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Abstract: In this paper, a comparative study has been made between different algorithms to find the
numerical solutions of the fractional-order clock chemical model (FOCCM). The spectral collocation
method (SCM) with the shifted Legendre polynomials, the two-stage fractional Runge–Kutta method
(TSFRK) and the four-stage fractional Runge–Kutta method (FSFRK) are used to approximate the
numerical solutions of FOCCM. Our results are compared with the results obtained for the numerical
solutions that are based upon the fundamental theorem of fractional calculus as well as the Lagrange
polynomial interpolation (LPI). Firstly, the accuracy of the results is checked by computing the
absolute error between the numerical solutions by using SCM, TSFRK, FSFRK, and LPI and the
exact solution in the case of the fractional-order logistic equation (FOLE). The numerical results
demonstrate the accuracy of the proposed method. It is observed that the FSFRK is better than those
by SCM, TSFRK and LPI in the case of an integer order. However, the non-integer orders in the
cases of the SCM and LPI are better than those obtained by using the TSFRK and FSFRK. Secondly,
the absolute error between the numerical solutions of FOCCM based upon SCM, TSFFRK, FSFRK,
and LPI for integer order and non-integer order has been computed. The absolute error in the case of
the integer order by using the three methods of the third order is considered. For the non-integer
order, the order of the absolute error in the case of SCM is found to be the best. Finally, these results
are graphically illustrated by means of different figures.

Keywords: fractional derivatives; fractional-order clock chemical model; shifted Legendre polynomials;
spectral collocation method; Lagrange polynomial interpolation; fractional Runge-Kutta method;
Newton-Raphson method
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1. Introduction, Definitions and Preliminaries

During the past several decades, the classical calculus has been generalized into fractional calculus.
The generalization was the result of a simple question that Leibniz asked in his letter to L’Hôpital about
the derivative of order 1

2 . In recent years, many researchers have caught the attention of modeling
real-world phenomena by using fractional-order derivatives. The dynamics of many applied problems
has been modeled and studied using the concept of fractional-order derivatives. Such problems
appear in, for example, biology and physics, ecology, engineering, and various other fields of applied
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sciences, and so on (see, for details, [1–3]; also see the recently-published survey-cum-expository
review article [4]).

The main goal of our study in this work is to find the numerical solutions of the fractional-order
clock chemical model, which is, we have presented a numerical study. In fact, most of the problems
related to the real world are not solved exactly. Hence, in order to verify an appropriate numerical
method to find the approximate solution of the fractional-order clock chemical model, a comparative
study is conducted between a number of applicable numerical methods. This is indeed useful for
many researchers who may use these methods in order to solve other systems and models. Moreover,
the fractional-order clock chemical model provides an application of a real-world problem and we
need to contribute toward finding its numerical solution, as followed by many researchers in this
field. To the best our knowledge, this fractional model has not been studied numerically so far,
except possibly in one of our recent papers (see [3]) and, of course, in this work. This justifies the
importance of our contribution.

One of the features of mathematical modeling of various biological phenomena is that the
mathematical model is represented as a mathematical function in time and the involved parameters.
Hence, in this case, we can find the numerical solution to the model and also the parameters that affect
this model can be appropriately controlled (see [5–18]).

In this paper, we first contribute toward studying the effect of changes in the order of the fractional
derivatives involved. We verify the accuracy of the approximate solution in the presence of a complete
solution to the fractional logistic growth model. We then employ different numerical methods in
finding approximate solutions for the fractional-order clock chemical model. We also numerically
analyze and graphically illustrate these results by means of different figures.

In this section, we give some basic definitions and properties of fractional calculus theory
(see, for example [1,2]).

Definition 1. For ν > 0, the Liouville–Caputo fractional derivative of order ν, denoted by LC
a+D

ν
ζ ,

is defined by

LC
a+D

ν
ζ α(ζ) =

1
Γ(n− ν)

∫ ζ

a+
(ζ − η)n−ν−1Dnα(η) dη, (1)

(n− 1 < ν < n; n ∈ N = {1, 2, 3, · · · }),

LC
a+D

ν
ζ = Dν (ν ∈ N),

where D = d
dζ .

The problem under study here is the chemical clock reaction model which is given by [3]. We now
replace the ordinary derivative in this model by a fractional-order derivative in the Liouville-Caputo
sense (see Definition 1 above), which we have chosen to use here for simplicity instead of Definition 1.
The fractional-order chemical clock reaction model is then given by

Dνα1(ζ) = µ e−εδ ζ − α1(ζ)α2(ζ), (2)

Dνα2(ζ) = α1(ζ)α2(ζ)−
α2(ζ)

δ

(
α1(ζ) + α2(ζ)−

µ

εδ

(
1− e−εδ ζ

)
+ λ− 1

)
, (3)

α3(ζ) = α1(ζ) + α2(ζ)−
µ

εδ

(
1− e−εδ ζ

)
+ λ− 1 (4)

and
α1(0) = 0, α2(0) = 1 and α3(0) = λ, ζ ≥ 0. (5)
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For more details about this model, one may see its mathematical formulation of in [19,20] to
know the definitions for the chemical concentrations α1(ζ), α2(ζ) and α3(ζ) and the parameters µ, ε,
δ , and λ.

The main structure of this paper is as follows. In Section 2, the fractional-order Logistic equation
and is exact solution are presented. In Section 3, the implementation the spectral collocation and
simulation are given. In Section 4, the generalized Runge–Kutta methods are proposed. In Section 5,
the numerical results and a systematic discussion are introduced. Finally, in Section 6, the conclusion
is presented.

2. The Fractional-Order Logistic Equation

In this section, we introduce the fractional-order Logistic growth model and their exact solution
for 0 < ν 5 1. The dual aspects of complexity, fractional growth and nonlinearly-induced saturation
emerge into the fractional-order logistic equation given by

Dνα(ζ) = Kνα(ζ)
(
1− α(ζ)

) (
α(0) = α0

)
. (6)

West [21] (see also [22]) constructed an exact solution to the FOLE by using the Carleman embedding
technique. The exact solution of (6) is given by

α(ζ) =
∞

∑
n=0

(
α0 − 1

α0

)n
Eν(−nKνζν), (7)

where

Eν(ζ) =
∞

∑
n=0

ζn

Γ(nν + 1)

is the Mittag–Leffler function.

3. The Spectral Collocation Method (SCM)

In this section, we apply the SCM for evaluating the numerical solutions of the (2)–(4). In many
scientific applications, orthogonal functions and spectral methods have been used to find approximate
solutions for fractional differential equations. Using these methods, we can transform the fractional
differential equations into a set of algebraic equations. Subsequently, the algebraic equations are solved
by one or the other of several known numerical methods (see [23–25]).

We begin by defining the shifted Legendre polynomials on the interval [0, 1] with the variable
z = 2ζ − 1. These polynomials have the following property:

Ps(ζ) = Ps(2ζ − 1) = P2s(
√

ζ),

where the set {Ps(z) : s = 0, 1, 2, · · · } forms a family of orthogonal Legendre polynomials on the
interval [−1, 1] (see, for details [26]).

The analytic form of the shifted Legendre polynomials of degree s is given by

P̃(ζ) =
s

∑
k=0

(−1)s+k (s + k)!
(k!)2 (s− k)!

ζk (
P̃0(ζ) = 1; P̃1(ζ) = 2ζ − 1; s = 2, 3, 4, · · · ). (8)

The function α(ζ) ∈ L2[0, 1] can be expressed and approximated as a linear combination of the
first (m + 1) terms of P̃s(ζ), as follows:

α(ζ) ' αm(ζ) =
m

∑
i=0

ai P̃i(ζ), m = 1, 2, 3, 4, · · · . (9)
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where the coefficients ai are given by

ai = (2i + 1)
∫ 1

0
α(ζ) P̃i(ζ) dζ (i = 0, 1, 2, · · · ).

We now state the following useful theorem.

Theorem 1 ([27]). Let α(ζ) be approximated by the shifted Legendre polynomials in (9). Suppose also that
ν > 0. Then

Dνα(ζ) =
m

∑
i=dνe

i

∑
k=dνe

aiχ
(ν)
i k ζk−ν, (10)

where

χ
(ν)
i,k =

(i + k)! Γ(k + 1)
(k!)2 (i− k)! Γ(k− α + 1)

.

We now implement the SCM for treating the given problem numerically and convert it into a
non-linear system of algebraic equations. We will then solve the resulting system of algebraic equations
using the Newton iteration method (see [28]).

In order to achieve this implementation of the SCM to solve numerically the suggested model
given by (2)–(5), we approximate α1(t), α2(ζ) and α3(ζ) by α1,m(t), α2,m(ζ) and α3,m(t), respectively,
as follows:

α1,m(ζ) =
m

∑
k=0

ak P̃k(ζ), α2,m(ζ) =
m

∑
k=0

bk P̃k(ζ), and α3,m(ζ) =
m

∑
k=0

ck P̃k(ζ). (11)

The connection between the Equations (2)–(5), (10), and (11) leads us to the following consequences:

m

∑
i=dνe

i

∑
k=dνe

ak χ
(ν)
i,k ζk−ν = µ e−εδ ζ −

(
m

∑
k=0

ak P̃k(ζ)

)(
m

∑
k=0

bk P̃k(ζ)

)
, (12)

m

∑
i=dνe

i

∑
k=dνe

ak χ
(ν)
i, k ζk−ν =

(
m

∑
k=0

ak P̃k(ζ)

)(
m

∑
k=0

bk P̃k(ζ)

)
− 1

δ

(
m

∑
k=0

bk P̃k(ζ)

)

·
(

m

∑
k=0

bk P̃k(ζ) +
m

∑
k=0

bk P̃k(ζ)−
µ

εδ

(
1− e−εδ ζ ,

)
+ λ− 1

)
(13)

and
m

∑
k=0

ck P̃k(ζ) =
m

∑
k=0

ak P̃k(ζ) +
N

∑
k=0

bk P̃k(ζ)−
µ

εδ

(
1− e−εδ ζ

)
+ λ− 1. (14)

Moreover, the collocation for the system given by (12)–(14) at m of the nodes ζp, which is, the roots of
P̃k(ζ), yields

m

∑
i=dνe

i

∑
k=dνe

ak χ
(ν)
i, k ζk−ν

p = µ e−εδ ζp −
(

m

∑
k=0

ak P̃k(ζp)

)(
m

∑
k=0

bk P̃k(ζp)

)
, (15)
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m

∑
i=dνe

i

∑
k=dνe

bk χ
(ν)
i, k ζk−ν

p =

(
m

∑
k=0

ak P̃k(ζp)

)(
N

∑
k=0

bk P̃k(ζp)

)
− 1

δ

(
m

∑
k=0

bk P̃k(ζp)

)

·
(

m

∑
k=0

ak P̃k(ζp) +
m

∑
k=0

bk P̃k(ζp)−
µ

εδ

(
1− e−εδ ζp ,

)
+ λ− 1

)
(16)

and
m

∑
k=0

ck P̃k(ζp) =
m

∑
k=0

ak P̃k(ζp) +
m

∑
k=0

bk P̃k(ζp)−
µ

εδ

(
1− e−εδ ζp

)
+ λ− 1. (17)

Now, upon substituting from Equation (11) into the initial conditions given by (5), we obtain the
following three equations:

m

∑
k=0

∆k ak = 0, (18)

m

∑
k=0

∆k bk = 1, (19)

m

∑
k=0

∆k ck = λ, (20)

where
∆k = P̃k(0) = (−1)k(2k + 1) (k = 0, 1, · · · , m).

Equations (15)–(17), together with the three equations in (18), provide a system of 3(m + 1) algebraic
equations. The involved unknowns ak, bk, ck (k = 0, 1, · · · , m) will be obtained by solving the system
given by (15)–(18) with the help of the Newton iteration method.

4. Runge-Kutta Methods

In this section, we apply the fractional Runge–Kutta method of order 2 and of order 4, which
was used in [29,30], respectively. To this end, we construct the schemes for fractional model given by
(2)–(4) with these algorithms.

4.1. Two-Stage Fractional Runge-Kutta Method

The numerical solutions of Equations (2)–(4), which are based on TSFRK, are given by

α1(ζn+1) = α1(ζn) +
hν

2Γ(1 + ν)
(K2,1 + K2,2), (21)

α2(ζn+1) = α2(ζn) +
hν

2Γ(1 + ν)
(M2,1 + M2,2), (22)

α3(ζn+1) = α1(ζn) + α2(ζn)−
µ

εδ

(
1− e−εδ ζn

)
+ λ− 1, (23)

where

K2,1 = f
(
ζn, α1(ζn), α2(ζn)

)
, (24)

M2,1 = g
(
ζn, α1(ζn), α2(ζn)

)
, (25)



Mathematics 2020, 8, 1436 6 of 14

K2,2 = f

(
ζn +

2Γ(1 + ν)

Γ(1 + 2ν)
hν, α1(ζn) +

2Γ(1 + ν)

Γ(1 + 2ν)
hνK2,1, α2(ζn)

+
2Γ(1 + ν)

Γ(1 + 2ν)
hν M2,1

)
, (26)

M2,2 = g

(
ζn +

2Γ(1 + ν)

Γ(1 + 2ν)
hν, α1(ζn) +

2Γ(1 + ν)

Γ(1 + 2ν)
hνK2,1, α2(ζn)

+
2Γ(1 + ν)

Γ(1 + 2ν)
hν M2,1

)
, (27)

f
(
ζ, α1(ζ), α2(ζ)

)
= µ e−εδ ζ − α1(ζ)α2(ζ) (28)

and

g
(
ζ, α1(ζ), α2(ζ)

)
= α1(ζ)α2(ζ)

− α2(ζ)

δ

(
α1(ζ) + α2(ζ)−

µ

εδ

(
1− e−εδ ζ

)
+ λ− 1

)
. (29)

For further details about the derivation of this algorithm, see [29].

4.2. Four-Stage Fractional Runge-Kutta

In this subsection, we employ the algorithm that was derived in [30] on the fractional model given
by (2)–(4), as in the above section with TSFRK, such that

α1(ζn+1) = α1(ζn) +
1
6
(K4,1 + 2K4,2 + 2K4,3 + K4,4), (30)

α2(ζn+1) = α2(ζn) +
1
6
(M4,1 + 2M4,2 + 2M4,3 + M4,4) (31)

and
α3(ζn+1) = α1(ζn) + α2(ζn)−

µ

εδ

(
1− e−εδ ζn

)
+ λ− 1, (32)

where

K4,1 =
hν

Γ(1 + ν)
f
(
ζn, α1(ζn), α2(ζn))

)
, (33)

M4,1 =
hν

Γ(1 + ν)
g
(
ζn, α1(ζn), α2(ζn)

)
, (34)

K4,2 =
hν

Γ(1 + ν)
f
(

ζn +
hν

2Γ(1 + ν)
, α1(ζn) +

1
2

K4,1, α2(ζn) +
1
2

M4,1

)
, (35)

M4,2 =
hν

Γ(1 + ν)
g
(

ζn +
hν

2Γ(1 + ν)
, α1(ζn) +

1
2

K4,1, α2(ζn) +
1
2

M4,1

)
, (36)
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K4,3 =
hν

Γ(1 + ν)
f
(

ζn +
hν

2Γ(1 + ν)
, α1(ζn) +

1
2

, K4,2, α2(ζn) +
1
2

M4,2

)
, (37)

M4,3 =
hν

Γ(1 + ν)
g
(

ζn +
hν

2Γ(1 + ν)
, α1(ζn) +

1
2

K4,2, α2(ζn) +
1
2

M4,2

)
, (38)

K4,4 =
hν

Γ(1 + ν)
f
(

ζn +
hν

Γ(1 + ν)
, α1(ζn) + K4,3, α2(ζn) + M4,3

)
(39)

and

M4,4 =
hν

Γ(1 + ν)
g
(

ζn +
hν

Γ(1 + ν)
, α1(ζn) + K4,3, α2(ζn) + M4,3

)
. (40)

For further details on the four-stage fractional Runge–Kutta (FSFRK) method, see [30].

5. Numerical Results and Discussion

In this section, we investigate the numerical solutions of the fractional-order chemical clock
reaction model by implementing the SCM, TSFRK, FSFRK, methods. We then compare the obtained
results with these methods with the results of Lagrange polynomial interpolation (LPI) in [3]. We first
conduct a test for all methods on fractional-order Logistic equation, which has an exact solution for
integer as well as non-integer order. Figure 1a–d graphically illustrate the absolute error between the
exact solution of FOLE and the corresponding numerical solutions by SCM, TSFRK, FSFRK, and LPI,
respectively, for ν = 1, α(0) = 0.75, h = 0.03, m = 21 and K = 1. In these figures, we notice that the
absolute error based upon the FSFRK are much better than those of the SCM, the TSFRK, and the
LPI methods when the order of logistic equation is 1. In this case, the order of the error for FSFRK
is 10−14. In Figure 2a–d, we evaluate the absolute error for non-integer order of FOLE between the
exact solution of FOLE and SCM, TSFRK, FSFRK, and LPI, respectively. In this case, we set ν = 0.9,
α(0) = 0.75, h = 0.03, m = 21 and K = 1. In these figures, the orders of the SCM and the LPI are better
than those of the TSFRK and FSFRK. The order of error for the SCM and the LPI is 10−2, whereas,
in the case of the TSFRK and the FSFRK, is 10−1. Accordingly, based on this investigation, we can
take the LPI [3] as a method to compare our numerical solution of the fractional-order clock chemical
model based on the SCM, TSFRK and FSFRK. Additionally, we investigate in details the error in
Tables 1 and 2. Tables 1 and 2 represent the absolute error between the SCM, the TSFR, the FSFRK,
and the LPI methods, respectively, with the exact solution of fractional-order logistic equation. In these
table, the effect of the changing of the order of the differential equation from the integer order to the
non-integer order is the most important parameter in this work. This, in fact, is the aim of this work.
The effect of the parameter K is also studied. The time and parameters h and m are fixed. Through
Tables 1 and 2, we make the following observations:

1. In Table 1, we notice that the order of the errors are small in all of the methods used here.
Additionally, in the cases of the SCM and the FSFRK methods are much better than those in the
cases of the TSFR and the LPI methods.

2. In Table 2, we see that the orders of the errors for all of the methods are close to each other.
However, the SCM and LPI methods are better than the TSFRK and FSFRK methods. Therefore,
we cannot say here that one of the methods is the best absolutely, but we can say that some of
the methods are better than the other methods. In Figures 3–5, we compute the absolute error
between LPI and SCM, TSFRK, and FSFRK, respectively. In these figures, we set ν = 1, h =

0.03, m = 21, λ = 2, ε = 1, µ = 2, δ = 1 and the initial values are set as α1(0) = 0, α2(0) = 1
and α3(0) = λ. From these figures, we observe that the order of the error for the SCM, TSFRK,
and FSFRK methods is 10−3. In Figures 6–8, we find the absolute error for the same caption
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as those of Figures 3–5, but with ν = 0.9. In the non-integer order, we have obtained the same
results, as illustrated in Figure 2. The order of the error of the SCM is better than those of the
TSFRK and FSFRK. From this investigation, we can say that the numerical solutions based upon
the SCM and LPI methods are remarkably accurate and effective in the case of non-integer order.

Table 1. The absolute error between the exact solution (6) and the numerical solutions by spectral
collocation method (SCM), two-stage fractional Runge–Kutta (TSFR), four-stage fractional Runge–Kutta
(FSFRK), and Lagrange polynomial interpolation (LPI), respectively, for ν = 1, ζ = 5, h = 0.003, m =

21 with different values of K.

K |Exact− SCM| |Exact− TSFRK| |Exact− FSFRK| |Exact− LPI|

0.2 1.53945× 10−17 4.16541× 10−9 3.33067× 10−16 2.127988× 10−5

0.4 6.72001× 10−15 1.68964× 10−8 1.88738× 10−15 4.166692× 10−5

0.6 6.696420× 10−13 2.464570× 10−8 3.663735× 10−15 3.946389× 10−5

0.8 6.34949× 10−11 2.3406× 10−8 7.43849× 10−15 2.762099× 10−5

1.0 1.281608× 10−10 1.766755× 10−8 9.325873× 10−15 1.647932× 10−5

Table 2. The absolute error between the exact solution (6) and the numerical solutions by SCM, TSFR,
FSFRK, and LPI, respectively, for ν = 0.8, ζ = 5, h = 0.003, m = 21 with different values of K.

K |Exact− SCM| |Exact− TSFRK| |Exact− FSFRK| |Exact− LPI|

0.2 1.126692× 10−3 1.08085× 10−1 1.080896× 10−1 1.184387× 10−3

0.4 2.186600× 10−3 6.576224× 10−2 6.576269× 10−2 2.257930× 10−3

0.6 2.480864× 10−3 4.453745× 10−2 4.453749× 10−2 2.553845× 10−3

0.8 2.413834× 10−3 3.293829× 10−2 3.293830× 10−2 2.486642× 10−3

1.0 2.227433× 10−3 2.591927× 10−2 2.591927× 10−2 2.301093× 10−3
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Figure 1. The absolute error between the exact and the numerical solutions of (6) based upon SCM (a);
TSFRK (b); FSFRK (c) and LPI (d), respectively, for ν = 1.0, h = 0.03, m = 21, K = 1.0, α(0) = 0.75.
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Figure 2. The absolute error between the exact and the numerical solutions of (6) based upon SCM (a);
TSFRK (b); FSFRK (c) and LPI (d), respectively, for ν = 0.9, h = 0.03, m = 21, K = 1.0, α(0) = 0.75.
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Figure 3. The absolute error between the numerical solutions of (2) to (4) based upon the LPI and
the SCM for ν = 1, h = 0.03, m = 21, λ = 2, ε = 1, µ = 2, δ = 1 for the initial values
α1(0) = 0, α2(0) = 1 and α3(0) = λ ((a), (b) and (c), respectively).
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Figure 4. The absolute error between the numerical solutions of (2) to (4) based upon the LPI and
the TSFRK for ν = 1, h = 0.03, m = 21, λ = 2, ε = 1, µ = 2, δ = 1 and for the initial values
α1(0) = 0, α2(0) = 1 and α3(0) = λ ((a), (b) and (c), respectively).
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Figure 5. The absolute error between the numerical solutions of (2) to (4) based upon: the LPI and
the FSFRK for ν = 1, h = 0.03, m = 21, λ = 2, ε = 1, µ = 2, δ = 1 and for the initial values
α1(0) = 0, α2(0) = 1 and α3(0) = λ ((a), (b) and (c), respectively).



Mathematics 2020, 8, 1436 11 of 14

0 1 2 3 4 5 6 7 8 9 10
0.000

0.002

0.004

0.006

0.008

0.010

Ζ

 Α
1
,
S

C
M
-
Α

1
,
L

P
I 

HaL

Ν=0.9, h=0.003, m=21

0 1 2 3 4 5 6 7 8 9 10

0.000

0.002

0.004

0.006

0.008

0.010

Ζ

 Α
2
,
S

C
M
-
Α

2
,
L

P
I 

HbL

Ν=0.9, h=0.003, m=21

0 1 2 3 4 5 6 7 8 9 10

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Ζ

 Α
3
,
S

C
M
-
Α

3
,
L

P
I 

HcL

Ν=0.9, h=0.003, m=21

Figure 6. The absolute error between the numerical solutions of (2) to (4) based upon the LPI and
the SCM for ν = 0.9, h = 0.03, m = 21, λ = 2, ε = 1, µ = 2, δ = 1 and for the initial values
α1(0) = 0, α2(0) = 1 and α3(0) = λ ((a), (b) and (c), respectively).
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Figure 7. The absolute error between the numerical solutions of (2) to (4) based upon the LPI and
the TSFRK for ν = 0.9, h = 0.03, m = 21, λ = 2, ε = 1, µ = 2, δ = 1 and for the initial values
α1(0) = 0, α2(0) = 1 and α3(0) = λ ((a), (b) and (c), respectively).
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Figure 8. The absolute error between the numerical solutions of (2) to (4) based upon the LPI and
the FSFRK for ν = 0.9, h = 0.03, m = 21, λ = 2, ε = 1, µ = 2, δ = 1 and for the initial values
α1(0) = 0, α2(0) = 1 and α3(0) = λ ((a), (b) and (c), respectively).

6. Conclusions

In this paper, we have presented three algorithms to find the numerical solutions of the chemical
clock model. We applied each of these algorithms to the fractional-order chemical clock reaction model.
In order to verify the efficiency of the results, which we have investigated in this paper, we introduced
the fractional-order logistic equation with its exact solution. We compared the numerical solutions
based on the SCM, TSFRK, FSFRK, and LPI, respectively, with the exact solution of the fractional-order
logistic equation for integer and non integer orders. We have noted that the error for all of the methods
were very small. However, the SCM and the FSFRK are better than TSFRK and LPI when the order of
the logistic equation was an integer. But, if the order is non-integer, the SCM and LPI are better than
the TSFRK and FSFRK. The order of error here, as is evident from the figures and the Tables, with
respect to SCM and LPI is 10−2. In the case of the TSFRK and FSFRK, the order of error is found to
be 10−1. For the fractional-order chemical clock reaction model, we have also compared the results
with the corresponding previously-published results for integer order and non-integer order. We have
thereby noticed that the error in the case of integer order for SCM, TSFRK and FSFRK are small for all
methods. However, for the case of non-integer order, the SCM is remarkably better than the TSFRK
and FSFRK. Finally, in this paper, we presented an analytical comparative study between four methods
to find the numerical solutions to fractional differential equations, and the accuracy of the Runge-Kutta
methods as compared to other methods was studied. As for the Runge-Kutta methods of finding
numerical solutions to fractional differential equations, they are still new. Additionally, as far as we
know, there are only two or three studies in this direction. Therefore, in our next work, we will use
these methods to find and study the behavior of the numerical solutions for systems of fractional
differential equations. The various results, which we have presented in this paper, have indeed been
numerically analyzed and graphically illustrated by means of different figures and tables.



Mathematics 2020, 8, 1436 13 of 14

Author Contributions: H.M.S. suggested and initiated this work, performed its validation, as well as reviewed
and edited the paper. K.M.S. performed the formal analysis of the investigation, the methodology, the software,
and wrote the first draft of the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References

1. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential
Equations, to Methods of Their Solution and Some of Their Applications; Mathematics in Science and Engineering;
Academic Press: New York, NY, USA; London, UK; Sydney, Australia; Tokyo, Japan; Toronto, ON, Canada,
1999; Volume 198.

2. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations;
North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam,
The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204.

3. Saad, K.M.; Srivastava, H.M.; Gómez-Aguilar, J.F. A fractional quadratic autocatalysis associated with
chemical clock reactions involving linear inhibition. Chaos Solitons Fract. 2020, 132, 1–9. [CrossRef]

4. Srivastava, H.M. Fractional-order derivatives and integrals: Introductory overview and recent developments.
Kyungpook Math. J. 2020, 60, 73–116.

5. Khader, M.M.; Saad, K.M. Numerical treatment for studying the blood ethanol concentration systems with
different forms of fractional derivatives. Int. J. Mod. Phys. C 2020, 31, 1–13. [CrossRef]

6. Abdo, M.S.; Shah, K.; Wahash, H.A.; Panchal, S.K. On a comprehensive model of the novel corona-virus
(COVID-19) under Mittag-Leffler derivative. Chaos Solitons Fract. 2020, 135, 109867. [CrossRef]

7. Srivastava, H.M.; Saad, K.M.; Gómez-Aguilar, J.F.; Almadiy, A. A. Some new mathematical models of the
fractional-order system of human immune against IAV infection. Math. Biosci. Engrg. 2020, 17, 4942–4969.
[CrossRef]

8. Srivastava, H.M.; Saad, K.M. New approximate solution of the time-fractional Nagumo equation involving
fractional integrals without singular kernel. Appl. Math. Inform. Sci. 2020, 14, 1–8.

9. Ghanbari, B.; Günerhan, H.; Srivastava, H.M. An application of the Atangana-Baleanu fractional derivative in
mathematical biology: A three-species predator-prey model. Chaos Solitons Fract. 2020, 138, 109919. [CrossRef]

10. Srivastava, H.M.; Jena, R.M.; Chakraverty, S.; Jena, S.K. Dynamic response analysis of fractionally-damped
generalized Bagley-Torvik equation subject to external loads. Russ. J. Math. Phys. 2020, 27, 254–268. [CrossRef]

11. Area, I.; Ndairou, F.; Nieto, J.J.; Silva, C.J. Ebola model and optimal control with vaccination constraints. J. Ind.
Manag. Optim. 2018, 14, 427–446. [CrossRef]

12. Srivastava, H.M.; Dubey, R.S.; Jain, M. A study of the fractional-order mathematical model of diabetes and its
resulting complications. Math. Methods Appl. Sci. 2019, 42, 4570–4583. [CrossRef]

13. Srivastava, H.M.; Günerhan, H. Analytical and approximate solutions of fractional-order
susceptible-infected-recovered epidemic model of childhood disease. Math. Methods Appl. Sci.
2019, 42, 935–941. [CrossRef]

14. Baleanu, D.; Jajarmi, A.; Mohammad, H.; Rezapour, S. A new study on the mathematical modelling of human
liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fract. 2020, 134, 1–13. [CrossRef]

15. Saad, K.M.; Al-Sharif, E.H.F. Comparative study of a cubic autocatalytic reaction via different analysis
methods. Discret. Contin. Dyn. Syst. Ser. S 2019, 12, 665–684.

16. Singh, H.; Pandey, R.K.; Srivastava, H.M. Solving non-linear fractional variational problems using Jacobi
polynomials. Mathematics 2019, 7, 224. [CrossRef]

17. Khader, M.M.; Saad, K.M. A numerical study using Chebyshev collocation method for a problem of biological
invasion: Fractional Fisher equation. Int. J. Biomath. 2018, 11, 1–15. [CrossRef]

18. Saad, K.M. New fractional derivative with non-singular kernel for deriving Legendre spectral collocation
method. Alex. Eng. J. 2019, 59, 1909–1917. [CrossRef]

19. Preece, S.J.; Billingham, J.; King, A.C. Chemical clock reactions: The effect of precursor consumption.
J. Math. Chem. 1999, 26, 47–73. [CrossRef]

20. Billingham, J.; Needham, D.J. Mathematical-modeling of chemical clock reactions II. A class of autocatalytic
clock reaction schemes. J. Eng. Math. 1993, 27, 113–145. [CrossRef]

http://dx.doi.org/10.1016/j.chaos.2019.109557
http://dx.doi.org/10.1142/S0129183120500448
http://dx.doi.org/10.1016/j.chaos.2020.109867
http://dx.doi.org/10.3934/mbe.2020268
http://dx.doi.org/10.1016/j.chaos.2020.109910
http://dx.doi.org/10.1134/S1061920820020120
http://dx.doi.org/10.3934/jimo.2017054
http://dx.doi.org/10.1002/mma.5681
http://dx.doi.org/10.1002/mma.5396
http://dx.doi.org/10.1016/j.chaos.2020.109705
http://dx.doi.org/10.3390/math7030224
http://dx.doi.org/10.1142/S1793524518500997
http://dx.doi.org/10.1016/j.aej.2019.11.017
http://dx.doi.org/10.1023/A:1019121525203
http://dx.doi.org/10.1007/BF00127478


Mathematics 2020, 8, 1436 14 of 14

21. West, B.J. Exact solution to fractional logistic equation. Phys. A Stat. Mech. Appl. 2015, 429, 103–108. [CrossRef]
22. Carleman, T. Application de la théorie des équations intégrales linéaires aux systmes d’équations

différentielles non linéaires. Phys. A Stat. Mech. Appl. 1932, 59, 63–87.
23. Khalil, H.; Khan, R.A.; Al-Smadi, M.H.; Freihat, A.A.; Shawagfeh, N. New Operational matrix for shifted

Legendre polynomials and fractional differential equations with variable coefficients. Punjab Univ. J. Math.
2015, 47, 1–23.

24. Mohammadi, F.; Cattani, C. A generalized fractional-order Legendre wavelet Tau method for solving fractional
differential equations. J. Comput. Appl. Math. 2018, 339, 306–316. [CrossRef]

25. Mohammadi, F.; Mohyud-Din, S.T. A fractional-order Legendre collocation method for solving the
Bagley-Torvik equations. Punjab Univ. J. Math. 2016, 269, 2–14. [CrossRef]

26. Lebedev, N.N. Special Functions and Their Applications; Silverman, R.A., Translator; Dover Publications: New
York, NY, USA, 1972; pp. 43–60.

27. Khader, M.M.; Hendy, A.S. The approximate and exact solutions of the fractional-order delay differential
equations using Legendre pseudo-spectral method. Int. J. Pure Appl. Math. 2012, 74, 287–297.

28. Lubich, C. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17, 704–719. [CrossRef]
29. Arshad, M.S.; Baleanu, D.; Riaz, M.B.; Abbas, M. A novel 2-stage fractional Runge-Kutta method for a time

fractional logistic growth model. Discrete Dyn. Nat. Soc. 2020, 2020, 1020472. [CrossRef]
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