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Abstract: The Bischi–Naimzada game is a market competition between two firms with the objective
of maximizing profits under limited information. In this article, we study a more generalized
and realistic situation that takes into account the sales constraints. we generalize the economic
model suggested by Bischi–Naimzada by introducing and studying the maximization of profits
based on sales constraints. Our motivation in this paper is the studying of profit and sales
constraints maximization and their influences on the game’s dynamics. The local stability of the
equilibrium points of the proposed model is discussed. It examines how the dynamics of the
proposed two-dimensional competition game model focusing on changes in both the speed of the
adjustment and the sales constraint parameters. The map describing the game is proven to be
noninvertible and yields many multi-stable, complex dynamics and the coexistence chaotic attractors
may arise. The global behavior of the map is achieved by studying the critical curves. The numerical
simulations demonstrate the coexistence of two attractors and complex structures of the attraction
basins. Several examples are discussed in order to confirm all the analytical results obtained.

Keywords: Bischi–Naimzada game; bounded rationality; flip bifurcation; critical curves; basin of
attraction; noninvertible map

1. Introduction

Oligopoly is a competition game where the market situation is controlled by a few competing
firms producing similar or homogeneous products. The concept of static competition of duopoly game
was first presented by Cournot [1]. The duopoly model is a competitive game where two companies
control and have a dominant influence on the market. A typical feature that many articles share is
the assumption of oligopoly model activities in order to maximize profit function as a single goal [2].
The game strategy of each company is related to each other and depends not only on market demand,
but also on the planning expectations of the competitor. The pioneering contribution of Puu’s work [3]
has shown the potential for the complex dynamics of the duopoly competition of Cournot game.
In literature [4–10], the dynamic behaviors and chaos of Cournot models have been discussed on
the basis of naive expectations. Subsequently, an analysis of the global dynamics of the Cournot
Competition game with bounded rationality was presented by Bischi and Naimzada [11]. All of these
models have shown that equilibrium points could lose their stability, leading to periodic or chaotic
behavior. Recently, the stability and complexity of Cournot competition games with limited rationality
attracted more attention of researchers.

In this paper, we analyze the Bischi–Naimzada duopoly game based on firms considering a
profit maximizer under a sales constraint. Taking into account that the sales constraint is a more
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realistic economic situation than maximizing the only firm’s profit. Such an added objective motivates
our contribution in the current paper and can improve and extend the region of stability for the
Nash equilibrium point. Furthermore it generalizes other existing models in literature. We study
the stability of the dynamic equilibrium point leading to an in-depth understanding of the dynamics
of the game and the corresponding economic interpretations. We use stability criteria as well as
the numerical simulation to determine the local and global stability of the equilibrium points as
well as to discuss the internal complexity of the game. Indeed studying the model according to the
parameters of the speed of adjustment mechanism and the parameters of the sales constraints that we
propose is capable of leading the model to different cycles or forms of complex dynamics involving
potential economic instability. On the other hand, small perturbations of related standards may lead to
sudden jumps from one attraction basin to another, based on the complexity of the basin structures
and the phenomena of coexistence even in the absence of chaos. We obtain the critical curves of
the non-invertible map, and it turns out that a sequential change in game’s parameters leads to the
collapse of game. Moreover, the behaviors of destabilization also involve a subcritical period doubling
bifurcation, some periodic, aperiodic and chaos has been merged with an increase in the speed of
adjustment parameters. In particular, we show that if the sales constraint parameters are taken to
be high, this makes Nash equilibrium point goes back to local stability and has a reflective effect of
increasing the model’s adjustment speeds.

This paper is divided as follows. In Section 2, we report related works in this direction of research.
In Section 3, the Bischi–Naimzada duopoly game based on maximizing profits and sales constraints
is introduced. In Section 4, the local stability conditions for the equilibrium points are determined.
In Section 5, numerical simulation, local bifurcations, basin of attraction, critical curves and path to
complex dynamics are investigated. Finally, the conclusion and discussion are set out in Section 6.

2. Literature Review

Research on the complex dynamics of competition games may be classified according to the
type of model or the number of players or the type of players expected to be homogeneous and
heterogeneous. Agiza et al. [12,13] analyzed the dynamics of two oligopolistic games based on a
limited rationality with a linear and nonlinear demand function. Bischi et al. [14,15] investigated chaos
and bifurcations in two dynamic oligopoly games. The oligopoly was presented in the economic models
of heterogeneous expectations explored in [13,14]. A multi-market game based on Puu’s approach [16]
has been introduced in [17]. Fanti et al. [18] examined the local and global dynamics of a homogeneous
Cournot duopoly game with isoelastic demand function. Askar and Al-Khedhairi [19] analyzed
the nonlinear duopoly games with product differentiation. Ma et al. [20] analyzed the complex
behaviors and applied useful control of chaos to master-slave duopoly game. Agliari et al. [21]
studied the dynamics of a differentiated Cournot duopoly game. Askar [22] explored the dynamics
of Cournot duopoly game based on uncertainty cost. Andaluz et al. [23] studied the dynamic of
triopoly Cournot and Bertrand games with differentiated products and heterogeneous expectations.
Baiardi and Naimzada [24] investigated the dynamics of evolutionary Cournot oligopoly game with
imitators. The dynamic behaviors of the two-stage Cournot duopoly model with an RD spillover
effect have been studied in [25]. Al-Khedhairi [26] introduced the Cournot duopoly game with a
generalized bounded rationality. The influences of asymmetric market information on the dynamics
of duopoly game have been explored in [27]. Other interesting papers have been published in the
literature, such as the works by Naimzada and Sbragia [28] which has studied oligopoly games
with nonlinear demand and cost functions. Tramontana [29] has examined heterogeneous duopoly
based on isoelastic demand. Askar [30] has analyzed Cournot–Bertrand game with differentiated
goods. The dynamic of oligopoly games with goods differentiation discussed in [31]. The dynamics of
differentiated Bertrand duopoly game investigated in [32]. The complex dynamics of delayed Bertrand
duopoly game explored in [33]. A remanufacturing duopoly model with nonlinear cost studied in [34].
Effect of information asymmetry in the bounded Cournot duopoly game discussed by Ueda [35].
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All competed firms in the works mentioned above were trying to maximize their profit functions
without constraints as unique objectives. Baumol [36] presented an alternative model of increased
sales as the company increases its sales on the basis of a minimum profit. Fischer [37,38] concluded
that the idea of maximizing profits subject to minimum sales constraints was much more rational
for business. More recently, Ahmed et al. [39–41] introduced dynamic multi-objective games as an
alternative to firms which think with a single objective optimization. Mert [42] studied the duopoly
model with two objectives to increase sales and maximize profits, giving Nash equilibrium a more
stable when it comes to maximizing sales and profits rather than maximizing profit. Ibrahim [43]
achieved the stability conditions for the Nash equilibrium point in the duopoly model with minimum
sales constraints. Tian et al. [44] investigated coordination and control of multi-channel supply chain
based on consumers’ channel preferences and sales effort. Pansera et al. [45] studied bifurcation
analysis of a delayed duopoly game with R&D spillover and price competition. More recently, the book
includes new directions for nonlinear dynamics in games, see [46]. In [47], the price and quantity that
are traded off between buyer and seller have been determined in bilateral monopoly. Investigation
of excessive competition and a lack of trust and their influences that may affect rational choice in
coalitional game have been analyzed in [48].

3. Bischi–Naimzada Duopoly Game under Minimum Sales Constraint

Assuming a market dominated by two firms producing homogeneous or same products. Let qi be
the output of firm i = 1, 2 and Q = q1 + q2 denotes the total output of the two firms. Suppose that the
market demand function is linear in form [11]:

p = a− b(q1 + q2) (1)

where p indicates the price of the products. We assume that both firms adopt the following linear
cost function,

Ci(qi) = ciqi (2)

Since the total profit for the firm is the total revenue minus the total cost, the profit for each firm is
given by

πi (q1, q2) = qi(a− bQ)− ciqi (3)

Assuming that firms have a constant constraint on minimum sales constraint [43]. The firm i
believes that it maximizes its profit under the condition on sales constraint, then we have the following
optimization problem

maximizes qi(a− bQ)− ciqi subject to qi(a− bQ) ≥ Si, (4)

It is equivalent to maximize the payoff function as the objective function of firm i, which has
the form

Li = qi(a− bQ)− ciqi − µi (qi(a− bQ)− Si) , (5)

where the parameter µi is positive and is associated with the sales constraint. By differentiating Li
with respect to qi, we obtain

∂Li
∂qi

= (1− µi)(a− 2bqi − bq−i)− ci = 0, i = 1, 2. (6)

The objective of each firm is to maximize its profit on the basis of minimum sales constraints.
The objective is therefore to maximize the function defined in (5) which combines the function of profit
with the constraints of sales.
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The Dynamic Game

We consider the situation where each firm adopts the same mechanism in adjusting its output in
next period of time. We are of the opinion that these two firms are rationally limited, that is, they have
limited information, each from the other, so that they will decide their outputs depending on the local
estimation behavior of the objective function during the period [11–13]. Thus, the dynamic system
that describes this game is in the form:

qi(t + 1) = qi(t) + νiqi(t)
∂Li
∂qi

, i = 1, 2. (7)

where νi > 0 represents the adjustment speed of firm i.
Substituting (6) in (7), the dynamics of the two firms’ outputs through a discreet dynamical system

will be as follows:

q1(t + 1) = q1(t) + ν1q1[(1− µ1)(a− 2bq1 − bq2)− c1]

q2(t + 1) = q2(t) + ν2q2[(1− µ2)(a− 2bq2 − bq1)− c2]
(8)

The game mentioned above and described by the map (8) is a generalization of the
Bischi–Naimzada game [11] when there is a constraint on sales. The system described in (8) determines
the trajectories of competing firms, and it is a noninvertible two-dimensional map as shown later.
We are investigating the dynamics of the model by discussing the effect of the parameters on this
system. In order to address the dynamical behavior (8), we analyze the stability regions and the
bifurcation of the equilibrium points by which the points may be destabilized.

4. Equilibrium Points and Their Local Stability

To obtain the fixed points for the model (8), the fixed point conditions q1(t + 1) = q1(t) = q∗1 and
q2(t + 1) = q2(t) = q∗2 , are used,

q1[(1− µ1)(a− 2bq1 − bq2)− c1] = 0,
q2[(1− µ2)(a− 2bq2 − bq1)− c2] = 0

(9)

Solving the algebraic system (9), we get the following four fixed points of the system (8):

E0 = (0, 0), E1 = ( a(1−µ1)−c1
2b(1−µ1)

, 0), E2 = (0, a(1−µ2)−c2
2b(1−µ2)

),

E∗ =
(
q∗1 , q∗2

)
=
(

a(1−µ1)(1−µ2)+c2(1−µ1)−2c1(1−µ2)
3b(1−µ1)(1−µ2)

, a(1−µ1)(1−µ2)+c1(1−µ2)−2c2(1−µ1)
3b(1−µ1)(1−µ2)

) (10)

E0, E1, E2 are called boundary equilibria and E∗ is the Nash equilibrium. They have all
non-negative real values which hold under the following inequalities:

2c1(1− µ2)− c2(1− µ1) < a(1− µ1)(1− µ2),
2c2(1− µ1)− c1(1− µ2) < a(1− µ1)(1− µ2).

(11)

It should be noted that the Nash equilibrium point E∗ of the game (8) is the same of the
Bischi–Naimzada game [30] when µ1 = µ2 = 0.

To study the local stability of those points we should calculate the Jacobian matrix of system (8)
that is given by,

J =

[
1 + ν1[(1− µ1)(a− 4bq1 − bq2)− c1] −ν1(1− µ1)bq1

−ν2(1− µ2)bq2 1 + ν2[(1− µ2)(a− 4bq2 − bq1)− c2]

]
, (12)
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whose characteristic polynomial is as follows,

f (λ) = λ2 − tr(J(E))λ + det(J(E)), (13)

where tr(J) and det(J) are the trace and determinant of the matrix (12), respectively. The conditions
for achieving the local asymptotic stability of the Nash equilibrium point are that the eigenvalues of
the corresponding Jacobian matrix are within the unit circle. According to the Jury criterion [49,50],
the conditions of local asymptotic stability of the Nash equilibrium point can be described in detail as

f (−1) = 1 + tr(J(E)) + det(J(E)) > 0,
f (1) = 1− tr(J(E)) + det(J(E)) > 0,
det(J) < 1.

(14)

Breaking any of the inequities mentioned in (14) while realizing the other two at the same time,
leads to:

• Flip bifurcation at f (−1) = 0,
• Transcritical or fold bifurcation at f (1) = 0,
• Neimark–Sacker bifurcation at det(J) = 1.

It is clear that the system (8) is a nonlinear system and therefore it is difficult to obtain an explicit
time-dependent solution. From this point of view, we will study the specific behaviors of this model
by applying the stability theory around the equilibrium points.

Theorem 1. The equilibrium point E0 of the two firms outside the market is

• a repelling node if a > max{ c1 − 1
ν1(1− µ1)

,
c2 − 1

ν2(1− µ2)
},

• an attracting node if a < min{ c1 − 1
ν1(1− µ1)

,
c2 − 1

ν2(1− µ2)
},

• a saddle node if a >
c1 − 1

ν1(1− µ1)
and a <

c2 − 1
ν2(1− µ2)

or a <
c1 − 1

ν1(1− µ1)
and a >

c2 − 1
ν2(1− µ2)

,

• a non-hyperbolic node if a =
c1 − 1

ν1(1− µ1)
or a =

c2 − 1
ν2(1− µ2)

.

Proof. At the equilibrium point E0 the Jacobian matrix (12) is given by

J(E0) =

[
1 + ν1a(1− µ1)− c1 0

0 1 + ν2a(1− µ2)− c2

]
.

As J(E0) is a diagonal matrix. Then the eigenvalues of J(E0) are λ1 = 1 + ν1a(1 − µ1) − c1 and
λ2 = 1 + ν2a(1− µ2)− c2. If c1 < 1 + ν1a(1− µ1) and c2 < ν2a(1− µ2), then E0 is a repelling node.
From the conditions shown on the eigenvalues, the rest of the results can be demonstrated based on
the following theorem.

Theorem 2. When the Nash equilibrium point has positive coordinates, then the equilibrium points E1 and E2

are saddle points.

Proof. Substituting E1 in (12), we get

J(E1) =

1− ν1[a(1− µ1)− c1] −ν1(a(1− µ1)− c1)

2
0 1 + ν2

2 [a(1− µ1)(1− µ2) + c1(1− µ2)− 2c2(1− µ1)]

 .
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The two eigenvalues of Jacobian matrix above are λ1 = 1− ν1[a(1− µ1)− c1] and λ2 = 1 + ν2
2 [a(1−

µ1)(1 − µ2) + c1(1 − µ2) − 2c2(1 − µ1)]. If the Nash equilibrium point has positive coordinates,
hence |λ1| < 1 and |λ2| > 1. Therefore, the equilibrium point E1 is a saddle point. In a certain manner,
we can demonstrate that the E2 is a saddle point too. This completes the proof.

In order to study the local stability of the Nash equilibrium E∗, we calculate the Jacobian matrix
at this point in the form:

J(E∗) =

[
1− 2ν1b(1− µ1)q∗1 −ν1b(1− µ1)q∗1
−ν2b(1− µ2)q∗2 1− 2ν2b(1− µ2)q∗2

]
.

Then the eigenvalues λ1, λ2 of this matrix are the roots of the following quadratic equation,

λ2 − tr(J(E∗))λ + Det(J(E∗)) = 0,

where tr(J(E∗)) = 2− 2ν1b(1− µ1)q∗1 − 2ν2b(1− µ2)q∗2 and Det(J(E∗)) = (1− 2ν1b(1− µ1)q∗1)(1−
2ν2b(1− µ2)q∗2)− ν1ν2b2(1− µ1)(1− µ2)q∗1q∗2 . We find tr2(J(E∗))− 4Det(J(E∗)) = 4b2[(ν1(1− µ1)q∗1 −
ν2(1 − µ2)q∗2)

2 + ν1ν2(1 − µ1)(1 − µ2)q∗1q∗2 ]. Since all parameters are definitely positive then the
following discriminant is positive.

tr2(J(E∗))− 4Det(J(E∗)) > 0.

From above, it is easy to assume that the eigenvalues λ1, λ2 of this matrix J(E∗) are real
eigenvalues. By the way of calculation, we get that:

1− tr(J(E∗)) + Det(J(E∗)) = 3ν1ν2b2(1− µ1)(1− µ2)q∗1q∗2 > 0,

When the Nash equilibrium point has positive coordinates, it’s easy to see that the eigenvalues λ1,
λ2 of J(E∗) are less than one. The local asymptotic stability of E∗ is the following necessary condition:

1 + tr(J(E∗)) + Det(J(E∗)) = 4− 4ν1b(1− µ1)q∗1 − 4ν2b(1− µ2)q∗2 + 3ν1ν2b2(1− µ1)(1− µ2)q∗1q∗2 < 0. (15)

The condition (15) defines the stability region for the Nash equilibrium point of the game (10).
We can conclude the above result in the following theorem:

Theorem 3. The Nash equilibrium point E∗ of the game (8) is locally stable provided that:

4− 4ν1b(1− µ1)q∗1 − 4ν2b(1− µ2)q∗2 + 3ν1ν2b2(1− µ1)(1− µ2)q∗1q∗2 < 0. (16)

It is clear that if the condition 1 + tr(J(E∗)) + Det(J(E∗)) = 0 satisfies the Nash equilibrium point E∗, it will
undergo a flip bifurcation starting on period doubling cascade. Inequality (16) governs the stability of the
dynamic game (8) when it is drawn for any pair of the system’s parameters in the plane. The dynamical behaviors,
phase portrait, bifurcation diagrams, critical curves and basin of attraction of model (8) will be shown in the next
numerical simulation.

5. Numerical Simulation of Dynamic Game (8)

Since the system (8) has many parameters, we study in this section the influences of maximum
price parameter a, the speed of adjustment parameter ν1 and the sale constraint parameter µ1 on
the stability of Nash equilibrium point keeping the other parameters values fixed. This numerical
experiments include using some popular graphs such as largest Lyapunov exponent (LLE),
1D bifurcation diagram, phase plane of chaotic attractors, and attraction basins for some periodic
cycles. These graphs are important when studying the complex dynamic characteristics of such
systems. We begin our analysis by investigating the influences of the sale’s constraint parameter
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µ1 on the dynamics of the map (8). This requires to consider the following parameters set,
a = 11.25, b = 0.5, c1 = 0.1, c2 = 0.3, µ2 = 0.6, ν1 = 0.2 and ν2 = 0.7. Since the fixed point E∗
depends on the parameters a, b, c1, c2, µ1 and µ2 so it will be changed as we study the influence of µ1

and its stability will be affected too. Taking µ1 as the bifurcation parameter and at this parameters set,
Figure 1a shows the 1D bifurcation diagram when varying this parameter. Experiment simulations
show that the two parameters ν1 and µ1 have an opposite impact on the stability of the fixed point E∗.
Taking the other parameters’ values as previously and change µ1 to 0.000215 the fixed point becomes
E∗ = (7.866637992, 6.566681002) and the Jacobian gets,[

−0.57299 −0.78649
−0.91934 −0.83867

]

whose eigenvalues are λ+ ≈ 0.15481 and λ− ≈ −1.56647 with |λ+| < 1 and |λ−| > 1. This means that
E∗ is unstable saddle point. The dynamic behavior at this set of parameters’ values including µ1 is
displayed in Figure 1b. It shows a two-piece chaotic attractor around the saddle fixed point. The light
grey denotes the basin of E∗ which includes holes of divergent and infeasible points. As µ1 increases
further the dynamic is converted into a four-piece chaotic attractor at µ1 = 0.01075. Figure 1c plots the
basin of attraction of those four unconnected chaotic areas. As µ1 increases those four chaotic areas
change into a period-16 cycle. It has a quite complicated attraction basin at the same parameters set
and µ1 = 0.03. Figure 1e,f display the attraction basin of period-4 and period-2 cycles. They are born at
the same parameters’ set and for µ1 = 0.108 and µ1 = 0.89 respectively. Keeping the other parameters’
values fixed and change µ1 = 0.828 the fixed point becomes E∗ = (7.224806201, 6.887596899) and the
Jacobian gets, [

0.75147 −0.12427
−0.96426 −0.92853

]
whose eigenvalues are λ+ ≈ 0.819996 and λ− ≈ −0.997057 with |λ+| < 1 and |λ−| < 1. This means
that E∗ is local stable point. From this discussion we can see that there is an inverse period-doubling
bifurcation that is merged when taking the sale’s constraint µ1 as the bifurcation parameter. Then the
game (8) undergoes a chaos zone, quasi-period range, and comes back to a local stable state with an
increasing in µ1. Noting that the system (8) will return to stability from a chaotic state after many
iterations of this system. Therefore the two competed firms should control the degree of minimum
sales constraint parameter so as to avoid a market chaotic state. Furthermore the game (8) becomes
more stable if the minimum sales constraint is considered by the players. On the other hand, the speed
of adjustment ν1 has given interesting results on the game’s behavior. Numerical simulation examples
show that when firms adjust the speed of a certain value, the Nash equilibrium point of the system
(8) will lose its stability, the system will become unpredictable, and chaos may occur. It’s difficult
for firms to deal with such a complicated scenario. Consequently, the speed of adjustment to a very
appropriate range must be taken into account by firms in order to avoid decreasing market efficiency
and profits. We can conclude that the game (8) tends to exhibit more stability when at least one firm
operates beyond its minimum sales constraint. Furthermore, the numerical simulation shows that the
parameter a at the parameters’ set, b = 0.5, c1 = 0.2, c2 = 0.3, µ1 = µ2 = 0.6, ν1 = 0.5 and ν2 = 0.65
makes the fixed point unstable due to flip bifurcation. Taking a as the bifurcation parameter, Figure 1g
shows that the fixed point becomes stable for all a until a reaches the value on where period-2 cycle
coexists. For further increase in a higher period cycles are born and routes to chaotic attractors are
obtained. At a = 12.11 and the other set of parameters are fixed a two-piece chaotic attractor is
coexisted as shown in Figure 1h. It is clear that its basin of attraction lies in a quadrilateral area that
will be discussed later on in this section.
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Figure 1. (a) Bifurcation diagram on varying the parameter µ1. (b) The attraction basin of the two
chaotic areas. (c) The attraction basin of the four chaotic areas. (d) The attraction basin of the period-16
cycle at µ1 = 0.030. (e) The attraction basin of period-4 cycle at µ1 = 0.108. (f) The attraction basin of
period-2 cycle at µ1 = 0.56. Other parameters’ values are a = 11.25, b = 0.5, c1 = 0.1, c2 = 0.3, µ2 =

0.6, ν1 = 0.2 and ν2 = 0.7. (g) Bifurcation diagram on varying the parameter a. (h) The attraction basin
of the two chaotic areas at a = 12.11 while the other parameters’ values are: a = 11.25, b = 0.5, c1 =

0.1, c2 = 0.3, µ2 = 0.6, ν1 = 0.2 and ν2 = 0.7.

We should highlight here that the system (8) can generate unbounded or negative trajectories if the
initial condition (q0,1, q0,2) are assumed to be taken far from the origin. If qi0 > 1+νi [(1−µi)a−ci ]

bνi(1−µi)
, i = 1, 2

the first iteration of the system (8) gives negative values for qi(t + 1). Therefore, successive iterations
yield negative and decreasing values for the system (8) as qi(t + 1) = qi(t) + νiqi[(1− µi)(a− 2bqi −
bqj)− ci] < qi being (1− µi)a− ci > 0 if (11) holds. This means that attractors at finite distances are
impossible to be globally attracting in R2

+ because their attraction basins can not be extended out
the rectangle [0, ((1− µ1)a− c1)/bν1(1− µ1)]× [0, ((1− µ2)a− c2)/bν2(1− µ2)]. The map (8) has
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another important distinctive feature that is each axis qi(t) = 0 gives qi(t + 1) = 0, i = 1, 2 that means
qi(t) is mapped into itself and hence it is trapped. Setting qi(t) = 0 (the monopoly case) in (8) we get

qj(t + 1) =
[
1 + νj

(
(1− µj)a− cj

)]
qj(t)− 2bνj(1− µj)q2

j (t) , j = 1, 2, i 6= j (17)

The Equation (17) conjugates the standard logistic map, y(t + 1) = λy(t)(1− y(t)) through the
linear transformation

qj(t) =
1 + νj

(
(1− µj)a− cj

)
2bνj(1− µj)

y(t) (18)

where, λ = 1+ νj
(
(1− µj)a− cj

)
. This implies that the dynamic of (17) is governed by the well-known

dynamics of standard logistic map. The map (17) is characterized as a unimodel map and
dqj(t+1)

dqj(t)
= 0

gives the unique critical point C−1 as follows

qC−1
j =

1 + νj
(
(1− µj)a− cj

)
4bνj(1− µj)

, j = 1, 2 (19)

which conjugates the critical point y = 1
2 for the logistic map. There are two fixed points for the map

(17) given by
qEo

j = 0,

q
Ej
j =

(1−µj)a−cj
2b(1−µj)

(20)

which conjugate the fixed points, y = 0 and y =
νj((1−µj)a−cj)

1+νj((1−µj)a−cj)
= 1− 1

λ of the logistic map. It is easy

to see that
∣∣∣ dqj(t+1)

dqj(t)

∣∣∣
qj=qEo

j

> 1 and hence qEo
j is unstable repelling point. The second fixed point of (20)

is a stable attracting point provided that 0 < νj
(
(1− µj)a− cj

)
< 2. At νj

(
(1− µj)a− cj

)
> 2 the

dynamic behavior of (17) may be periodic cycle or cyclic chaotic behavior whose attraction basin is
bounded by the unstable repelling point qEo

j and its preimage Oj
−1 whose coordinate is

qO−1
j =

1 + νj
(
(1− µj)a− cj

)
2bνj(1− µj)

(21)

which conjugates the point y = 1 in the standard logistic map. This implies that trajectories of the map
(14) starting from an initial point selected out of the interval [0, qO−1

j ] are divergent to−∞. Numerically,

we assume the set of parameters’ values, a = 10, b = 0.3, c = 0.3 and µ = 0.5. Figure 1a shows that q
Ej
j

is locally asymptotically stable for all the value of ν till it approaches νj((1− µj)a− cj) = 2 on where
period-doubling bifurcation coexists. Taking ν as the bifurcation parameter of (17), Figure 2a shows

that q
Ej
j is locally stable for all the value of ν except at the point ν = 2

(1−µ)a−c where period-2 cycle is
born due to flip bifurcation. As ν increases further chaotic attractors exist. Figure 2b shows a stable
fixed point at the parameters’ values, a = 10, b = 0.3, c = 0.3, µ = 0.5 and ν = 0.4. It is clear that the
basin of the stable fixed point lies within the interval [0, qO−1

j ]. Increasing ν to ν = 0.635 gives rise
to chaotic attractor with basin of attraction also lies within the same interval as shown in Figure 2c.
On the other hand, when we take µ as the bifurcation parameter, Figure 2d shows the bifurcation
diagram for the map (17) at the parameters’ values, a = 6, b = 0.5, c = 0.3 and ν = 0.5. At µ = 1− νc−2

νa
a period-2 cycle is born. As µ increases further to µ = 0.25 the fixed point gets stable as shown in
Figure 2e. For µ = 0.018 a chaotic attractor exists and its basin of attraction is also within the interval
[0, qO−1

j ] as shown in Figure 2f.
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Figure 2. (a) The diagram of flip bifurcation taking ν as the bifurcation parameter. (b) The basin of
attraction of the stable fixed point at a = 10, b = 0.3, c = 0.3, µ = 0.5 and ν = 0.4. (c) The basin of
attraction of the unstable fixed point at a = 10, b = 0.3, c = 0.3, µ = 0.5 and ν = 0.635. (d) The diagram
of bifurcation taking µ as the bifurcation parameter. (e) The basin of attraction of the stable fixed point
at a = 6, b = 0.5, c = 0.3, ν = 0.5 and µ = 0.25. (f) The basin of attraction of the unstable fixed point at
a = 6, b = 0.5, c = 0.3, ν = 0.5 and µ = 0.018.

Now we study the dynamics of (8) at different sets of parameters’ values. Setting a = 11, b = 0.5,
c1 = 0.2, c2 = 0.3, µ1 = 0.6, µ2 = 0.6, ν1 = 0.33 and ν2 = 0.71 we have only the stable E∗ with its
basin of attraction in Figure 3a. The light blue color consists of an open set of the points (q1, q2) in
the phase plane whose trajectories T(q1, q2) belong to the basin of attraction of E∗ (which is denoted
by B(E∗)). The grey color color denotes to the basin of infinity that contains all the points generating
unbounded trajectories and is denoted by B(∞). This basin includes the divergent and unfeasible
points. Figure 3b shows the basin of attraction of a chaotic attractor that coexists at the parameters’
values, a = 11, b = 0.5, c1 = 0.2, c2 = 0.3, µ1 = 0.6, µ2 = 0.6, ν1 = 0.715 and ν2 = 0.6 while Figure 3c
displays the basin of attraction of the period-8 cycle. As one can see from all those figures that their
basins are bounded by line segments separate B(κ) from B(∞) where κ refers to a bounded attracting
set such as E∗, periodic cycles or any complex chaotic attractors around E∗. At the parameters set
a = 10.99, b = 0.5, c1 = 0.47, c2 = 0.3, µ1 = 0.6, µ2 = 0.6, ν1 = 0.72 and ν2 = 0.69 we give in Figure 3d
another quite complicated attractor around the fixed point, as one can see that it appears at c1 > c2.
Now we assume another set of parameters’ values that is a = 11, b = 0.4, c1 = c2 = 0.33, µ1 = µ2 = 0.3,
and ν1 = ν2 = 0.28. This set indicates equality of the marginal costs, speed of adjustments and sales
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constraints. Numerical simulations show that at this set a period-2 cycle is emerged with a basin of
attraction that is bounded by the same previous segments. As the speed of adjustment parameters,
the sales constraints have some influences on the dynamics of (8). For this reason we decrease µ1

to 0.0086 to get four chaotic attractors that are represented in Figure 3e with the basin of attraction.
Increasing µ1 further to 0.001 we get two unconnected chaotic areas represented in Figure 2f with their
basins. In conclusion, we have seen that B(∞) is an unconnected set which sometimes has unconnected
regions represented by holes in Figure 3b,d,f.
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Figure 3. (a–f) Numerical representations of κ at different sets of parameters’ values .

Now we intend to identify the structure of attraction basin for the map (8) and show the regions
on where the map’s phase plane can be divided. Since the map (8) is trapped in the point (0, 0) so it is
important to calculate the rank-1 preimages for this point. The preimages of point (0,0) can be derived
by algebraically solving the following system,

q1 + ν1q1[(1− µ1)(a− 2bq1 − bq2)− c1] = 0,
q2 + ν2q2[(1− µ2)(a− 2bq2 − bq1)− c2] = 0,

(22)

which gives four preimages, O(0)
−1 = (0, 0), O(1)

−1 = (qO−1
1 , 0), O(2)

−1 = (0, qO−1
2 ), and O(3)

−1 = (q̂1, q̂2) where,

q̂1 = a(1−µ1)(1−µ2)+c2(1−µ1)−2c1(1−µ2)
3b(1−µ1)(1−µ2)

+ 2ν2(1−µ2)−ν1(1−µ1)
3bν1ν2(1−µ1)(1−µ2)

,

q̂2 = a(1−µ1)(1−µ2)+c1(1−µ2)−2c2(1−µ1)
3b(1−µ1)(1−µ2)

+ 2ν1(1−µ1)−ν2(1−µ2)
3bν1ν2(1−µ1)(1−µ2)

.
(23)
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Or,
q̂1 = q∗1 +

2ν2(1−µ2)−ν1(1−µ1)
3bν1ν2(1−µ1)(1−µ2)

,

q̂2 = q∗2 +
2ν1(1−µ1)−ν2(1−µ2)
3bν1ν2(1−µ1)(1−µ2)

.
(24)

Now, the preimages of any point (p, 0) on the invariant axis q2 = 0 can be obtained by algebraic
solution of the system,

q1 + ν1q1[(1− µ1)(a− 2bq1 − bq2)− c1] = p,
q2 + ν2q2[(1− µ2)(a− 2bq2 − bq1)− c2] = 0.

(25)

The second Equation of (25) gives q2 = 0 or,

1 + ν2[(1− µ2)a− c2]− bν2(1− µ2)q1 − 2bν2(1− µ2)q2 = 0. (26)

With q2 = 0 we get the following quadratic equation,

− 2bν1(1− µ1)q2
1 + (1 + ν1 [a(1− µ1)− c1]) q1 − p = 0, (27)

which has the following discriminant,

∆ = [1 + ν1 (a(1− µ1)− c1)]
2 − 8bpv1(1− µ1). (28)

This means the point (p, 0) has on the same axis no rank-1 preimages, two distinct rank-1
preimages or two coincided rank-1 preimages if ∆ < 0, ∆ > 0 or ∆ = 0 respectively. It may have
also four preimages two of which lie on the same axis and the other two on the line (26). The same
discussion and observation are for any point in the form (0, p). The above discussion gives the
following proposition.

Proposition 1. Let the line segments ξ1 and ξ2 be ξ1 = O(0)
−1O(1)

−1 and ξ2 = O(0)
−1O(2)

−1 then

= =

(
∞⋃

n=0
T−n(ξ1)

)
∪
(

∞⋃
n=0

T−n(ξ2)

)
,

be the set of all preimages of rank-n.

Figure 4 shows that the line segments ξ1, ξ2 and their rank-1 preimages ξ−1
1 , ξ−1

2 constitute a

quadrilateral region O(0)
−1O(1)

−1O(3)
−1O(2)

−1 that is exactly the attraction basin of the chaotic attractor given
in the figure. Those segments and their rank-1 preimages construct the whole boundary of =.

Now we put the map (8) in the following form,

q́1 = q1 + ν1q1[(1− µ1)(a− 2bq1 − bq2)− c1],
q́2 = q2 + ν2q2[(1− µ2)(a− 2bq2 − bq1)− c2]

(29)

where ′ refers to the time evolution. Solving algebraically (29) with respect to q1 and q2 one can get 0, 2
and 4 real preimages. It means that the map (29) is noninvertible and the phase plane may be divided
into three zones Z0, Z2 and Z4. In order to identify these zones we should calculate the critical curves
LC and LC−1. LC−1 is obtained by solving det(J) = 0 that gives the following hyperbola,

q2
1 + q2

2 + q1q2 + ∆1q2 + ∆2q1 + ∆3 = 0,
∆1 = ν1ν2[5(1−µ1)(1−µ2)a−c2(1−µ1)−4c1(1−µ2)]+ν1(1−µ1)+4ν2(1−µ2)

−4bν1ν2(1−µ1)(1−µ2)
,

∆2 = ν1ν2[5(1−µ1)(1−µ2)a−4c2(1−µ1)−c1(1−µ2)]+4ν1(1−µ1)+ν2(1−µ2)
−4bν1ν2(1−µ1)(1−µ2)

,

∆3 = aν1ν2[(1−µ1)(1−µ2)a−c2(1−µ1)−c1(1−µ2)]+1−c1ν1−c2ν2+c1c2ν1ν2
−4bν1ν2(1−µ1)(1−µ2)

(30)
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Now LC is obtained from LC = T(LC−1). The complicated form of the hyperbola makes us to
plot LC−1 at the parameters’ set, a = 11, b = 0.5, c1 = 0.2, c2 = 0.3, µ1 = µ2 = 0.6, ν1 = 0.33 and
ν2 = 0.71. Figure 5. displays the zones Z0, Z2, Z4 and the critical curves. The fixed point at this set of
parameters’ values belongs to Z2.
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Figure 4. The whole boundary of the basin of attraction of the chaotic attractor at the parameters’
values, a = 10.99, b = 0.5, c1 = 0.47, c2 = 0.3, µ1 = 0.6, µ2 = 0.6, ν1 = 0.72 and ν2 = 0.69.
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Figure 5. The zones of the preimages and critical curves LC and LC−1 at the parameters’ values,
a = 11, b = 0.5, c1 = 0.2, c2 = 0.3, µ1 = µ2 = 0.6, ν1 = 0.33 and ν2 = 0.71.

6. Conclusions

In this paper, we have developed the Bischi–Naimzada duopoly game where competitors can
maximize local profits under minimal sales constraints. We have studied and calculated the stability
conditions of equilibrium points of this game. On the basis of nonlinear dynamical systems theory,
we have examined the effects of critical system parameters on the stability and complexity of the
dynamic game model, both in terms of sales constraints and speeds of adjustment. Using numerical
analysis, the qualitative behaviors of the model dynamics have been explored by bifurcation diagrams,
phase diagrams and largest Lyapunov exponent. In addition, the phase level of the map which
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was divided into three zones Z0, Z2 and Z4 as a result of the noninvertible game has been analyzed.
Research and analytical simulations show that the sensitive dependence of the dynamics of the
model on both the speeds of adjustment and the parameters of the sales constraints. It also showed
that, in contrast to the sales constraint parameters with an increase which has a stabilizing effect,
the adjustment speeds have an effect of instability on the dynamics of model. In our contribution,
it has been found that the Bischi–Naimzada competition game model that takes into account sales
constraints and maximizes the profit function is much more stable around the Nash equilibrium
than the same model that does not take into account sales constraints. In oligopolistic games,
limited rational expectations are important for the investigation of market dynamics subject to minimal
sales constraints. These games are of great importance for the study of competition between airlines,
banking, music, drinks and telecommunications companies. This is for simple reason that is firms in
previous areas always want to maximize profits with a minimum of sales. The extension of this paper
is to explore of heterogeneous behaviors in such competitive Cournot games on the basis of minimal
sales. More realistic conditions need to be taken into account, such as team participation, random
selection of expectations, reduced risk, increase revenue and chaos control. Such important issues will
be investigated in this direction for future studies.
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