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Abstract: This paper deals with the oscillation of the first-order differential equation with several
delay arguments x′ (t) +∑m

i=1 pi (t) x (τi (t)) = 0, t ≥ t0, where the functions pi, τi ∈ C ([t0, ∞) ,R+) ,
for every i = 1, 2, . . . , m, τi (t) ≤ t for t ≥ t0 and limt→∞ τi (t) = ∞. In this paper, the state-of-the-art
on the sharp oscillation conditions are presented. In particular, several sufficient oscillation conditions
are presented and it is shown that, under additional hypotheses dealing with slowly varying at infinity
functions, some of the “liminf” oscillation conditions can be essentially improved replacing “liminf”
by “limsup”. The importance of the slowly varying hypothesis and the essential improvement of the
sufficient oscillation conditions are illustrated by examples.
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1. Introduction

In this paper, we are concerned with the oscillatory behavior of all solutions to the first-order
delay differential equation with several arguments of the form

x′ (t) +
m

∑
i=1

pi (t) x (τi (t)) = 0, t ≥ t0, (1)

where the functions pi, τi ∈ C ([t0, ∞) ,R+) , for every i = 1, 2, . . . , m, (here R+ = [0, ∞)), τi (t) ≤ t
for t ≥ t0 and limt→∞ τi (t) = ∞. Let T0 ∈ [t0,+∞), τ (t) = min {τi (t) : i = 1, . . . , m} and τ−1 (t) =
sup {s : τ (s) ≤ t}.

By a solution of Equation (1) we understand the function x ∈ C ([T0,+∞) ,R), continuously
differentiable on [τ−1 (T0) ,+∞) and which satisfies Equation (1) for t ≥ τ−1 (T0). Such a solution is
called oscillatory if it has arbitrarily large zeros, otherwise, it is called non-oscillatory.

In the special case where m = 1, Equation (1) reduces to the equation

x′ (t) + p (t) x (τ (t)) = 0, t ≥ t0, (2)

where the functions p, τ ∈ C ([t0, ∞) ,R+) , τ (t) ≤ t for t ≥ t0 and limt→∞ τ (t) = ∞. For the general
theory of these equations, the reader is referred to [1–5]. The problem of setting sufficient conditions for
the oscillation of all solutions of differential Equations (1) and (2) (and also to more general equations)
was the subject of several investigations. See, for example, [1–35] and the references mentioned
in it. In the case of monotonous arguments, several interesting sufficient oscillation conditions for
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Equation (2) can be found in [6–10]. For equations with several arguments the following sufficient
oscillation conditions have been established.

The objective of this paper is to point out that, under mild additional hypotheses dealing with
slowly varying at infinity functions, several of these sufficient oscillation conditions can be essentially
improved if “liminf” is replaced by “limsup”.

2. Oscillation Criteria for Equation (1)

In 1982, several interesting sufficient conditions for the oscillation of all solutions to Equation (1)
were established in an article by Ladas and Stavroulakis [11] (see also the paper in 1984 by
Arino et al. [12]), where they studied the equation with several constant delay arguments of the form

x′(t) +
m

∑
i=1

pi(t)x(t− τi) = 0 , t ≥ t0, (3)

under the assumption that lim inft→∞
∫ t

t−τi/2 p(s)ds > 0, i = 1, 2, . . . , m, and proved that each one of
the following conditions

lim inf
t→∞

∫ t

t−τi

pi(s)ds >
1
e

for some i, i = 1, 2, . . . , m, (4)

lim inf
t→∞

∫ t

t−τ

m

∑
i=1

pi(s)ds >
1
e

, where τ = min{τ1,τ2,, . . . , τm}, (5)

[
m

∏
i=1

( m

∑
j=1

lim inf
t→∞

∫ t

t−τj

pi(s)ds
)]1/m

>
1
e

, (6)

or

1
m

m

∑
i=1

(
lim inf

t→∞

∫ t

t−τi

pi(s)ds
)
+

2
m

m

∑
i<j

i,j=1

[(
lim inf

t→∞

∫ t

t−τj

pi(s)ds

)(
lim inf

t→∞

∫ t

t−τi

pi(s)ds
)] 1

2

>
1
e

, (7)

implies that all solutions of Equation (3) oscillate.
Later in 1996, Li [13] proved that the same conclusion holds if

lim inf
t→∞

m

∑
i=1

∫ t

t−τi

pi(s)ds >
1
e

. (8)

In 1984, Hunt and Yorke [14] considered the equation with variable arguments of the form:

x′(t) +
m

∑
i=1

pi(t)x(t− τi(t)) = 0, t ≥ t0, (9)

under the assumption that there is a uniform upper bound τ0 on the τ,
i s and proved that if

lim inf
t→∞

m

∑
i=1

τi(t)pi(t) >
1
e

, (10)

then all solutions of Equation (9) oscillate.
In 1984, Fukagai and Kusano [15], for Equation (1) established the following theorem.
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Theorem 1. ([15], Theorem 1’(i)) Consider Equation (1) and assume that there is a continuous non-decreasing
function τ∗(t) such that τi(t) ≤ τ∗(t) ≤ t for t ≥ t0, 1 ≤ i ≤ m. if

lim inf
t→∞

∫ t

τ∗(t)

m

∑
i=1

pi(s)ds >
1
e

, (11)

then all solutions of Equation (1) oscillate.
On the other hand, if there exists a continuous non-decreasing function τ∗(t) such that τ∗(t) ≤ τi(t) for

t ≥ t0, 1 ≤ i ≤ m, limt→∞ τ∗(t) = ∞ and

∫ t

τ∗(t)

m

∑
i=1

pi(s)ds ≤ 1
e

for all sufficiently large t,

then Equation (1) has a non-oscillatory solution.

In 2000, Grammatikopoulos et al. [16] improved the above results as follows:

Theorem 2. ([16], Theorem 2.6) Assume that the functions τi are non-decreasing for all i ∈ {1, . . . , m},∫ ∞

0

∣∣pi(t)− pj(t)
∣∣ dt < +∞, i, j = 1, . . . , m

and

lim inf
t→∞

∫ t

τi(t)
pi(s)ds = βi > 0, i = 1, . . . , m.

if
m

∑
i=1

(
lim inf

t→∞

∫ t

τi(t)
pi(s)ds

)
>

1
e

, (12)

then all solutions of Equation (1) oscillate.

Note that all the conditions of oscillation mentioned above (4)–(12) involve lim inf only and in the
case of the differential equation

x′ (t) + p(t)x (t− τ) = 0, τ > 0, t ≥ t0, (13)

reduce to the oscillation condition (cf. [8,17])

lim inf
t→∞

∫ t

τ(t)
p(s)ds >

1
e

. (14)

At this point, we also mention that in the case of a differential equation with a constant coefficient
and constant delay

x′ (t) + px (t− τ) = 0, p, τ > 0, t ≥ t0, (15)

the above condition (14) reduces to

pτ >
1
e

(16)

which is a sufficient and necessary condition [11,17] for all solutions of Equation (15) to oscillate.
It is also known [18] that if in addition τ is a non-decreasing function and

lim sup
t→∞

∫ t

τ(t)
p(s)ds > 1, (17)

then all solutions of Equation (1) oscillate.
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It is clear that there is a gap between conditions (14) and (17) when the limt→∞
∫ t

τ(t) p(s)ds does
not exist. Moreover, it is an interesting problem to investigate Equation (1) with non-monotone
arguments and derive sufficient oscillation conditions that include lim sup (as the condition (17) for the
Equation (2) with one argument). Concerning the differential Equation (1) with several non-monotone
arguments the following oscillation results have been recently published. Assume that there exist
non-decreasing functions σi ∈ C ([t0, ∞) ,R+) such that

τi (t) ≤ σi (t) ≤ t, i = 1, 2, . . . , m. (18)

In 2015 Infante et al. [19] proved that if

lim sup
t→+∞

m

∏
j=1

[
m

∏
i=1

∫ t

σj(t)
pi(s) exp

( ∫ σi(t)

τi(s)

m

∑
i=1

pi(ξ) exp
( ∫ ξ

τi(ξ)

m

∑
i=1

pi(u)du
)

dξ

)
ds

] 1
m

>
1

mm , (19)

then all solutions of Equation (1) oscillate.
Also in 2015 Kopladatze [20] improved the above condition as follows: Let there exist some k ∈ N

such that

lim sup
t→∞

m

∏
j=1

 m

∏
i=1

t∫
σj(t)

pi (s) exp

m

σi(t)∫
τi(s)

(
m

∏
`=1

p` (ξ)

) 1
m

ψk (ξ) dξ

 ds


1
m

>
1

mm

[
1−

m

∏
i=1

ci (αi)

]
, (20)

where

ψ1 (t) = 0, ψi (t) = exp

 m

∑
j=1

t∫
τj(t)

(
m

∏
`=1

p` (s)

) 1
m

ψi−1 (s) ds

 , i = 2, 3, . . . , (21)

0 < αi := lim inf
t→∞

t∫
σi(t)

pi (s) ds <
1
e

, i = 1, 2, . . . , m, (22)

and

ci (αi) =
1− αi −

√
1− 2αi − α2

i

2
, i = 1, 2, . . . , m, (23)

then all solutions of Equation (1) oscillate.
In 2016 Braverman et al. [21] obtained the following iterative sufficient oscillation conditions:

lim sup
t→∞

t∫
h(t)

m

∑
i=1

pi (u) ar (h (t) , τi (u)) du > 1, (24)

lim sup
t→∞

t∫
h(t)

m

∑
i=1

pi (u) ar (h (t) , τi (u)) du > 1− 1− α−
√

1− 2α− α2

2
, (25)

lim inf
t→∞

t∫
h(t)

m

∑
i=1

pi (u) ar (h (t) , τi (u)) du >
1
e

, (26)

where
h (t) = max

1≤i≤m
hi (t) and hi (t) = sup

t0≤s≤t
τi (s) , i = 1, 2, . . . , m,
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0 < α := lim inf
t→∞

t∫
h(t)

m

∑
i=1

pi (s) ds ≤ 1
e

(27)

and

a1 (t, s) = exp

 t∫
s

m

∑
i=1

pi (u) du

 ,

ar+1 (t, s) = exp

 t∫
s

m

∑
i=1

pi (u) ar (u, τi (u)) du

 , r ∈ N.

Also, in 2016 Akca et al. [22] improved the above condition (24) replacing it by the condition

lim sup
t→∞

t∫
h(t)

m

∑
i=1

pi (u) ar (h (u) , τi (u)) du >
1 + ln λ0

λ0
, (28)

where λ0 is the smaller root of the equation λ = eαλ,

0 < α := lim inf
t→∞

t∫
τ(t)

m

∑
i=1

pi (s) ds ≤ 1
e

,

and τ (t) = max
1≤i≤m

{τi (t)} .

In 2017 Chatzarakis [23] derived the following results: Assume that for some k ∈ N

lim sup
t→∞

t∫
h(t)

P(s) exp

 h(t)∫
τ(s)

Pk (u) du

 ds > 1, (29)

or

lim sup
t→∞

t∫
h(t)

P(s) exp

 h(t)∫
τ(s)

Pk (u) du

 ds > 1− 1− α−
√

1− 2α− α2

2
, (30)

or

lim sup
t→∞

∫ t

h(t)
p(s) exp

(∫ t

τ(s)
Pk(u)du

)
ds >

2

1− α−
√

1− 2α− α2
, (31)

or

lim sup
t→∞

∫ t

σ(t)
p(s) exp

(∫ σ(s)

τ(s)
Pk(u)du

)
ds >

1 + ln λ0

λ0
− 1− α−

√
1− 2α− α2

2
, (32)

or

lim inf
t→∞

∫ t

σ(t)
p(s) exp

(∫ σ(s)

τ(s)
Pk(u)du

)
ds >

1
e

, (33)

where h(t), τ (t) , α and λ0 are defined as above, and

Pk (t) = P(t)

1 +
t∫

τ(t)

P (s) exp

 t∫
τ(s)

P (u) exp

 u∫
τ(u)

Pk−1 (ξ) dξ

 du

 ds


with P0(t) = P(t) = ∑m

i=1 pi (t). Then all solutions of Equation (1) oscillate.
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In 2018 Attia et al. [24] established the following oscillation conditions under the assumption that
there exists a family of nondecreasing continuous functions gi(t), i = 1, 2, ..., m and a nondecreasing
continuous functions g(t) such that for some t1 ≥ t0

τi(t) ≤ gi(t) ≤ g(t) ≤ t, i = 1, 2, ..., m

Assume that

0 < ρ := lim inf
t→∞

∫ t

g(t)

m

∑
i=1

pi(s)ds ≤ 1
e

,

and

lim sup
t→∞

(∫ t

g(t)
Q(v)dv + c(ρ)exp

[∫ t

g(t)

m

∑
i=1

pi(s)ds

])
> 1,

where

Q(t) = ∑m
k=1 ∑m

i=1 pi(t)
∫ t

τi(t)
pk(s)exp

(∫ t
gk(t) ∑m

i=1 pi(s)ds + (λ(ρ)− ε)
∫ gk(t)

τk(s)
∑m
`=1 p`(u)du

)
ds, ε ∈ (0, λ(ρ)),

or

lim sup
t→∞

(∫ t

g(t)
Q1(v)dv + c(ρ)exp

(∫ t

g(t)

m

∑
i=1

pi(s)ds

))
> 1,

where

Q1(t) = ∑m
k=1 ∑m

i=1 pi(t)
∫ t

τi(t)
pk(s)exp

(∫ t
gk(t) ∑m

i=1 pi(s)ds +
∫ gk(t)

τk(s)
∑m
`=1 (λ(q`)− ε`) p`(u)du

)
ds, ε` ∈ (0, λ(q`)),

and

q` = lim inf
t→∞

∫ t

τ`(t)
p`(s)ds, ` = 1, 2, ..., m

or

lim sup
t→∞

 m

∏
j=1

(
m

∏
k=1

∫ t

gj(t)
Rk(s)ds

) 1
n

+
∏m

k=1 c(βk)

nn exp

(
m

∑
k=1

∫ t

gk(t)

m

∑
`=1

p`(s)ds

) >
1

mm ,

where

Rk(s) = exp
(∫ s

gk(s) ∑m
i=1 pi(u)du

)
∑m

i=1 pi(s)
∫ s

τi(s)
pk(u)exp

(
(λ(ρ)− ε)

∫ gk(s)
τk(u)

∑m
`=1 p`(v)dv

)
du, ε ∈ (0, λ(ρ)),

and

0 < βk := lim inf
t→∞

∫ t

σi(t)
pi(s)ds ≤ 1

e
,

then Equation (1) is oscillatory.
In 2019 Bereketoglu et al. [25] derived the following oscillation conditions: Assume that there

exist non-decreasing functions σi ∈ C ([t0, ∞) ,R+) such that (18) is satisfied and for some k ∈ N

lim sup
t→∞

m

∏
j=1

 m

∏
i=1

 t∫
σj(t)

pi (s) exp

 σi(t)∫
τi(s)

Pk (u) du

 ds




1/m

>
1

mm , (34)

or

lim sup
t→∞

m

∏
j=1

 m

∏
i=1

 t∫
σj(t)

pi (s) exp

 σi(t)∫
τi(s)

Pk (u) du

 ds




1/m

>
1

mm

[
1−

m

∏
i=1

ci (αi)

]
, (35)
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where

Pk (t) =
m

∑
j=1

pj (t)

1 + m

 m

∏
i=1

t∫
σj(t)

pi (s) exp

 t∫
τi(s)

Pk−1 (u) du

 ds


1/m
 ,

with

P0 (t) = m

[
m

∏
`=1

p` (t)

]1/m

,

αi is given by (22) and ci (αi) by (23). Then all solutions of Equation (1) oscillate.
In 2019, Moremedi et al. [26] improved further the above result as follows: Assume that there

exist non-decreasing functions σi ∈ C ([t0, ∞) ,R+) such that (18) is satisfied and for some k ∈ N

lim sup
t→∞

m

∏
j=1

 m

∏
i=1

t∫
σj(t)

pi (s) exp

 σi(t)∫
τi(s)

Pk (u) du

 ds


1/m

>
1

mm , (36)

or

lim sup
t→∞

m

∏
j=1

 m

∏
i=1

 t∫
σj(t)

pi (s) exp

 σi(t)∫
τi(s)

Pk (u) du

 ds




1/m

>
1

mm

[
1−

m

∏
i=1

ci (αi)

]
, (37)

where

Pk (t) = P(t)

1 +
t∫

σi(t)

P (s) exp

 t∫
τi(s)

P (u) exp

 u∫
τi(u)

Pk−1 (ξ) dξ

 du

 ds


with

P0 (t) = P(t) =
m

∑
i=1

pi (t)

and αi, ci (αi) are given by (22) and (23) respectively. Then all solutions of Equation (1) oscillate.

Remark 1. It is clear that the left-hand side of both conditions (34) and (35) and also of (36) and (37)
are identically the same and also the right-hand side of (35) and (37) reduce to (34) and (36) respectively,
when ci (αi) = 0. Thus, it seems that conditions (35) and (37) are exactly the same as (34) and (36) when
ci (αi) = 0. One may notice, however, that the condition (22) is required in (35) and (37) but not in (34) and (36).

In 2017, Pituk [27] and in 2019, Garab et al. [28] studied the delay differential equation with
constant delay

x′ (t) + p(t)x (t− τ) = 0, τ > 0, t ≥ t0,

under additional assumptions dealing with slowly varying at infinity functions. Recall that a function
g : [t0, ∞)→ R is called slowly varying at infinity (or simply slowly varying) if for every ξ ≥ 0,

g(t + ξ)− g(t)→ 0, as t→ ∞.

Also Pituk [27] gave the following characterization of continuous slowly varying functions:
A continuous function g : [t0, ∞)→ R is slowly varying if and only if there exists t1 ≥ t0, such that g
can be written in the form

g(t) = a(t) + b(t), for all t ≥ t1, (38)

where a : [t1, ∞) → R is a continuous function which tends to some finite limit as t → ∞,
and b : [t1, ∞)→ R is a continuously differentiable function for which limt→∞ b′(t) = 0 holds. For more
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information about slowly varying functions and their characterization the reader is referred to the
papers [27–30] and the references cited therein.

In a subsequent paper, Garab [29] studied the case of the differential equation with variable delay

x′ (t) + p (t) x (t− τ (t)) = 0, t ≥ t0.

Very recently Garab and Stavroulakis [30] considered the linear differential equation with several
variable delays:

x′(t) +
m

∑
i=1

pi(t)x(t− τi(t)) = 0 , t ≥ t0,

where pi : [t0, ∞)→ [0, ∞) and τi : [t0, ∞)→ (0, ∞) are continuous functions, such that t− τi(t)→ ∞
(as t → ∞) for all 1 ≤ i ≤ m. Note that functions t 7→ t− τi(t) are not necessarily nondecreasing.
Let t−1 inf{s − τi(s) : s ∈ [t0, ∞) and 1 ≤ i ≤ m} and observe that t−1 ∈ (−∞, t0) holds. Then a
continuous function x : [t−1, ∞) → R is called a solution of Equation (9), if it is continuously
differentiable on [t0, ∞) and satisfies (9) there.

In the sequel, we will assume the following hypotheses:
(H1) there exists K > 0 such that 0 < τi(t) ≤ K for all t ≥ t0 and 1 ≤ i ≤ m;
(H2) there exists L > 0 such that 0 ≤ pi(t) ≤ L for all t ≥ t0 and 1 ≤ i ≤ m.
The conditions in the next theorem, established in [30], essentially improve related conditions in

the literature.

Theorem 3. ([30]) Suppose that

lim inf
t→∞

∫ t

t−τi(t)
pi(s)ds > 0 for all i, i = 1, 2, . . . , m, (39)

and hypotheses (H1) and (H2) are fulfilled. Furthermore, suppose that the functions pi and τi are uniformly
continuous. Then each one of the following conditions implies that all of solutions of Equation (9) oscillate.

(a) The delay functions τi (1 ≤ i ≤ m) are all constant, the function A : [t0 + K, ∞)→ [0, ∞),

A(t) =
m

∑
i=1

∫ t

t−τi

pi(s) ds

is slowly varying at infinity, and

lim sup
t→∞

m

∑
i=1

∫ t

t−τi

pi(s) ds >
1
e

. (40)

(b) The function A : [t0 + K, ∞)→ [0, ∞),

A(t) =
m

∑
i=1

pi(t) τi(t)

is slowly varying at infinity, and

lim sup
t→∞

m

∑
i=1

pi(t) τi(t) >
1
e

. (41)

(c) There exists a uniformly continuous function δ : [t0, ∞)→ [0, ∞) such that 0 ≤ δ(t) ≤ τi(t) for all
t ≥ t0 and i = 1, 2, ..., m, and that the function A : [t0 + K, ∞)→ [0, ∞),

A(t) =
∫ t

t−δ(t)

m

∑
i=1

pi(s)ds
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is slowly varying at infinity and

lim sup
t→∞

∫ t

t−δ(t)

m

∑
i=1

pi(s) ds >
1
e

. (42)

3. Examples

In the following examples, it is shown that the conditions of Theorem 3 are independent (cf. [11])
and also improve related results in the literature.

3.1. Example

([30]) Consider the delay equation

x′ (t) +
(

c1 + ε cos
√

t
)

x(t− 1) +
(

c2 + ε cos
√

t
)

x(t− 2) = 0, t ≥ 1, (43)

where 0 < ε < c1 ≤ c2.
The coefficient functions are uniformly positive (i.e., bounded from below by a positive number),

uniformly continuous, and bounded. Thus Equation (43) is of the form (9) with m = 2, t0 = 1, pj(t) =(
cj + ε cos

√
t
)
(j = 1, 2) and constant delays τ1 = 1 and τ2 = 2, and also condition (39) is satisfied.

Note that the derivative of the function cos
√

t vanishes at infinity and therefore characterization (38)
implies that p1 and p2 are slowly varying, and also the constant functions τ1 = 1 and τ2 = 2 are slowly
varying by definition. It is a matter of elementary calculations to see that the equations

lim inf
t→∞

2

∑
i=1

∫ t

t−τi

pi(s)ds = lim inf
t→∞

[τ1 p1(t) + τ2 p2(t)] = c1 + 2c2 − 3ε,

lim sup
t→∞

2

∑
i=1

∫ t

t−τi

pi(s) ds = lim sup
t→∞

[τ1 p1(t) + τ2 p2(t)] = c1 + 2c2 + 3ε

hold (consider i.e., the sequences tn = (2n + 1)2π2 and t
′
n = (2n)2π2).

Therefore, if c1 + 2c2 + 3ε > 1
e both (a) and (b) of Theorem 3 imply that all solutions of

Equation (43) oscillate. Observe, however, that conditions (8) and (10) lead to this conclusion if
the stronger condition c1 + 2c2 − 3ε > 1

e is satisfied.
Concerning part (c) of Theorem 3, note that δ(t) := min{τ1(t), τ2(t)} = 1 and as a constant is

slowly varying. By simple calculations, we get

lim inf
t→∞

∫ t

t−1
[p1(s) + p2(s)]ds = c1 + c2 − 2ε,

and

lim sup
t→∞

∫ t

t−1
[p1(s) + p2(s)]ds = c1 + c2 + 2ε.

Thus, if c1 + c2 + 2ε > 1
e part (c) of Theorem 3 implies that all solutions of Equation (43) oscillate,

while the condition (5) requires the stronger condition c1 + c2 − 2ε > 1
e .

In the particular case that c1 = 1
9 , c2 = 1

8 and ε = 1
14 , that is, in the case of the delay equation

x′ (t) +
(

1
9
+

1
14

cos
√

t
)

x(t− 1) +
(

1
8
+

1
14

cos
√

t
)

x(t− 2) = 0, t ≥ 1, (44)

we have
c1 + 2c2 + 3ε ≈ 0.57539 >

1
e

and c1 + c2 + 2ε ≈ 0.37896 >
1
e

,
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that is, the conditions in parts (a), (b) and (c) of Theorem 3 are satisfied, and therefore, all solutions of
Equation (44) oscillate. Observe, however, that

c1 + 2c2 − 3ε ≈ 0.14682 <
1
e

and c1 + c2 − 2ε ≈ 0.09325 <
1
e

,

and therefore none of the conditions (8), (10) and (5) are satisfied.

Remark 2. ([30]) As we have seen in this example, both (a) and (b) of Theorem 3 outperform part (c). However,
in the next example we show that part (c) of Theorem 3 can be applied and gives more efficient criteria than the
conditions (10) and (5), while none of the conditions (8), (40) and (41) of parts (a) and (b) of Theorem 3 applies.

3.2. Example

([30]) Consider the equation with variable delays

x′ (t) + c1x(t− 2− sin
√

t) + c2x(t− 4− cos t) = 0, t ≥ 1, (45)

where c1 and c2 are positive constants. Equation (45) is of the form (9) with m = 2, t0 = 1, constant
coefficient functions p1 = c1 and p2 = c2, and uniformly continuous delay functions τ1(t) = 2 +

sin
√

t and τ2(t) = 4 + cos t. Observe that τ1(t) ≤ τ2(t) holds for all t ≥ t0, and that, in view of
characterization (38), the map t → sin

√
t is slowly varying since its derivative vanishes at infinity.

Thus the map

A(t) :=
∫ t

t−τ1(t)
[p1(s) + p2(s)]ds = (c1 + c2)(2 + sin

√
t),

is slowly varying and also condition (39) is satisfied.
It is easy to see that

lim inf
t→∞

A(t) = c1 + c2

and
lim sup

t→∞
A(t) = 3(c1 + c2).

Thus, if 3(c1 + c2) >
1
e Theorem 3(c) implies that all solutions of Equation (45) oscillate. Observe,

however, that the condition of Theorem 2.7.1 in [5]

lim inf
t→∞

∫ t

t−τmin(t)

m

∑
i=1

pi(s)ds >
1
e

, (46)

where τmin(t) := min1≤i≤m τi(t), and (10) require the stronger conditions c1 + c2 > 1
e and c1 + 3c2 > 1

e
respectively. Moreover, condition (8) and part (a) of Theorem 3 cannot be applied, as we have
variable delays.

Finally, we show that part (b) of Theorem 3 cannot be applied in this case. The function

Ā(t) :=
2

∑
i=1

∫ t

t−τi(t)
pi(s) ds =

2

∑
i=1

pi(s)τi(t) = c1(2 + sin
√

t) + c2(4 + cos t), for all t ≥ 1,

is not slowly varying because of the function cost which is nonconstant and 2π-periodic. Therefore part
(b) of Theorem 3 does not apply.

4. Conclusions

Several sufficient conditions for the oscillation of all solutions to differential equations with
several delays were presented. Also, under mild additional assumptions dealing with slowly varying
at infinity functions, some of these sufficient oscillation conditions involving “liminf” were essentially
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improved replacing “liminf” by “limsup”. The importance of the slowly varying hypothesis and the
essential improvement of the sufficient oscillation conditions was demonstrated by suitable examples.
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