [6]

5 X12 ⊂ P(2, 32, 5) 1 2/15 0 10 8 4× 1
3 (1, 1), 1

5 (1, 1)

6 X15 ⊂ P(1, 3, 5, 7) 1 1/7 1 11 9 1
7 (1, 2)

7 X15 ⊂ P(32, 52) 1 1/15 0 11 9 5× 1
3 (1, 1), 3× 1

5 (1, 1)

8 X16 ⊂ P(1, 3, 5, 8) 1 2/15 1 12 10 1
3 (1, 1), 1

5 (1, 1)

9 X18 ⊂ P(2, 3, 5, 9) 1 1/15 0 9 7 2× 1
3 (1, 1), 1

5 (1, 2)

10 X20 ⊂ P(2, 52, 9) 1 2/45 0 10 8 4× 1
5 (1, 2), 1

9 (1, 1)

11 X28 ⊂ P(3, 5, 7, 14) 1 2/105 0 8 6 1
3 (1, 1), 1

5 (1, 2), 2× 1
7 (1, 2)

12 X2 ⊂ P(14) 2 8 9 4 2

13 X4 ⊂ P(13, 3) 2 16/3 6 6 4 1
3 (1, 1) [6]

14 X6 ⊂ P(13, 5) 2 24/5 6 8 6 1
5 (1, 1) [8]

15 X6 ⊂ P(12, 32) 2 8/3 3 8 6 2× 1
3 (1, 1) [6]

16 X7 ⊂ P(13, 6) 2 14/3 6 9 7 1
6 (1, 1)[8]

17 X8 ⊂ P(12, 3, 5) 2 32/15 3 10 8 1
3 (1, 1), 1

5 (1, 1)

18 X8 ⊂ P(13, 7) 2 32/7 6 10 8 1
7 (1, 1)

19 X9 ⊂ P(12, 3, 6) 2 2 3 11 9 1
3 (1, 1), 1

6 (1, 1) [8]

20 X9 ⊂ P(13, 8) 2 9/2 6 11 9 1
8 (1, 1)

21 X10 ⊂ P(12, 3, 7) 2 40/21 3 12 10 1
3 (1, 1), 1

7 (1, 1)

22 X10 ⊂ P(13, 9) 2 40/9 6 12 10 1
9 (1, 1)

23 X10 ⊂ P(12, 52) 2 8/5 3 12 10 2× 1
5 (1, 1) [8]

24 X11 ⊂ P(13, 10) 2 22/5 6 13 11 1
10 (1, 1)

25 X11 ⊂ P(12, 5, 6) 2 22/15 3 13 11 1
5 (1, 1), 1

6 (1, 1)

26 X11 ⊂ P(12, 3, 8) 2 11/6 3 13 11 1
3 (1, 1), 1

8 (1, 1)

27 X12 ⊂ P(12, 5, 7) 2 48/35 3 14 12 1
5 (1, 1), 1

7 (1, 1)
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Table A1. Cont.

S.No X I −K2
X h0(−KX) e(X) ρ(X) Basket B

28 X12 ⊂ P(12, 62) 2 4/3 3 14 12 2× 1
6 (1, 1)[8]

29 X12 ⊂ P(12, 3, 9) 2 16/9 3 14 12 1
3 (1, 1), 1

9 (1, 1)

30 X13 ⊂ P(12, 5, 8) 2 13/10 3 15 13 1
5 (1, 1), 1

8 (1, 1)

31 X13 ⊂ P(12, 3, 10) 2 26/15 3 15 13 1
3 (1, 1), 1

10 (1, 1)

32 X13 ⊂ P(12, 6, 7) 2 26/21 3 15 13 1
6 (1, 1), 1

7 (1, 1)

33 X14 ⊂ P(12, 6, 8) 2 7/6 3 16 14 1
6 (1, 1), 1

8 (1, 1)

34 X14 ⊂ P(12, 72) 2 8/7 3 16 14 2× 1
7 (1, 1)

35 X14 ⊂ P(12, 5, 9) 2 56/45 3 16 14 1
5 (1, 1), 1

9 (1, 1)

36 X15 ⊂ P(12, 6, 9) 2 10/9 3 17 15 1
6 (1, 1), 1

9 (1, 1)

37 X15 ⊂ P(12, 5, 10) 2 6/5 3 17 15 1
5 (1, 1), 1

10 (1, 1)

38 X15 ⊂ P(1, 3, 6, 7) 2 10/21 1 11 9 2× 1
3 (1, 1), 1

6 (1, 1), 1
7 (1, 2)

39 X15 ⊂ P(12, 7, 8) 2 15/14 3 17 15 1
7 (1, 1), 1

8 (1, 1)

40 X16 ⊂ P(12, 6, 10) 2 16/15 3 18 16 1
6 (1, 1), 1

10 (1, 1)

41 X16 ⊂ P(12, 7, 9) 2 64/63 3 18 16 1
7 (1, 1), 1

9 (1, 1)

42 X16 ⊂ P(12, 82) 2 1 3 18 16 2× 1
8 (1, 1)

43 X17 ⊂ P(1, 3, 7, 8) 2 17/42 1 11 9 1
3 (1, 1), 1

7 (1, 1), 1
8 (1, 5)

44 X17 ⊂ P(12, 7, 10) 2 34/35 3 19 17 1
7 (1, 1), 1

10 (1, 1)

45 X17 ⊂ P(12, 8, 9) 2 17/18 3 19 17 1
8 (1, 1), 1

9 (1, 1)

46 X18 ⊂ P(12, 8, 10) 2 9/10 3 20 18 1
8 (1, 1), 1

10 (1, 1)

47 X18 ⊂ P(12, 92) 2 8/9 3 20 18 2× 1
9 (1, 1)

48 X19 ⊂ P(12, 9, 10) 2 38/45 3 21 19 1
9 (1, 1), 1

10 (1, 1)

49 X20 ⊂ P(12, 102) 2 4/5 3 22 20 2× 1
10 (1, 1)

50 X21 ⊂ P(3, 6, 72) 2 2/21 0 9 7 3× 1
3 (1, 1), 1

6 (1, 1), 3× 1
7 (1, 2)

51 X21 ⊂ P(1, 3, 9, 10) 2 14/45 1 13 11 2× 1
3 (1, 1), 1

9 (1, 1), 1
10 (1, 3))

52 X22 ⊂ P(1, 5, 7, 11) 2 8/35 1 10 8 1
5 (1, 1), 1

7 (1, 3)

53 X24 ⊂ P(3, 7, 82) 2 1/14 0 7 5 1
7 (1, 1), 3× 1

8 (1, 5)

54 X30 ⊂ P(3, 9, 102) 2 2/45 0 9 7 3× 1
3 (1, 1), 1

9 (1, 1), 3× 1
10 (1, 3))

55 X36 ⊂ P(1, 7, 12, 18) 2 2/21 1 11 9 1
6 (1, 1), 1

7 (1, 3)

56 X6 ⊂ P(12, 2, 5) 3 27/5 6 5 3 1
5 (1, 2)

57 X8 ⊂ P(12, 2, 7) 3 36/7 6 6 4 1
7 (1, 2)

58 X10 ⊂ P(1, 2, 52) 3 9/5 2 7 5 2× 1
5 (1, 2)

59 X12 ⊂ P(1, 2, 5, 7) 3 54/35 2 8 6 1
5 (1, 2), 1

7 (1, 2)

60 X14 ⊂ P(1, 2, 72) 3 9/7 2 9 7 2× 1
7 (1, 2)

61 X15 ⊂ P(1, 52, 7) 3 27/35 1 9 3 3× 1
5 (1, 2), 1

7 (1, 1)

62 X6 ⊂ P(12, 3, 5) 4 32/5 7 4 2 1
5 (1, 2)

63 X10 ⊂ P(1, 3, 52) 4 32/15 2 6 4 1
3 (1, 1), 2× 1

5 (1, 2)

64 X12 ⊂ P(1, 3, 5, 7) 4 64/35 2 6 4 1
5 (1, 2), 1

7 (1, 3)

65 X15 ⊂ P(1, 3, 5, 10) 4 8/5 2 7 5 1
5 (1, 2), 1

10 (1, 3)

66 X15 ⊂ P(3, 52, 6) 4 8/15 0 7 5 2× 1
3 (1, 1), 3× 1

5 (1, 2), 1
6 (1, 1)

67 X21 ⊂ P(1, 72, 10) 4 24/35 1 9 7 3× 1
7 (1, 3), 1

10 (1, 1)

68 X8 ⊂ P(1, 2, 3, 7) 5 100/21 5 4 2 1
3 (1, 1), 1

7 (1, 3)

69 X8 ⊂ P(12, 4, 7) 5 50/7 8 4 2 1
7 (1, 2)

70 X12 ⊂ P(1, 3, 4, 9) 5 25/9 3 5 3 1
3 (1, 1), 1

9 (1, 4)

71 X14 ⊂ P(2, 3, 72) 5 25/21 1 5 3 1
3 (1, 1), 2× 1

7 (1, 3)

72 X16 ⊂ P(1, 4, 7, 9) 5 100/63 2 6 4 1
7 (1, 2), 1

9 (1, 4)
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Table A1. Cont.

S.No X I −K2
X h0(−KX) e(X) ρ(X) Basket B

73 X21 ⊂ P(3, 72, 9) 5 25/63 0 7 5 2× 1
3 (1, 1), 3× 1

7 (1, 3), 1
9 (1, 1)

74 X15 ⊂ P(1, 5, 7, 8) 6 27/14 2 5 3 1
7 (1, 3), 1

8 (1, 5)

75 X16 ⊂ P(1, 5, 82) 6 9/5 2 6 4 1
5 (1, 1), 2× 1

8 (1, 5)

76 X10 ⊂ P(1, 2, 5, 9) 7 49/9 6 3 1 1
9 (1, 4)

77 X12 ⊂ P(2, 3, 5, 9) 7 98/45 2 4 2 1
3 (1, 1), 1

5 (1, 2), 1
9 (1, 4)

78 X8 ⊂ P(1, 3, 5, 7) 8 512/105 5 4 2 1
3 (1, 1), 1

5 (1, 2), 1
7 (1, 2)

79 X14 ⊂ P(1, 5, 7, 9) 8 128/45 3 4 2 1
5 (1, 2), 1

9 (1, 4)

80 X15 ⊂ P(1, 6, 7, 9) 8 160/63 3 5 3 1
6 (1, 1), 1

7 (1, 3), 1
9 (1, 4)

81 X15 ⊂ P(1, 5, 7, 10) 8 96/35 3 5 3 1
5 (1, 2), 1

7 (1, 2), 1
10 (1, 3))

Table A2. Codimension 2 Complete Intersections.

S.No X I −K2
X h0(−KX) e(X) ρ(X) Basket B

82 X2,2 ⊂ P(15) 1 4 5 8 8

83 X42 ⊂ P(12, 22, 3) 1 4/3 2 10 28/3 1
3 (1, 1) [6]

84 X4,6 ⊂ P(1, 22, 32) 1 2/3 1 10 26/3 2× 1
3 (1, 1)[6]

85 X62 ⊂ P(12, 32, 5) 1 4/5 2 12 56/5 1
5 (1, 1) [8]

86 X62 ⊂ P(22, 33) 1 1/3 0 9 19/3 4× 1
3 (1, 1) [6]

87 X6,7 ⊂ P(1, 2, 32, 5) 1 7/15 1 11 133/15 2× 1
3 (1, 1), 1

5 (1, 1)

88 X6,8 ⊂ P(1, 2, 3, 4, 5) 1 2/5 1 10 46/5 1
5 (1, 2)

89 X82 ⊂ P(12, 42, 7) 1 4/7 2 14 92/7 1
7 (1, 1)

90 X6,10 ⊂ P(1, 32, 52) 1 4/15 1 12 136/15 2× 1
3 (1, 1), 2× 1

5 (1, 1)

91 X8,10 ⊂ P(2, 3, 4, 52) 1 2/15 0 8 86/15 1
3 (1, 1), 2× 1

5 (1, 2)

92 X9,10 ⊂ P(2, 32, 5, 7) 1 1/7 0 9 43/7 3× 1
3 (1, 1), 1

7 (1, 2)

93 X102 ⊂ P(12, 52, 9) 1 4/9 2 16 136/9 1
9 (1, 1)

94 X10,11 ⊂ P(1, 2, 52, 9) 1 11/45 1 13 473/45 2× 1
5 (1, 2), 1

9 (1, 1)

95 X10,12 ⊂ P(32, 52, 7) 1 8/105 0 10 512/105 4× 1
3 (1, 1), 2× 1

5 (1, 1), 1
7 (1, 2)

96 X10,12 ⊂ P(2, 3, 5, 6, 7) 1 2/21 0 8 122/21 2× 1
3 (1, 1), 1

7 (1, 3)

97 X6,8 ⊂ P(1, 32, 4, 5) 2 16/15 1 8 88/15 2× 1
3 (1, 1), 1

5 (1, 2)

98 X8,10 ⊂ P(1, 3, 4, 5, 7) 2 16/21 1 8 136/21 1
3 (1, 1), 1

7 (1, 3)

99 X8,12 ⊂ P(1, 3, 5, 6, 7) 2 64/105 1 10 736/105 2× 1
3 (1, 1), 1

5 (1, 1), 1
7 (1, 2)

100 X10,12 ⊂ P(3, 4, 52, 7) 2 8/35 0 6 124/35 2× 1
5 (1, 2), 1

7 (1, 3)

101 X9,14 ⊂ P(1, 3, 6, 7, 8) 2 1/2 1 10 61/8 1
3 (1, 1), 1

6 (1, 1), 1
8 (1, 5)

102 X12,14 ⊂ P(3, 4, 5, 7, 9) 2 8/45 0 6 164/45 1
3 (1, 1), 1

5 (1, 2), 1
9 (1, 4)

103 X14,15 ⊂ P(3, 6, 72, 8) 2 5/42 0 8 545/168 2× 1
3 (1, 1), 1

6 (1, 1), 2× 1
7 (1, 2), 1

8 (1, 5)

104 X11,18 ⊂ P(1, 3, 8, 9, 10) 2 11/30 1 12 1067/120 2× 1
3 (1, 1), 1

8 (1, 1), 1
10 (1, 3)

105 X12,14 ⊂ P(4, 5, 6, 72) 3 9/35 0 5 87/35 1
5 (1, 2), 2× 1

7 (1, 3)

106 X10,12 ⊂ P(3, 52, 6, 7) 4 64/105 0 6 232/105 2× 1
3 (1, 1), 2× 1

5 (1, 2), 1
7 (1, 2)
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Table A3. Codimension 3 Pfaffians.

S.No X I −K2 h0(−K) Basket B Weight Matrix

107
X2,2,2,2,2
⊂ P(16)

1 5 6

1 1 1 1
1 1 1

1 1
1

108
X3,3,4,4,4
⊂ P(13, 22, 3) 1 7/3 3 1

3 (1, 1) [6]

1 1 2 2
1 2 2

2 2
3

109
X4,4,6,6,6
⊂ P(13, 32, 5) 1 9/5 3 1

5 (1, 1) [8]

1 1 3 3
1 3 3

3 3
5

110
X4,5,6,6,7
⊂ P(12, 2, 32, 5) 1 17/15 2 1

3 (1, 1), 1
5 (1, 1)

1 1 2 3
2 3 4

3 4
5

111
X5,5,8,8,8
⊂ P(13, 42, 7) 1 11/7 3 1

7 (1, 1)

1 1 4 4
1 4 4

4 4
7

112
X6,7,8,9,10
⊂ P(1, 2, 32, 5, 7) 1 10/21 1 1

3 (1, 1), 1
7 (1, 4)

1 2 3 4
3 4 5

5 6
7

113
X6,6,10,10,10
⊂ P(13, 52, 9) 1 13/9 3 1

9 (1, 1)

1 1 5 5
1 5 5

5 5
9

114
X7,8,8,9,10
⊂ P(2, 32, 4, 52)

1 1/5 0 3× 1
3 (1, 1), 1

5 (1, 2), 1
5 (1, 1)

2 3 3 4
4 4 5

5 6
6

115
X6,7,10,10,11
⊂ P(12, 2, 52, 9) 1 38/45 2 1

5 (1, 2), 1
9 (1, 1)

1 1 4 5
2 5 6

5 6
9

116
X6,8,10,10,12
⊂ P(1, 32, 52, 7) 1 29/105 1 1

3 (1, 1), 1
5 (1, 1), 1

7 (1, 4)

1 1 3 5
3 5 7

5 7
9

117
X10,10,12,12,14
⊂ P(32, 52, 72)

1 3/35 0 3× 1
3 (1, 1), 1

5 (1, 1), 2× 1
7 (1, 4)

3 3 5 5
5 7 7

7 7
9
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Table A3. Cont.

S.No X I −K2 h0(−K) Basket B Weight Matrix

118
X11,12,12,15,16

⊂ P(2, 52, 6, 7, 9)
1 23/315 0 3× 1

5 (1, 2), 1
7 (1, 3), 1

9 (1, 1)

2 5 5 6

6 6 7

9 10

10

119
X4,7,8,8,9

⊂ P(12, 2, 3, 6, 7)
2 22/7 4 1

3 (1, 1), 1
6 (1, 1), 1

7 (1, 2)

1 1 2 5

2 3 6

3 6

7

120
X4,8,9,9,10

⊂ P(12, 2, 3, 7, 8)
2 43/14 4 1

7 (1, 1), 1
8 (1, 5)

1 1 2 6

2 3 7

3 7

8

121
X4,10,11,11,12

⊂ P(12, 2, 3, 9, 10)
2 134/45 4 1

3 (1, 1), 1
9 (1, 1), 1

10 (1, 3)

1 1 2 8

2 3 9

3 9

10

122
X8,9,12,13,14

⊂ P(1, 3, 5, 6, 7, 8)
2 19/30 1 1

3 (1, 1), 1
5 (1, 1), 1

8 (1, 5)

1 2 5 6

3 6 7

7 8

11

123
X12,12,14,15,15

⊂ P(4, 52, 72, 8)
2 11/70 0 2× 1

5 (1, 2), 2× 1
7 (1, 3), 1

8 (1, 1)

4 5 7 7

5 7 7

8 8

10

124
X14,14,15,15,16

⊂ P(3, 6, 72, 82)
2 1/7 0 1

3 (1, 1), 1
6 (1, 1), 1

7 (1, 2), 2× 1
8 (1, 5)

6 6 7 7

7 8 8

8 8

9

125
X16,17,17,18,18

⊂ P(3, 7, 82, 9, 10)
2 11/105 0 1

3 (1, 1), 1
7 (1, 1), 2× 1

8 (1, 5), 1
10 (1, 3)

7 8 8 9

8 8 9

9 10

10

126
X6,6,8,8,10

⊂ P(12, 3, 52, 7)
3 153/35 4 2× 1

5 (1, 2), 1
7 (1, 1)

1 1 3 3

3 5 5

5 5

7

127
X8,8,11,11,14

⊂ P(12, 4, 72, 10)
4 184/35 6 2× 1

7 (1, 3), 1
10 (1, 1)

1 1 4 4

4 7 7

7 7

10
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Table A4. Codimension 4 P2 × P2 .

S.No X I −K2 h0(−K) Basket B Weight Matrix

128
X29

⊂ P(17)
1 6 7

1 1 1
1 1 1
1 1 1

129
X2,34,44

⊂ P(14, 22, 3)
1 10/3 4 1

3 (1, 1) [6]
1 1 2
1 1 2
2 2 3

130
X2,44,64

⊂ P(14, 32, 5)
1 14/5 4 1

5 (1, 1) [8]
1 1 3
1 1 3
3 3 5

131
X2,54,84

⊂ P(14, 42, 7)
1 18/7 4 1

7 (1, 1)
1 1 4
1 1 4
4 4 7

132
X4,52,63,72,8
⊂ P(1, 22, 33, 5)

1 4/5 1 3× 1
3 (1, 1), 1

5 (1, 1)
1 2 3
2 3 4
3 4 5

133
X2,64,104

⊂ P(14, 52, 9)
1 22/9 4 1

9 (1, 1)
1 1 5
1 1 5
5 5 9

134
X5,62,72,82,9,10
⊂ P(1, 2, 32, 4, 52)

1 8/15 1 1
3 (1, 1), 1

5 (1, 2), 1
5 (1, 1)

1 2 3
3 4 5
4 5 6

135
X4,72,82,10,112,12
⊂ P(1, 22, 3, 52, 9)

1 26/45 1 1
3 (1, 1), 2× 1

5 (1, 2), 1
9 (1, 1)

1 2 5
2 3 6
5 6 9

136
X6,82,103,122,14
⊂ P(1, 32, 52, 72)

1 2/7 1 2× 1
7 (1, 4)

1 3 5
3 5 7
5 7 9

137
X7,8,10,112,122,15,16
⊂ P(1, 2, 52, 6, 7, 9)

1 86/315 1 1
5 (1, 2), 1

7 (1, 3), 1
9 (1, 1)

1 2 5
5 6 9
6 7 10

138
X10,112,123,132,14
⊂ P(3, 4, 52, 6, 72)

1 3/35 0 2× 1
5 (1, 2), 2× 1

7 (1, 4)
4 5 6
5 6 7
6 7 8

139
X8,9,11,123,13,15,16
⊂ P(2, 3, 52, 6, 7, 9)

1 38/315 0 1
3 (1, 1), 3× 1

5 (1, 2), 1
7 (1, 4), 1

9 (1, 1)
2 3 6
5 6 9
6 7 10

140
X4,82,92,12,132,14
⊂ P(1, 2, 3, 62, 72)

2 20/21 2 1
3 (1, 1), 2× 1

6 (1, 1), 2× 1
7 (1, 2)

1 2 6
2 3 7
6 7 11

141
X4,8,92,10,13,142,15
⊂ P(1, 2, 3, 6, 72, 8)

2 37/42 2 1
6 (1, 1), 1

7 (1, 1), 1
7 (1, 2), 1

8 (1, 5)
1 2 6
2 3 7
7 8 12

142
X4,8,9,11,12,15,162,17
⊂ P(1, 2, 3, 6, 7, 9, 10) 2 248/315 2 1

3 (1, 1), 1
6 (1, 1), 1

7 (1, 2), 1
9 (1, 1), 1

10 (1, 3)
1 2 6
2 3 7
9 10 14

143
X4,9,10,11,12,16,172,18
⊂ P(1, 2, 3, 7, 8, 9, 10) 2 451/630 2 1

7 (1, 1), 1
8 (1, 5), 1

9 (1, 1), 1
10 (1, 3)

1 2 7
2 3 8
9 10 15

144
X4,112,122,18,192,20
⊂ P(1, 2, 3, 92, 102)

2 28/45 2 1
3 (1, 1), 2× 1

9 (1, 1), 2× 1
10 (1, 3)

1 2 9
2 3 10
9 10 17

145
X14,152,163,172,18
⊂ P(3, 6, 72, 8, 9, 10)

2 16/105 0 3× 1
3 (1, 1), 1

6 (1, 1), 2× 1
7 (1, 2), 1

10 (1, 3)
6 7 8
7 8 9
8 9 10

146
X6,82,103,122,14
⊂ P(1, 32, 5, 72, 9)

5 250/63 4 2× 1
3 (1, 1), 2× 1

7 (1, 3), 1
9 (1, 1)

1 3 5
3 5 7
5 7 9

147
X14,152,163,172,18
⊂ P(6, 72, 8, 92, 10)

8 256/315 1 1
6 (1, 1), 2× 1

7 (1, 3), 2× 1
9 (1, 4), 1

10 (1, 1)
6 7 8
7 8 9
8 9 10
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