
mathematics

Article

Inverse Minimum Cut Problem with Lower and
Upper Bounds

Adrian Deaconu * and Laura Ciupala

Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science,
Transilvania University of Brasov, 50003 Bras, ov, Romania; laura.ciupala@unitbv.ro
* Correspondence: a.deaconu@unitbv.ro; Tel.: +40-776378881

Received: 23 July 2020; Accepted: 31 August 2020; Published: 3 September 2020
����������
�������

Abstract: The inverse minimum cut problem is one of the classical inverse optimization researches.
In this paper, the inverse minimum cut with a lower and upper bounds problem is considered.
The problem is to change both, the lower and upper bounds on arcs so that a given feasible cut
becomes a minimum cut in the modified network and the distance between the initial vector of
bounds and the modified one is minimized. A strongly polynomial algorithm to solve the problem
under l1 norm is developed.

Keywords: minimum cut; maximum flow; inverse optimization

1. Introduction

Inverse optimization is a relatively new research domain (around 20 years old) and it has been
intensively studied. Many papers have recently been published in this domain and are still being
published nowadays. Inverse problems have lately found a lot of applications in modern areas, such as
mathematical biology, materials science, remote sensing, medical imaging, seismology, geophysics,
oceanography, mathematical finance, etc. An inverse combinatorial optimization problem consists
of modifying some parameters of a network, such as capacities or costs, so that a given feasible
solution of the direct optimization problem becomes an optimum solution and the distance between
the initial vector and the modified vector of parameters is minimized. Different norms, such as l1,
l∞, and even l2, or Hamming distances are considered to measure this distance. In the last years,
many papers were published in the field of inverse combinatorial optimization [1–4]. Among these
problems, inverse maximum flow (IMF) and inverse minimum cut (IMC) problems were studied since
their direct counterparts are well known related problems. Yang et al. [5] presented the first strong
polynomial-time algorithms to solve these two problems under the l1 norm. IMF is to change as little as
possible the capacities of arcs so that a given feasible flow becomes optimum (maximum). IMF under
l∝ was studied in [6]. Other IMF problems were studied in [7–9]. IMF considered for modification
of upper and lower bounds on arcs was studied in [10] and it is the first time when both bounds are
taken into account. The inverse minimum flow problem (ImF) was studied in [11]. In the case of
IMC, the capacities (upper bounds) of arcs are changed, so that a cut becomes a minimum cut in the
modified network. IMC is less studied than its related problem, IMF. Some inverse minimum cuts
problems are considered in [12].

This paper studies the inverse minimum cut problem, where both lower and upper bounds on
arcs are modified, so that the distance between initial vector of bounds and the vector of changed
bounds measured with the l1 norm is minimized and a given cut in the initial network becomes a
minimum cut in the modified one. This problem is denoted as IMCUL. Although the direct problem of
minimum cut with lower and upper bounds is a generalization of the problem of minimum cut with
only upper bounds (where lower bounds can be considered equal to 0), the corresponding inverse

Mathematics 2020, 8, 1494; doi:10.3390/math8091494 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8091494
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/9/1494?type=check_update&version=2

Mathematics 2020, 8, 1494 2 of 10

problem IMCUL is a different problem and is not a generalization of IMC, since in the case of IMC
lower bounds cannot be modified. Moreover, as we shall see in this paper, in comparison with [5],
the methods used to solve these two inverse problems are completely different.

The rest of the paper is organized as follows. Section 2 presents the minimum cut and maximum
flow with lower and upper bounds problems. Section 3 introduces the inverse minimum cut problem
with lower and upper bounds (IMCUL) and a strongly polynomial algorithm to solve the IMCUL
under the l1 norm is also presented. In Section 4, an example is given to illustrate the idea of the
proposed algorithm to solve IMCUL under the l1 norm. Some conclusions are made and some open
problems are presented in the last section.

2. Minimum Cut and Maximum Flow

Let G = (V, A, c, l, s, t) be a network, where V is the set of nodes, A is the set of directed arcs (each
arc from A connects two nodes i and j from V), c is the upper bound (capacity) application c : A→ R+ ,
l : A→ R+ is the lower bound application, s and t are two special nodes from V. These two nodes
are called source, respectively, sink. For an arc a = (i, j) ∈ A, l(a) and c(a) are the minimum and,
respectively, the maximum amount of flow that can pass through arc a from node i to node j. Of course,
l(a) ≤ c(a).

A feasible flow in the network G is a function f : A→ R+ that satisfies simultaneously the
conditions (1–4):

l(i, j) ≤ f (i, j) ≤ c(i, j),∀(i, j) ∈ A (1)∑
j∈V,(i, j)∈A

f (i, j)−
∑

j∈V,(i, j)∈A

f (j, i)= v(i),∀i ∈ V (2)

v(i) = 0,∀i ∈ V − {s, t} (3)

v(s) = −v(t) > 0 (4)

The value of flow f is denoted by v(f) and defined as follows:

v(f) = v(s) = −v(t).

A maximum flow is a feasible flow f in G and among all feasible flows in G it has the maximum
value (see (5)).

v(f) = max
{
v(f ′)

∣∣∣ f ′feasible flow in G
}

(5)

Before presenting the definitions of the cut and of the capacity of a cut we introduce the
following notations:

- for two non-empty sets of nodes V1 and V2 from V, (V1, V2) denotes the set of arcs that connects
nodes from V1 with the nodes from V2, i.e., (V1, V2) =

{
a = (x, y) ∈ A

∣∣∣x ∈ V1, y ∈ V2
}
;

- for a function d : A→ R+ , we define d(V1, V2) =
∑

(i, j)∈(V1,V2) d(i, j).

For a non-empty set X ⊂ V, we denote X = V −X. The set of arcs [X, X] =
(
X, X

)
∪

(
X, X

)
is called

cut in network G. If s ∈ X and t ∈ X then [X, X] is called s− t cut;
The capacity of the cut [X, X] is denoted by c[X, X] and is defined in (6):

c[X, X] = c
(
X, X

)
− l

(
X, X

)
(6)

From now on through the paper we will refer to a s− t cut as a cut.
We recall two theorems that connect (minimum) cuts with (maximum) flows (see [13]):

Mathematics 2020, 8, 1494 3 of 10

Theorem 1. The value of a feasible flow f in G equals the value of the flow on a s− t cut [X, X] and does not
exceed the value of this cut (see (7)).

v(f) = f [X, X]≤ c[X, X]. (7)

Theorem 2. The value of a minimum s − t cut [X, X] in G equals the value of a maximum flow f in G (see (8)).

v(f) = f [X, X]= c[X, X]. (8)

3. The Inverse Minimum Cut Problem with Lower and Upper Bounds

Let G = (V, A, c, l, s, t) be a network.
We denote by w = (c, l) the concatenation of the vectors c and l (the components of l are placed

after the components of c). We call w the bound vector of the network G.
Let [X, X] be a s− t cut in network G.
The set of w for which [X, X] is a s− t cut in the corresponding network is denoted by Q[X, X] and

defined in (9):
v(f) = f [X, X]= c[X, X]. (9)

The inverse minimum cut problem (IMCUL) is to change the bound vector w so that the given
s− t cut [X, X] becomes a minimum cut in G and the distance between the initial bound vector w and
the modified vector of bounds denoted w ∈ Q[X, X] is minimized (see (10)):

min
∣∣∣∣∣∣w−w

∣∣∣∣∣∣ (10)

We shall concentrate now on the inverse minimum cut problem with lower and upper bounds
under the l1 norm (denoted IMCUL1). More exactly, for IMCUL the distance between w and w is
measured using the l1 norm. This means that the sum of absolute modifications of the bounds on arcs
is minimized (see (11a)):

min
∣∣∣∣∣∣∣∣w−w

∣∣∣∣∣∣∣∣1 = min
{∣∣∣∣c− c|+|l− l

∣∣∣∣} (11a)

w ∈ Q[X, X] (11b)

We recall the definition of l1 norm for the n-dimensional vector x:

l1(x) = ||x||1 = |x| =
n∑

i=1

|xi|

Lemma 1. If w∗ = (c∗, l∗) is the optimum solution of IMCUL1 then we have:

c∗(i, j) ≤ c(i, j),∀(i, j) ∈
(
X, X

)
(12a)

c∗(i, j) ≥ c(i, j),∀(i, j) ∈ A−
(
X, X

)
(12b)

l∗(i, j) ≥ l(i, j),∀(i, j) ∈
(
X, X

)
(12c)

l∗(i, j) ≤ l(i, j),∀(i, j) ∈ A−
(
X, X

)
(12d)

Proof. Let us suppose that one of the relations (12a) or (12b) is false. This means that there exists an arc
(i0, j0) ∈

(
X, X

)
so that c∗(i0, j0) > c(i0, j0) or (i0, j0) ∈ A−

(
X, X

)
so that c∗(i0, j0) < c(i0, j0).

Mathematics 2020, 8, 1494 4 of 10

We define a capacity vector c∗∗ as follows:

c∗∗(i, j) =
{

c(i, j), i f (i, j) = (i0, j0)
c∗(i, j), i f (i, j) , (i0, j0).

(13)

It is easy to observe that (c∗∗, l∗) ∈ Q[X, X] (see (13)) and

|l∗ − l|+|c∗∗ − c| < |l∗ − l|+|c∗ − c|. (14)

Relation (14) contradicts the optimality of (c∗, l∗).
Let us suppose now that one of the relations (12c) or (12d) is false. This means that there exists an

arc (i0, j0) ∈
(
X, X

)
so that l∗(i0, j0) < l(i0, j0) or (i0, j0) ∈ A−

(
X, X

)
so that l∗(i0, j0) > l(i0, j0).

We define the following lower bound vector l∗∗:

l∗∗(i, j) =
{

l(i, j), i f (i, j) = (i0, j0)
l∗(i, j), i f (i, j) , (i0, j0).

(15)

It is easy to observe that (c∗, l∗∗) ∈ Q[X, X] (see (15)) and

|l∗∗ − l|+|c∗ − c| < |l∗ − l|+|c∗ − c|. (16)

Relation (14) contradicts the optimality of (c∗, l∗). �

Lemma 2.

(a) If the capacity of an arc (i0, j0) ∈ A is increased with the value u ≥ 0 then the difference between the value
of the maximum flow in the modified network and the value of the maximum flow in the initial network is
not greater than u.

(b) If the lower bound of an arc (i1, j1) ∈ A is decreased with the value v ≥ 0 then the difference between the
value of the maximum flow in the modified network and the value of the maximum flow in the initial
network is not greater than v.

Proof. Let us consider a maximum flow f in the network G and [X, X] a minimum cut in G.
(a) After the capacity of the arc (i0, j0) ∈ A is increased with the value u ≥ 0, the capacity vector

c′ is obtained in (17):

c′(i, j) =
{

c(i, j) + u, i f (i, j) = (i0, j0)
c(i, j), i f (i, j) , (i0, j0).

(17)

Let f ′ be a maximum flow in the modified network G′ = (V, A, c′, l′ = l). It is easy to observe
that the existence of a feasible flow (and a maximum flow) in G′ is assured by the fact that c ≤ c′ and
by the existence of a maximum flow in G.

Of course, we have two possible situations: The arc (i0, j0) is in the direct set of arcs of a minimum
cut [X, X] in G or not.
Case a.1. There is a minimum cut [X, X] in G so that the arc (i0, j0) ∈

(
X, X

)
.

Let [X′, X
′

] be a minimum cut in G′. It is easy to see that:

v(f ′) = c′[X′, X
′

]≤ c′[X, X] = c′
(
X, X

)
− l′

(
X, X

)
=

c
(
X, X

)
+ u− l

(
X, X

)
= c[X, X] + u = v(f) + u

(18)

Case a.2. There is no minimum cut [X, X] in G so that the arc (i0, j0) ∈
(
X, X

)
.

Let [X, X] be a minimum cut in G. Of course, (i0, j0) <
(
X, X

)
. We shall prove next that [X, X] is a

minimum cut in G′.

Mathematics 2020, 8, 1494 5 of 10

Let [X′, X
′

] be a cut in G′. It follows that c[X′, X
′

]= c′[X′, X
′

] (if (x0, y0) < (X′, X
′

)) and
c[X′, X

′

]= c′[X′, X
′

]−u ≤ c′[X′, X
′

] (if (x0, y0) ∈ (X′, X
′

)). Therefore, c[X′, X
′

]≤ c′[X′, X
′

] and, since
c′[X, X]= c[X, X]≤ c[X′, X

′

] ((i0, j0) <
(
X, X

)
and [X, X] is a minimum cut in G), it results that

c′[X, X]≤ c′[X′, X
′

]. It follows that [X, X] is the minimum cut in G′ because [X′, X
′

] is the arbitrarily
chosen cut in G′.

Since [X, X] is a minimum cut in both networks, G and G′, and (i0, j0) <
(
X, X

)
it results in

equality (19):
v(f ′) = c′[X, X]= c[X, X] = v(f) ≤ v(f) + u. (19)

Therefore, in both cases, relation (20) was obtained:

v(f ′) − v(f) ≤ u. (20)

(b) After the lower bound of the arc (i1, j1) ∈ A is decreased with the value v ≥ 0, the following
lower bound vector l′ is obtained in (21):

l′(i, j) =
{

l(i, j) − v, i f (i, j) = (i1, j1)
l(i, j), i f (i, j) , (i1, j1).

(21)

A modified network G′ = (V, A, c′ = c, l′) is considered now and f ′ is a maximum flow in G′.
The existence of a feasible flow (and a maximum flow) in G′ is assured by the fact that l ≥ l′ and by the
existence of a maximum flow in G.

We have two possible situations: The arc (i1, j1) is in the inverse set of arcs of a minimum cut
[X, X] in G or not.
Case b.1. There is a minimum cut [X, X] in G so that the arc (i1, j1) ∈

(
X, X

)
.

Let [X′, X
′

] be a minimum cut in G′. It is easy to see that:

v(f ′) = c′[X′, X
′

]≤ c′[X, X] = c′
(
X, X

)
− l′

(
X, X

)
=

c
(
X, X

)
−

(
l
(
X, X

)
− v

)
= c[X, X] + v = v(f) + v

(22)

Case b.2. There is no minimum cut [X, X] in G so that the arc (i1, j1) ∈
(
X, X

)
.

Let [X, X] be a minimum cut in G. Of course, (i1, j1) <
(
X, X

)
. We shall prove next that [X, X] is a

minimum cut in G′.
Let [X′, X

′

] be a cut in G′. It follows that c[X′, X
′

]= c′[X′, X
′

] (if (x1, y1) < (X′, X
′

)) or
c[X′, X

′

]= c′[X′, X
′

]−v ≤ c′[X′, X
′

] (if (x1, y1) ∈ (X′, X
′

)). Therefore, c[X′, X
′

]≤ c′[X′, X
′

] and, since
c′[X, X]= c[X, X]≤ c[X′, X

′

] ((i1, j1) <
(
X, X

)
and [X, X] is a minimum cut in G), it results that

c′[X, X]≤ c′[X′, X
′

]. It follows that [X, X] is the minimum cut in G′ because [X′, X
′

] is the arbitrarily
chosen cut in G′.

Since [X, X] is a minimum cut in both networks, G and G′, and (i1, j1) <
(
X, X

)
it results in

equality (23):
v(f ′) = c′[X, X]= c[X, X] = v(f) ≤ v(f) + v. (23)

Therefore, in both cases, b.1 and b.2, relation (24) was obtained:

v(f ′) − v(f) ≤ v. (24)

�

Mathematics 2020, 8, 1494 6 of 10

Theorem 3. The pair of vectors (c∗, l∗) given in (25) and (26) is the optimum solution of IMCUL1, where:

c∗(i, j) =

 f (i, j), i f (i, j) ∈
(
X, X

)
c(i, j), i f (i, j) ∈ A−

(
X, X

)
.

(25)

l∗(i, j) =

 f (i, j), i f (i, j) ∈
(
X, X

)
l(i, j), i f (i, j) ∈ A−

(
X, X

)
.

(26)

Proof. Let (c∗∗, l∗∗) be an optimum solution of IMCUL1. A maximum flow f ∗∗ is considered in the
network G∗∗ = (V, A, c∗∗, l∗∗).

Using Lemma 1 and from the fact that (c∗∗, l∗∗) is an optimum solution of IMCUL1 the relations
from (27) are obtained: c∗∗(i, j) ≥ c(i, j), i f (i, j) ∈ A−

(
X, X

)
l∗∗(i, j) ≤ l(i, j), i f (i, j) ∈ A−

(
X, X

)
.

(27)

Therefore, if the upper bounds on arcs (i, j) ∈ A−
(
X, X

)
or the lower bounds of (i, j) ∈ A−

(
X, X

)
are modified then the value of the maximum flow is increased. Using Lemma 2 it results that:∑

(i, j)∈A−(X,X)

∣∣∣l∗∗(i, j) − l(i, j)
∣∣∣+ ∑

(i, j)∈A−(X,X)

∣∣∣c∗∗(i, j) − c(i, j)
∣∣∣ ≥ v(f ∗∗) − v(f). (28)

Using Lemma 1 it follows that:

||l∗∗ − l||1+ ||c∗∗ − c||1 =
∑

(i, j)∈A

∣∣∣l∗∗(i, j) − l(i, j)
∣∣∣+ ∑

(i, j)∈A

∣∣∣c∗∗(i, j) − c(i, j)
∣∣∣ ≥∑

i, j)∈(X,X)

∣∣∣l∗∗(i, j) − l(i, j)
∣∣∣+ ∑

(i, j)∈(X,X)

∣∣∣c∗∗(i, j) − c(i, j)
∣∣∣+ v(f ∗∗) − v(f) =

∑
(i, j)∈(X,X)

(l∗∗(i, j) − l(i, j)) +
∑

(i, j)∈(X,X)

(c(i, j) − c∗∗(i, j)) + v(f ∗∗) − v(f) =

c[X, X] − c∗∗[X, X] + v(f ∗∗) − v(f) = c[X, X] − v(f).

(29)

Using the definition of c∗ and l∗ (see (25) and (26)) we have:

||l∗ − l||1+ ||c∗ − c||1 =
∑

(i, j)∈(X,X)

∣∣∣ f (i, j) − l(i, j)
∣∣∣+ ∑

(i, j)∈(X,X)

∣∣∣ f (i, j) − c(i, j)
∣∣∣ =

∑
(i, j)∈(X,X)

(f (i, j) − l(i, j)) +
∑

(i, j)∈(X,X)

(c(i, j) − f (i, j)) =

c
(
X, X

)
− l

(
X, X

)
−

(
f
(
X, X

)
− f

(
X, X

))
= c[X, X] − v(f).

(30)

From (29) and (30) it results that:

||l∗∗ − l||1+ ||c∗∗ − c||1 ≥||l∗ − l||1+ ||c∗ − c||1. (31)

Using the definition of c∗ and l∗ (see (25) and (26)) we have:

c∗[X, X] = c∗
(
X, X

)
− l∗

(
X, X

)
=

∑
(i, j)∈(X,X)

c∗(i, j) −
∑

(i, j)∈(X,X)

l∗(i, j) =

∑
(i, j)∈(X,X)

f (i, j) −
∑

(i, j)∈(X,X)

f (i, j) = f [X, X] = v(f).

Mathematics 2020, 8, 1494 7 of 10

From this equality and from the fact that f is a feasible flow in G∗ = (V, A, c∗, l∗) it results that
[X, X] is the minimum cut in G∗ and the feasible solution of IMCUL1. It results that:

||l∗∗ − l||1+ ||c∗∗ − c||1 = ||l∗ − l||1+ ||c∗ − c||1. (32)

This means that (c∗, l∗) is an optimum solution of IMCUL1. �

Corollary 1. If (c∗∗, l∗∗) is an optimum solution of IMCUL1, then the distance between (c∗∗, l∗∗) and the initial
vector (c, l) is given in (33):

||l∗∗ − l||1+ ||c∗∗ − c|
∣∣∣1 = c[X, X] − v(f). (33)

Proof. It is directly from (30) and (32). �

Corollary 2. If (c∗∗, l∗∗) is an optimum solution of IMCUL1, it is given in (34):∑
(i, j)∈A−(X,X)

∣∣∣l∗∗(i, j) − l(i, j)
∣∣∣+ ∑

(i, j)∈A−(X,X)

∣∣∣c∗∗(i, j) − c(i, j)
∣∣∣ = v(f ∗∗) − v(f). (34)

Proof. Using Corollary 1, inequality (29) becomes equality and then inequality (28) becomes also
an equality. �

From Theorem 3 the following algorithm denoted AIMCUL1 is obtained to solve IMCUL1:
AIMCUL1
Calculate a maximum flow f ∗ in G;
Using (25) and (26) construct (c∗, l∗);
(c∗, l∗) is an optimum solution of IMCUL1.
The maximum flow problem has been intensively studied over decades [13]. A lot of algorithms to

solve it have been developed. The first algorithm was proposed by Ford and Fulkerson in 1956. As long
as there is an augmenting path in the network, the flow is increased along this path. This algorithm
is not polynomial since its time complexity linearly depends on the value of the maximum flow.
However, it is the base idea for other algorithms such as those due to Edmonds-Karp or Dinic which
are polynomial (the time complexity is polynomial in the number of nodes and the number of arcs).
There are also other polynomial approaches based on maintaining a preflow (push-relabel maximum
flow). The best current known algorithm was published in 2013 by James Orlin [14]. This algorithm
solves the maximum flow problem as a sequence of improvement phases. A strongly polynomial time
algorithm was obtained by replacing the residual network of the ∆-improvement phase by a more
compact representation. The author proved that the maximum flow can be computed in O(n ·m) time
or even O

(
n2/ log(n)

)
if m = O(n), where n is the number of nodes (n = |V|) and m is the number of

arcs (m = |A|).

Theorem 4. The time complexity of AIMCUL1 is O(n ·m).

Proof. The time complexity of AIMCUL1 is given by the time complexity of the algorithm used to
calculate the maximum flow f . �

4. Example

We shall give an example to illustrate how AIMCUL1 works. In Figure 1, a network G and a given
s − t cut [X, X] in G are presented. The maximum flow f ∗ is calculated in G (see Figure 2) using any
known algorithm briefly presented before theorem 4. The optimum solution (c∗, l∗) is presented in

Mathematics 2020, 8, 1494 8 of 10

Figure 3. The upper bounds of the arcs (3, 6) and (7, 6) were modified from 6 to 5 and, respectively,
from 3 to 1 according to formula (25). The lower bound of the arc (2, 3) was modified from 1 to 3 using
formula (26). The total amount of modifications brought to the boundaries is (6 − 5) + (3 − 1) + (3 − 1)
= 5. Therefore, [X, X] becomes a minimum s − t cut in G∗ = (V, A, c∗, l∗, s, t).

Mathematics 2020, 8, x FOR PEER REVIEW 8 of 10

Figure 1. Initial network G and s-t cut [X,X ̅].

Figure 2. Maximum flow 𝑓∗ in G.

Figure 1. Initial network G and s − t cut [X, X].

Mathematics 2020, 8, x FOR PEER REVIEW 8 of 10

Figure 1. Initial network G and s-t cut [X,X ̅].

Figure 2. Maximum flow 𝑓∗ in G.
Figure 2. Maximum flow f ∗ in G.

Mathematics 2020, 8, 1494 9 of 10
Mathematics 2020, 8, x FOR PEER REVIEW 9 of 10

Figure 3. Optimum solution of inverse minimum cut problem with lower and upper bounds 1
(IMCUL1).

5. Conclusions

An efficient strongly polynomial algorithm was deduced to solve IMCUL1. Although the direct
problem of minimum cut with lower and upper bounds is a generalization of the problem of
minimum cut with only upper bounds, the corresponding inverse problem IMCUL1 is a different
problem, which is not a generalization of IMC since in the case of IMC lower bounds cannot be
modified. An example to illustrate the proposed algorithm for IMCUL1 has been presented.

As a future work, the inverse minimum cut with lower and upper bounds under other norms
and distances (such as 𝑙 , 𝑙 or Hamming distances) could be considered.

Author Contributions: Conceptualization, A.D.; methodology, L.C.; validation, L.C.; formal analysis, A.D.;
writing—original draft preparation, A.D.; writing—review and editing, L.C. and A.D.; funding acquisition,
A.D. and L.C. All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by Transilvania University of Brasov.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ahuja, R.K.; Orlin, J.B. Combinatorial algorithms for inverse network flow problems. Networks 2002, 40,
181–187, doi:10.1002/net.10048.

2. Ahuja, R.K.; Orlin, J.B. Inverse Optimization. Oper. Res. 2001, 49, 771–783, doi:10.1287/opre.49.5.771.10607.
3. Demange, M.; Monnot, J. An introduction to inverse combinatorial problems. In Vangelis Th. Paschos,

Paradigms of Combinatorial Optimization (Problems and New Approaches); Wiley: London, UK; Hoboken, NJ,
USA, 2010.

4. Heuberger, C. Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results. J.
Comb. Optim. 2004, 8, 329–361, doi:10.1023/b:joco.0000038914.26975.9b.

5. Yang, C.; Zhang, J.; Ma, Z. Inverse maximum flow and minimum cut problems. Optimization 1997, 40,
147–170, doi:10.1080/02331939708844306.

6. Deaconu, A. The inverse maximum flow problem considering 𝐿 norm. RAIRO Oper. Res. 2008, 42,
401–414, doi:10.1051/ro:2008017.

Figure 3. Optimum solution of inverse minimum cut problem with lower and upper bounds 1
(IMCUL1).

5. Conclusions

An efficient strongly polynomial algorithm was deduced to solve IMCUL1. Although the direct
problem of minimum cut with lower and upper bounds is a generalization of the problem of minimum
cut with only upper bounds, the corresponding inverse problem IMCUL1 is a different problem,
which is not a generalization of IMC since in the case of IMC lower bounds cannot be modified.
An example to illustrate the proposed algorithm for IMCUL1 has been presented.

As a future work, the inverse minimum cut with lower and upper bounds under other norms and
distances (such as l∞, l2 or Hamming distances) could be considered.

Author Contributions: Conceptualization, A.D.; methodology, L.C.; validation, L.C.; formal analysis, A.D.;
writing—original draft preparation, A.D.; writing—review and editing, L.C. and A.D.; funding acquisition, A.D.
and L.C. All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by Transilvania University of Brasov.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ahuja, R.K.; Orlin, J.B. Combinatorial algorithms for inverse network flow problems. Networks 2002, 40,
181–187. [CrossRef]

2. Ahuja, R.K.; Orlin, J.B. Inverse Optimization. Oper. Res. 2001, 49, 771–783. [CrossRef]
3. Demange, M.; Monnot, J. An introduction to inverse combinatorial problems. In Vangelis Th. Paschos, Paradigms of

Combinatorial Optimization (Problems and New Approaches); Wiley: London, UK; Hoboken, NJ, USA, 2010.
4. Heuberger, C. Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results.

J. Comb. Optim. 2004, 8, 329–361. [CrossRef]
5. Yang, C.; Zhang, J.; Ma, Z. Inverse maximum flow and minimum cut problems. Optimization 1997, 40,

147–170. [CrossRef]
6. Deaconu, A. The inverse maximum flow problem considering L∞ norm. RAIRO Oper. Res. 2008, 42, 401–414.

[CrossRef]
7. Tayyebi, J.; Deaconu, A. Inverse Generalized Maximum Flow Problems. Mathematics 2019, 7, 899. [CrossRef]
8. Tayyebi, J.; Mohammadi, A.; Kazemi, S.M.R. Reverse maximum flow problem under the weighted Chebyshev

distance. RAIRO Oper. Res. 2018, 52, 1107–1121. [CrossRef]

http://dx.doi.org/10.1002/net.10048
http://dx.doi.org/10.1287/opre.49.5.771.10607
http://dx.doi.org/10.1023/B:JOCO.0000038914.26975.9b
http://dx.doi.org/10.1080/02331939708844306
http://dx.doi.org/10.1051/ro:2008017
http://dx.doi.org/10.3390/math7100899
http://dx.doi.org/10.1051/ro/2017088

Mathematics 2020, 8, 1494 10 of 10

9. Liu, L.; Zhang, J. Inverse maximum flow problems under the weighted Hamming distance. J. Comb. Optim.
2006, 12, 395–408. [CrossRef]

10. Deaconu, A. The inverse maximum flow problem with lower and upper bounds for the flow. Yugosl. J.
Oper. Res. 2008, 18, 13–22. [CrossRef]

11. Ciurea, E.; Deaconu, A. Inverse minimum flow problem. J. Appl. Math. Comput. 2007, 23, 193–203. [CrossRef]
12. Zhang, J.; Cai, M.-C. Inverse problem of minimum cuts. ZOR-Math. Methods Oper. Res. 1998, 47, 51–58.

[CrossRef]
13. Smith, D.K.; Ahuja, R.K.; Magnanti, T.L.; Orlin, J.B. Network Flows: Theory, Algorithms, and Applications;

Prentice Hall: Englewood Cliffs, NJ, USA, 1993.
14. Orlin, J.B. Max flows in O(nm) time, or better. In Proceedings of the Forty-fifth Annual ACM Symposium on

Theory of Computing, Palo Alto, CA, USA, 2–4 June 2013; pp. 765–774.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10878-006-9006-8
http://dx.doi.org/10.2298/YJOR0801013D
http://dx.doi.org/10.1007/BF02831968
http://dx.doi.org/10.1007/BF01193836
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Minimum Cut and Maximum Flow
	The Inverse Minimum Cut Problem with Lower and Upper Bounds
	Example
	Conclusions
	References

