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Abstract: A version of the central limit theorem is proved for sums with a random number of
independent and not necessarily identically distributed random variables in the double array limit
scheme. It is demonstrated that arbitrary normal mixtures appear as the limit distribution. This result
is used to substantiate the log-normal finite mixture approximations for the particle size distributions
of the lunar regolith. This model is used as the theoretical background of the two different statistical
procedures for processing real data based on bootstrap and minimum χ2 estimates. It is shown that
the cluster analysis of the parameters of the proposed models can be a promising tool for revealing
the structure of such real data, taking into account the physico-chemical interpretation of the results.
Similar methods can be successfully used for solving problems from other subject fields with grouped
observations, and only some characteristic points of the empirical distribution function are given.
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1. Introduction

The study of regularities in the sizes of particles of lunar and other planetary regoliths is relevant
for planning and design of manned and unmanned space missions for exploration of space bodies such
as the Moon, asteroids, planets, and their satellites. In the conditions of low gravity and the absence
of dense atmosphere, dust structures acquire properties that are not typical for Earth conditions:
they form clouds of charged particles that have very high abrasive properties. They deposit on
structural elements of stations and spaceships, e.g., on solar batteries, and space suites causing their
malfunction and failures. Thus, the solution of the problem under consideration may turn very useful
and prospective in the preparation of new space missions to increase their safety and general success.

In the present paper, we consider the problem of modeling the distribution of the sizes of dust
particles in the lunar regolith formed as a result of multiple impacts, e.g., of the bombardment of the
lunar surface by meteorites. These impacts are accompanied by both processes of explosion dispersion
of particles with their fragmentation and processes of the agglomeration of particles in exothermic
plasma-chemical synthesis reactions [1]. As it was noted in the book [2], the observed statistical
distributions of the particle size in lunar regolith, as a rule, have heavy power-type tails.
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In this paper, we combine and generalize the results of the papers [3,4] in order to obtain a general
model of the particle size distribution that can be applied to describe statistical regularities in the lunar
regolith probes brought by the Apollo missions. The proposed models have the form of asymptotic
approximations obtained by a central limit theorem for sums of a random number of independent not
necessarily identically distributed random variables in the special double array limit scheme.

Some words about the history of the problem. Initially, the studies of these models concerned pure
fragmentation of particles related to mining processes. In the paper [5] by N. K. Razumovsky published
in 1940, many cases were described where the logarithms of the particle sizes (e.g., of gold grains or
ore particles under crushing) had approximately normal (Gaussian) distribution. This paper attracted
the attention of A. N. Kolmogorov who suggested a mathematical model that analytically explained
the appearance of the log-normal distribution of the particle size under crushing, as well as minerals
in geological samples [6]. The mathematical model suggested by Kolmogorov was based on the study
of the change of the number of particles, whose size does not exceed a specified threshold, in time.
Kolmogorov’s result is valid under rather strong assumptions. In particular, within the framework
of Kolmogorov’s model, for the distribution of particle size under crushing to be log-normal, it is
necessary that the crushing rate is constant, that is, does not depend on the current sizes of the crushed
particles. At the same time, it is practically obvious that, as the particle (grain) becomes smaller,
the intensity of its collisions with other particles (grais) or elements of the crusher may change, e.g.,
decrease by virtue of the fact that the probability of a collision of the particle with other particles is in
some sense proportional to the particle size so that, the smaller the particle, the less is this probability.
This circumstance was noted by Kolmogorov himself, who wrote in the final part of his paper [6]:
“It would be interesting to study mathematical schemes in which the crushing rate decreases (or
increases) with the decrease of their sizes. As this is so, first of all, it is natural to consider the cases
where the crushing rate is proportional to some power of the particle size. If this power differs from
zero, then, apparently, the log-normal law will not be applicable”. In the paper [7], the results of
statistical analysis of real data were presented that confirmed the log-normal model for the distribution
of the sizes of grains in rock formations.

However, some works contain empirical evidence that sometimes the log-normal model for the
distribution of particle size under crushing is not adequate. As far back ago as in 1954, R. A. Bagnold
in his book [8] noticed that the logarithm of the probability density function of the logarithm of
the particle size in natural sand deposits resembles a hyperbola rather than a parabola. This means
that, in accordance with Bagnold’s observations, the particle size distribution possesses exponentially
decreasing tails rather than log-normal.

This circumstance induced some specialists to pay attention to such models as log-asymmetric
Laplace distribution, the so-called two-sided Pareto-log-normal distribution or log-normal//inverse
Gaussian (NIG) distribution. In particular, in [9,10], the models were considered for the process of
forming of the particle size distribution under crushing based on the assumption that, while moving
from one place to another, a particle can be split into some smaller particles as a result of collisions or
other impacts implying the randomness of the particle mass after splitting. The particles do not reach
the terminal point simultaneously. Some of them can change the direction of their motion or stick for
a long time while others can pass their way much sooner without collisions. The state of a particle
obviously depends on its distance from the terminal point. The Reed–Jorgensen and Sørensen models
take this realities into account by assuming that the time the particle is observed at is random. Actually,
Reed, Jorgensen and Sørensen introduced randomization into the model suggested by Kolmogorov
in 1941, by assuming that it takes different times for different particles to move from one source
to another.

In the Reed–Jorgensen model, the time from the start of the particle’s motion to its “termination” is
assumed to be an exponentially distributed random variable, so that the final particle size distribution
turns out to be two-sided Pareto-log-normal.
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Probability distributions for which the logarithm of the density function is a hyperbola (hyperbolic
distributions) were introduced by O.-E. Barndorff-Nielsen in 1977 [11]. In several papers, it was
noted that hyperbolic distributions demonstrated high concordance with empirical distributions
of real geological data; see, e.g., [12–14]. Actually, in Ref. [11], a more general class of probability
distributions was introduced, the class of so-called generalized hyperbolic distributions. The NIG
distribution is a representative of this class. By definition, this distribution is a special (variance-mean)
mixture of normal distribution, the mixing distribution being inverse Gaussian. The NIG distribution
demonstrates even better fit to empirical distributions of the logarithm of particle size than the
hyperbolic distribution. This is due to that the tails of NIG distributions are heavier than those of the
“ordinary” hyperbolic distribution, as is typical, say, for the natural sand deposits. Another advantage
of the NIG distributions is that they possess many favorable mathematical properties. For example,
their moments can be calculated explicitly.

In the Sørensen model, the motion of the particle is assumed Brownian. Therefore, the time from
the start of the motion to its termination is random with the inverse Gaussian distribution. This results
in the logarithm of the particle size having the NIG distribution.

The Reed–Jorgensen and Sørensen models demonstrate very good fit to the empirical data of
particle (grain) sizes in natural deposits. However, these models do not take into account Kolmogorov’s
remark: in these models, the crushing intensity remains constant.

In Ref. [3], a more general model was considered within which the crushing intensity could be
variable and even random. In [3], the process of relative changes of the particle size was assumed to
be compound doubly stochastic Poisson process, and it was demonstrated that the randomness of
the intensity of the crushing process might lead to the particle size distribution having the form of a
mixture of log-normal distributions. In accordance with such a model, the distribution of the number
of size changes prior to any observation time is mixed Poisson. As it was noted in [15], these processes
are natural models of non-stationary chaotic stochastic processes possessing some extremal entropy
properties. It should be mentioned that in the Reed–Jorgensen and Sørensen models, a homogeneous
Poisson point process was considered as a model of the flow of events implying the changes of the
particle size.

As it has been already noted, in all the works mentioned above, the process of pure fragmentation
of particles was considered so that every impact of particles could result in a decrease of their sizes
only, whereas, in plasma-chemical reactions in the regoliths on the surface of space bodies devoid
of dense atmospheres, every impact can result in both decrease and increase of the particle size, say,
due to sintering. In the present paper, we consider models for the particle size distribution that take
this circumstance into account. Unlike Kolmogorov’s approach where the main object of study was the
number of particles with a certain size, here we consider the evolution of the size of a separate particle.

One more characteristic feature of the models considered in the present paper is their generality.
All the models mentioned above have the form of special mixtures of log-normal distributions:
the Reed–Jorgensen, Sørensen, and Barndorff–Nielsen models have the form of normal variance–mean
mixtures. In these mixtures, the scale and location parameters of the mixed distributions are rigidly
bound so that actually mixing is performed with respect to one parameter. This construction noticeably
complicates the physical interpretation of the obtained models. In the present paper, we propose a
rather realistic scheme of forming of models that are general mixtures of log-normal models in which
the mixing distribution is, in general, two-variate. Although these models seem to be too general so
that the statistical estimation of the distributions can be very complicated, they allow natural discrete
approximations for the mixing distributions. In this case, the approximate model for the particle size
distribution is a finite mixture of log-normal distributions, whose parameters can be estimated by
standard statistical procedures of the EM-algorithm type.

The paper is organized in the following way. Section 2 contains the description of the mathematical
foundation of general normal mixture models for the particle size distribution. We formulate a new
general version of the central limit theorem for random sums in a special double array limit scheme
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stating that, under rather general and reasonable random Lindeberg condition, the distribution of the
sum of a random number of independent random variables with finite second moments approaches
the set of normal location-scale mixtures, so that, within this set, a mixture can be chosen that can be
used as an asymptotic approximation to the distribution of the random sum. This result is used in
Section 3 as the base for the main model of the particle size distribution. In Section 4, we discuss the
approximation of the sample distribution function constructed from data given in the NASA catalog [16]
by the method of statistical simulation of samples by the bootstrap technique. In Section 5, we
discuss the approximation of the sample distribution function by the minimization of the χ2 statistic.
In Section 6, we use the cluster analysis to separate some typical regularities in the parameters of
distributions fitted to all 317 samples of lunar regolith presented in the NASA catalog [16]. The obtained
results demonstrate that the finite normal mixture model fits the real data very well measured in both
the classical metric scale (micrometers, µm) and φ scale conventional in geology and selenology [17].
Appendix A contains the description of the algorithms used for the approximation of the distribution of
particle size in lunar regolith by finite normal mixtures. Appendix B presents figures that demonstrate
application of proposed algorithms for lunar regolith samples.

2. Central Limit Theorem for Sums of a Random Number of Independent Not Identically
Distributed Random Variables in the Special Double Array Limit Scheme

Assume that all the random variables considered in this paper are defined on one and the same

probability space (Ω, F, P). The symbols d
= and =⇒ will denote coincidence of distributions and weak

convergence (convergence in distribution).
Let n, k ∈ N and {Sn,k} be a double array of random variables, an,k and bn,k > 0 are real

numbers, n, k ∈ N. The row-wise independence of {Sn,k}k>1 is not assumed. Consider a family
of the random variables {

Yn,k ≡
Sn,k − an,k

bn,k

}
n,k∈N

(1)

with characteristic functions fYn,k (t), t ∈ R. Consider a family {Nn}n∈N of nonnegative
integer-valued random variables such that, for each n, k ∈ N, the random variables Nn and Sn,k
are independent. Let Y be a random variable with distribution and characteristic function FY(x) and
fY(t), x, t ∈ R, respectively.

Definition 1 ([4]). The random variables Yn,k and Y are said to satisfy the coherency condition, if, for any
T ∈ (0, ∞),

lim
n→∞

E sup
|t|6T

∣∣ fYn,Nn
(t)− fY(t)

∣∣ = 0. (2)

It is worth noting that, if row-wise convergence Yn,k to Y takes place, the relation

lim
k→∞

sup
|t|6T
| fYn,k (t)− fY(t)| = 0. (3)

holds for any n ∈ N and T > 0. Thus, we can say that coherency condition (2) means that “pure”
row-wise convergence (3) takes place “on the average” so that the “row-wise” convergence as k→ ∞
is somehow coherent with the “principal” convergence as n → ∞. Following [4], below we will
deal with the case where the random variables Sn,k have the additive structure and are formed as
sums of independent random variables with the finite second moment. It turns out that, under
these additional “structural” assumptions, the role of coherency condition is played by the “random
Lindeberg condition”. Furthermore, if we deal not with a double array of random variables but simply
with a sequence of random variables, then, as was shown in [18,19], the coherency condition turns
out to be equivalent to the following set of conditions: the indices Nn infinitely increase in probability
that is P(Nn 6 m)→ 0 as n→ ∞ for any m > 0, and either bn → 0 or bn → ∞ as n→ ∞.
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Let cn and dn > 0 be real numbers, n ∈ N. Denote

Un =
bn,Nn

dn
, Vn =

an,Nn − cn

dn
, Zn =

Sn,Nn − cn

dn
.

Let {Xn,j}j>1, n ∈ N, be a double array of row-wise independent not necessarily identically
distributed random variables with distribution functions Fn,j(x). Denote

Sn,k = Xn,1 + ... + Xn,k, n, k ∈ N, (4)

The following statement is actually a transfer theorem for the double array limit scheme
under consideration.

Lemma 1 ([4]). Assume that coherency condition (2) holds. If there exist random variables U and V such that
the joint distributions of the couples (Un, Vn) converge to that of the couple (U, V) : (Un, Vn) =⇒ (U, V) as
n→ ∞, then

Zn =⇒ Z d
= Y ·U + V (5)

as n→ ∞, where the random variable Y is independent of the couple (U, V).

It follows from Lemma 1 that the distribution and characteristic functions of random variables Z
and Y are related as

FZ(x) = EFY

(
x−V

U

)
, fZ(t) = E fY(tU)eitV , x ∈ R, t ∈ R. (6)

that is, the limit law for normalized randomly indexed random variables Zn is a scale-location mixture
of the distributions, which are limiting for normalized non-randomly indexed random variables Yn,k.

For fixed random variables Z and Y, introduce the setW(Z|Y) containing all couples of random
variables (U, V) such that the characteristic function fZ(t) can be represented in the form (6) and
P(U > 0) = 1. Whatever random variables Z and Y are, the set W(Z|Y) is always nonempty
since it trivially contains the couple (0, Z). The set W(Z|Y) may contain more than one element.

For example, if Y is the standard normal random variable and Z d
= W1 −W2 where W1 and W2 are

independent random variables with the same standard exponential distribution, then, along with the
couple (0, W1−W2), the setW(Z|Y) contains the couple

(√
W1, 0

)
. In this case, FZ(x) is the symmetric

Laplace distribution.

Definition 2 ([20]). A family of random variables {Xj}j∈N is said to be weakly relatively compact, if each
sequence of its elements contains a weakly convergent subsequence. In the finite-dimensional case, the weak
relative compactness of a family {Xj}j∈N is equivalent to its tightness:

lim
R→∞

sup
n∈N

P(|Xn| > R) = 0

Let L2 ((X1, X2), (Y1, Y2)) be any probability metric which metrizes weak convergence in the
space of two-dimensional random vectors, for example, the Lévy–Prokhorov metric [21].

Lemma 2 ([4]). Assume that the random variables Sn,k have the form (4). Let the family of random variables
{Yn,k}n,k∈N be weakly relatively compact. Assume that coherency condition (2) holds. Then, convergence (5) of
normalized random sums Zn to some random variable Z takes place with some cn ∈ R if and only if there exists
a weakly relatively compact sequence of couples (U′n, V′n) ∈ W(Z|Y), n ∈ N, such that condition

lim
n→∞

L2
(
(Un, Vn), (U′n, V′n)

)
= 0 (7)
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holds.

Denote µn,j = EXn,j, σ2
n,j = DXn,j and assume that 0 < σ2

n,j < ∞, n, j ∈ N. Denote

An,k = µn,1 + ... + µn,k
(
= ESn,k

)
, B2

n,k = σ2
n,1 + ... + σ2

n,k
(
= DSn,k

)
It is easy to make sure that ESn,Nn = EAn,Nn , DSn,Nn = EB2

n,Nn
+ DAn,Nn , n ∈ N. In order to

formulate a version of the central limit theorem for random sums with the limiting distribution being an
arbitrary normal mixture, assume that non-random sums, as usual, are centered by their expectations
and normalized by by their mean square deviations and put an,k = An,k, b2

n,k = B2
n,k, n, k ∈ N. As this

is so, as cn and d2
n we can (but are not obliged to) take EAn,Nn and EB2

n,Nn
+DAn,Nn , respectively.

Now let Y be a random variable with the standard normal distribution:

P(Y < x) = Φ(x) ≡ 1√
2π

x∫
−∞

e−z2/2dz, x ∈ R.

Theorem 1. Assume that the random Lindeberg condition holds: for any ε > 0,

lim
n→∞

E 1
B2

n,Nn

Nn

∑
j=1

∫
|x−µn,j |>εBn,Nn

(x− µn,j)
2dFn,j(x) = 0. (8)

Then, the convergence (5) of random variables Zn to Z as n → ∞ takes place with some cn ∈ R and
dn > 0 if and only if there exists a weakly relatively compact sequence of couples (U′n, V′n) ∈ W(Z|Y), n ∈ N,
such that, for any n ∈ N relation, (7) holds and

P(Z < x) = EΦ
(

x−V′n
U′n

)
, x ∈ R, (9)

Proof. We will deduce Theorem 1 from Lemma 2. First, check that, in the case under consideration,
the family of random variables {Yn,k}n,k∈N is weakly relatively compact. For R > 0, by the Chebyshev
inequality, we have

P (|Yn,k| > R) = P
(∣∣∣Sn,k − An,k

Bn,k

∣∣∣ > R
)
6

1
R2 −→ 0

as R→ ∞, that is, the family {Yn,k}n,k∈N is tight and hence weakly relatively compact.
Second, exactly in the same way as it was done in the proof of Theorem 4 in [4], it can be proved

that the random Lindeberg condition (8) implies the coherency condition (2) with fY(t) being the
characteristic function of the standard normal distribution, fY(t) = e−t2/2, t ∈ R.

Thus, Theorem 1 becomes a simple consequence of Lemma 2.

Actually, Theorem 1 means that, under a rather general and reasonable random Lindeberg
condition, the distribution of the sum of a random number of independent random variables with
finite second moments approaches the set of normal location-scale mixtures, so that, with finite n,
within this set, a mixture can be chosen that can be used as an asymptotic approximation to the
distribution of the random sum.

Theorem 1 is a substantial generalization and strengthening of a result of [22] where a special
version of the random Lindeberg condition was used with geometrically distributed random variables
Nn to establish sufficient conditions of convergence of the distributions of random sums to the Laplace
law. In turn, Ref. [22] was not the first work where the random Lindeberg condition was used.
Apparently, it was introduced in [23], where several equivalent formulations of this condition were
presented. In [24], it was proved that, under some additional assumptions, the random Lindeberg
condition is necessary and sufficient for the convergence of the distributions of randomly centered
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random sums to the normal distribution. Here, we consider a case significantly more general than
those considered in [24] or [22].

Since, unlike one-parameter normal mixtures (pure scale mixtures, pure location mixtures,
variance–mean mixtures), two-parameter normal scale-location mixtures are not identifiable,
in Theorem 1 condition (7) describing the rapprochement of the sequence of couples of the random
variables {(Un, Vn)}n>1 with the special set of couples in Theorem 1 cannot be replaced by a condition
of convergence of this sequence to an element of this set so that the ‘if and only if’ character of Theorem 1
was preserved. However, the latter condition (which is obviously stronger than (8)) together with the
random Lindeberg condition are sufficient for the convergence (5). Namely, the following transfer
theorem holds concretizing Lemma 1.

Corollary 1. Assume that the random Lindeberg condition (8) holds and there exist cn ∈ R, dn > 0 and a
couple of random variables (U, V) such that, as n→ ∞(

Bn,Nn

dn
,

An,Nn − cn

dn

)
=⇒ (U, V).

Then, as n→ ∞,

P
(

Sn,Nn − cn

dn
< x

)
=⇒ EΦ

(
x−V

U

)
.

For n, j, k ∈ N, denote ν3
n,j = E|Xn,j − µn,j|3, M3

n,k = ν3
n,1 + . . . + ν3

n,k, L3
n,k = M3

n,kB−3
n,k . In [4], it was

demonstrated that, if the third absolute moments of the summands exist, then the random Lindeberg
condition (8) follows from the random Lyapunov condition

lim
n→∞

EL3
n,Nn

= 0

which seems to be more easily verifiable than the random Lindeberg condition.

3. Mixed Log-Normal Models for the Distribution of the Particle Size

Although in this paper we will follow the general reasoning of [3], here we will use a scheme that
is more general than that considered in [3]. The initial size of a particle (say, at some time instant t0

to which, for convenience, we will assign that the value t0 = 0) will be denoted s0. As time goes by,
the particle undergoes collisions with other particles or other transformations due to heating, impacts
with meteoroids, etc. We assume that the ith collision (transformation) results in the fact that, after
it, the particle size becomes Di > 0 times that of its size before the ith transformation. Let N(t) be
the number of transformations of the particle by time t. Then, the particle size at time t has the form
Z(t) = s0 ∏

N(t)
i=1 Di. Hence,

S(t) ≡ log Z(t) = µ +
N(t)

∑
i=1

Xi, (10)

where µ = ln(s0) and Xi = ln Di.
In [3], it was assumed that X1, X2, . . . are independent and identically distributed with

σ2 ≡ DXi < ∞. The assumptions of the coincidence of the distributions of X1, X2, . . . are too restrictive
since different collisions or transformations may be caused by processes of different types, say,
fragmentation or agglomeration. Instead, here we will not impose such a condition.

As a theoretical foundation of the models proposed here, we will use the limit scheme that
was considered in the preceding section and for the sake of generality introduce an auxiliary formal
parameter n ∈ N and assume that, instead of one sequence of independent random variables X1, X2, . . .,
we will consider a double array {Xn,j}j>1, n ∈ N, of row-wise independent not necessarily identically
distributed random variables. As above, we use the notation Sn,k for the sum Sn,k = Xn,1 + ... + Xn,k,
n, k ∈ N.
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Instead of a single counting process N(t), now we will have a sequence of counting processes
Nn(t), so, instead of basic structural model (9), we will deal with the more general model Sn(t) =

µn + Sn,Nn(t). Fix the ‘terminal’ time t = T > 0 and assume that Nn = Nn(T) for any n > 1 so that, by
definition, Sn(T) = Sn and

Sn = µn + Sn,Nn . (11)

Model (11) can be interpreted in the following way. For a fixed n, the sequence Xn,1, . . . , Xn,Nn

describes a possible trajectory of the process of changes of the particle size. Actually, we are interested
in the asymptotic approximation for the distribution of the ‘terminal’ size Sn,Nn (4) with large Nn (with
large T or with a large intensity of transformations). Having introduced the auxiliary (infinitely large)
parameter n, we obtained the possibility to consider the scheme within which it is admitted that, as n
changes, the distributions of Xn,j can also change as if, instead of a single particle, we deal with a set of
particles with ‘long and possibly different histories’. As this is so, each trajectory starts with its own
initial size sn,0 so that µn = ln sn,0

As in Section 2, denote µn,j = EXn,j, σ2
n,j = DXn,j and assume that 0 < σ2

n,j < ∞, n, j ∈ N. In all the
preceding papers, pure fragmentation (crushing) was considered, and it was assumed that 0 6 Dj 6 1
resulting in µ = EX1 = E log Di 6 0. The equality of µ to zero corresponded to the case of ‘degenerate’
fragmentation leaving each particle unchanged. In the present paper, the parameters µn,j can be both
positive and negative. The case µn,j < 0 corresponds to fragmentation, whereas the case µn,j > 0
corresponds to agglomeration.

The assumption 0 < σ2
n,j < ∞ is not superfluously restrictive. From the practical point of

view, this assumption actually withdraws beyond the range of considered cases only those situations
that admit either instantaneous zeroing of the particle size or, vice versa, instantaneous increase of
the size of a small particle to very large (infinitely large) values. As one more argument in favor of
the assumption of finiteness of the second moment of the random variables Xn,j, note that stable laws
are well-known examples of distributions with very heavy tails decreasing as power functions with a
small exponent. However, even their logarithmic moments are finite.

Based on Theorem 1, we can conclude that, under very general conditions, the approximation
to the distribution of the logarithm of the particle size should be sought within the family of normal
scale-location mixtures. In other words, the approximation to the distributions of the particle size itself
should be sought within log-[normal scale-location mixtures,] that is, if Z is the particle size, then

P(Z < x) = P(log Z < log x) ≈ EΦ
(

log x−V
U

)
(12)

for some couple of random variables (U, V) ∈ W(Z|X). It can be easily seen that the log-[normal
scale-location mixture] on the right-hand side of (12) is actually the scale-location mixture of
log-normal distributions.

Furthermore, from the definition of the Lebesgue integral, it follows that any normal scale-location
mixture can be approximated by a finite normal scale-location mixture, that is, in practice,
the approximations to the distribution of the particle size can be sought in the form

P(Z < x) =
k

∑
i=1

piΦ
( log x− ai

σi

)
(13)

with some K ∈ N, pk ≥ 0, vk ∈ R, uk ≥ 0, k = 1, . . . , K, p1 + . . . + pK = 1. Finite normal mixture
model (13) is more convenient and in some sense more interpretable since it allows for naturally
separating some typical regularities in the data by well-known methods of statistical analysis, say,
by the EM algorithm. It should be noted that the approximation of the general normal mixture
by a finite mixture (13) is a kind of regularization of the originally ill-posed problem of estimation
of the parameters of an unidentifiable general normal mixture, whereas finite normal mixtures are
identifiable, that is, the problem of estimation of their parameters has a unique solution [25].
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In what follows, we use model (13) to trace some statistical regularities in the particle sizes in the
the probes of lunar regolith.

4. Approximation of a Sample Distribution Function Based on Sample Simulation

In the NASA catalog [16], the data are presented in the tabular form as the pairs “particle
size–percentage of particles of this size in the sieved samples”. Information is available only on
a few (as a rule, no more than ten) points of growth (selected, generally speaking, haphazardly) of the
empirical distribution function, but there are no data between these points. In the original paper [16],
Steineman’s interpolation [26] was used to approximate the distributions, and then the corresponding
histograms were built using the macros of the Excel.

In this paper, piecewise cubic Hermite interpolating polynomials (see, for example, [27]) are used
for similar purposes. They allowed us to obtain the curves that are closest to those presented in the
NASA catalog.

The proposed approximation by Hermite polynomials made it possible to obtain a continuous
empirical distribution function (ECDF) that allows for using the method of inverse transform sampling.
The sample size for the estimation of the parameters was 10,000 observations. In addition, to test the
homogeneity hypotheses concerning the coincidence of the approximating mixture and the original
empirical distribution function by the one-sample Kolmogorov–Smirnov goodness-of-fit test, one more
independent sample of 2500 observations was generated. In general, this procedure is methodically
close to bootstrap. Its description is given in Algorithm A1.

The generated samples are used to obtain maximum likelihood estimates for the parameters of the
approximating distribution (13) by the EM-algorithm for finite normal moxtures [28]. Some examples
of applying this bootstrap procedure to real samples of the lunar regolith are shown on Figures A1–A9.

The graphs on the left show the initial data obtained in the sifting process from the tables of
the NASA catalog (squares), their interpolation using Hermite polynomials (blue solid line), and the
approximating mixture (magenta line). It is seen that both curves coincide almost everywhere.
This situation is typical for the vast majority of analyzed samples. It is worth noting that several values
were checked for the number k of components in (13). It was empirically found that the necessary
balance between the quality of the approximation and the computational complexity is achieved at the
value k = 4, which was further used to process all 317 samples.

The graphs on the right on Figures A1–A9 demonstrate the histograms for the simulated samples
and sifted data constructed from ECDF for a particular sample, as well as their approximation by the
density of the mixture distribution. It should be noted that the accuracy of the approximation was
determined by the comparison with the empirical distribution function, so that these graphs are only a
more detailed illustration of the method. Obviously, both distribution functions and histograms are
visually very close, even with the account of various peculiarities. It is clear that in each case the shape
of the distribution is far from that of the Gaussian law.

Figure A10 shows the results of the Kolmogorov–Smirnov homogeneity test from the additionally
simulated samples. For clarity, the standard significance levels 0.01 and 0.05 are demonstrated. The first
one is exceeded by p-values for 84.5% samples (268 of 317), whereas the second one is exceeded in
70.7% cases (224 of 317). Thus, for the vast majority of bootstrap samples, fairly good approximation
was obtained. It is also worth noting that the shape of histograms for the simulated samples is quite
close to those obtained in the NASA catalog. This fact is a clear confirmation of the correctness of the
approach used, since, as it has already been noted, functionally or statistically, the distance between
these functions was not measured, since it was not used as a criterion.

5. Approximation of a Sample Distribution Function Based on Minimizing χ2 Statistics

In the preceding section, a fairly high level of goodness-of-fit was demonstrated between the
probability distributions obtained using the bootstrap procedure and the sifting data of the lunar
regolith samples. However, this method has a number of disadvantages. Firstly, it is imperative to
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interpolate points (the initial data from the NASA catalog). The method of interpolation can significantly
affect the final results. Secondly, the generation of samples and their processing by the EM-algorithm
takes a rather noticeable computational time that grows as the sample size increases. In this section,
an alternative approach will be proposed, within which the initial grouped data are also approximated
by functions that have the form of a finite log-normal mixtures, so that statistical simulation of
samples is not required. This can improve the accuracy of the approximation, as well as reduce the
computational complexity of data processing.

To find the parameters of the approximating function, it is required to minimize the distance
between this curve and the known values (points) of the empirical distribution function. In the
preceding section, it was noted that the best results were obtained for four-component mixtures,
but this method can use a different value of the parameter k.

Thus, for the approximation, the function F(x, θ) of the type (13) can be used, where θ = {θi},
θi = (ai, σi, pi) and for each of the parameters the constraints mentioned above are valid (see the end
of Section 3). Then, the χ2 statistics has the form

χ2(θ) =
N

∑
i=1

((yi+1 − yi)− (F(xi+1, θ)− F(xi, θ)))2

F(xi+1, θ)− F(xi, θ)
, (14)

where x and y are known sets of values and percentages in the total number for the corresponding
particle sizes from the NASA catalog, and n is the number of nonzero differences (yi+1 − yi). It is worth
noting that there are duplicate values of yi in the original data, so it had to be taken into account during
data processing. In (14), it is assumed that all yi are different.

To find the numerical estimates of the unknown parameters θ with the account of the constraints
mentioned above, we used the solution of a nonlinear programming problem by the algorithm based
on the interior-point optimization [29]. The quality of the approximation was estimated by substituting
the value of the statistic χ2(θopt) with the optimal set of parameters θopt into the distribution function
χ2 with N − 1 degrees of freedom that gave the corresponding p-value. This procedure is described in
Algorithm A2.

Examples of the application of this algorithm to real samples of the lunar regolith are shown
in Figures A11–A19. The graphs show the initial data from the tables of the NASA catalog, their
interpolation by the Hermite polynomials (blue solid line), and the bootstrap procedure (red line),
as well as the approximating mixture obtained by the method of minimization of the statistics χ2

(magenta line). Here, the coincidence of the curves obtained by the two methods is not necessary, since
the majority of the attention is paid to the approximation of the set of initial points. The graphs show
curves for the same number of components k = 4, and, for each of the methods, a different value can
be used.

Figure A20 demonstrates the results of the χ2 test for k = 4 (see formula (13)). The graphs show
the standard significance levels 0.05 and 0.01. The significance level 0.05 for the χ2 test is exceeded by
the p-values for 92.7% samples (294 of 317) when approximated by three-component mixtures and for
93.1% of samples (295 of 317) when approximated by four-component mixtures. The significance level
0.01 is exceeded by the p-values in 94.6% cases (300 of 317) when approximating by three-component
mixtures and for 94% samples (298 of 317) in the case of four-component mixtures. In fact, the quality
of the statistical approximation is the same for both k = 3 and k = 4. This allows for using fewer
parameters when solving the constrained optimization problem.

Thus, the disadvantages of the bootstrap methodology method can be overcome. The quality of
the approximation in this case can be assessed as excellent. The only important point of this approach
is finding the solution by conditional optimization that seriously depends on the initial approximation
and can lead to incorrect results. Therefore, careful adjustment of the parameters is required, as well as
the use of a series of runs to select the most successful values. The computational complexity of the
proposed procedure is moderate. Therefore, multiple computations are possible.
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6. Cluster Analysis of the Mixture Parameters in Approximations of the Lunar Regolith Particle
Size Distributions

This section presents the results of cluster analysis of the parameters of the components of all
approximating finite normal mixtures at once. In this case, for partitioning into clusters, a full set of
parameters (mathematical expectations, standard deviations and weights) are used, as well as a trivial
inverse transformation to go from the φ scale for sizes to metric (µm). The corresponding is given in
Algorithm A3.

Figures A21–A24 (top graphs) demonstrate the relationship between the mathematical expectation
and standard deviation for the φ scale as well as µm for both methods discussed above. The size and
color intensity of the points correspond to their weights (see formula (13) and the color bar on the
figures). These figures essentially clarify and refine the linear approximation proposed in [30] for this
dependence, which, as can be seen from Figures A21–A24, turns out to be overly rude.

The two lower plots in each of Figures A21–A24 demonstrate the partition of the parametric space
into six groups by the k-medoids and fuzzy c-means clustering (in this case, the solution is the cluster
with the maximum membership value for this element among all possible) for the bootstrap procedure
and the method based on the χ2 estimates. It is obvious that the solutions of both methods in each
of the cases are quite close. It should be noted that the results of fuzzy clustering have slightly better
reproducibility compared to medoids under reclustering. For the clusters obtained by both methods,
weights were determined as the ratio of the number of parameters included in the given cluster to the
total number of points. The results are presented in Table 1 where the rows are in decreasing order of
the corresponding weights.

Table 1. Cluster size ratios.

Bootstrap Simulations Minimizing χ2 Estimates

φ Scale µm φ Scale µm

k-Medoids c-Means k-Medoids c-Means k-Medoids c-Means k-Medoids c-Means

2.08% 20.19% 42.43% 42.35% 35.09% 31.94% 51.50% 41.48%

20.35% 19.95% 24.61% 25.71% 33.44% 24.45% 18.53% 28.08%

17.27% 17.90% 13.80% 13.56% 18.61% 19.09% 17.67% 20.90%

15.22% 16.25% 9.70% 9.07% 4.73% 12.22% 6.62% 5.05%

12.54% 14.51% 5.28% 5.28% 4.34% 6.23% 5.52% 4.26%

9.54% 11.20% 4.18% 4.02% 3.79% 6.07% 0.16% 0.24%

The resulting clusters can be used, for example, to correlate with the chemical compounds of
samples or other characteristics of the regolith.

A different representation of Figures A21–A24 is also possible, namely a three-dimensional image.
In this case, the weights of the points are plotted on a separate scale, but their size when drawing is
still determined by this parameter. Examples for each of the methods for metric and φ scales are shown
in Figures A25–A28.

7. Conclusions

A version of the central limit theorem was proved for sums with a random number of independent
and not necessarily identically distributed random variables in the double array limit scheme. It is
demonstrated that arbitrary normal mixtures appear as the limit distribution. This result is used to
substantiate the log-normal finite mixture approximations for the particle size distributions of the lunar
regolith. This model is used as the theoretical background of the two different statistical procedures
for processing real data based on bootstrap and minimum χ2 estimates. It was shown that the cluster
analysis of the parameters of the proposed models can be a promising tool for revealing the structure of
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such real data, taking into account the physico-chemical interpretation of the results. Similar methods
can be successfully used for solving problems from other subject fields with grouped observations,
and only some characteristic points of the empirical distribution function are given.

The statistical data processing of all samples of the lunar regolith is presented. It is based on
the sequential application of the bootstrap procedure (see Algorithm A1) and the method based on
minimizing the χ2 estimates (see Algorithm A2) to each sample from the NASA catalog in order to form
a set of parameters of approximating finite normal mixtures, which are further should be clustered
(see Algorithm A3). The method completely described in the paper is presented in Algorithm A4.
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Appendix A. Algorithms

This section presents the above-described algorithms To reduce blank spaces on this page, we
have expanded comments in the Algorithm A1 (see green marks) that have been implemented in
the MATLAB programming language. For computations, the resources of a hybrid high-performance
computing cluster of architecture Intel x86_64 were used: server Huawei XH 622 V3 (two processors
Intel Xeon E5-2683V4 with a frequency of 2.1 GHz (16 cores), 12 GB of RAM and 2 GPU
NVIDIA Tesla K80. This allowed for increasing the computing speed from 39.3–53 s, using standard
desktop solutions, up to 13.9 s, obtained on the computational cluster, for one regolith sample.
Thus, an almost fourfold acceleration of computations was obtained, which is especially important
when implementing the bootstrap approach, for which the size of the generated samples is very
important. A method based on χ2 statistic needs less computational resources.

Algorithm A1. Simulating samples for approximation and statistical test

1: function GENSAMPLES(ECDF, SampleSize, TestSampleSize)
2: // r and rTest are random vectors for the inverse transform sampling
3: // Random vectors for estimation of parameters
4: r←RAND(SampleSize);
5: // Random vectors for Kolmogorov–Smirnov homogeneity test
6: rTest←RAND(TestSampleSize);
7: for i=1:SampleSize do
8: // Simulating based on the inverse transform sampling
9: Sample(i)←FSOLVE(ECDF, r(i));

10: if (i6TestSampleSize) then
11: TestSample(i)←FSOLVE(ECDF, rTest(i));
12: end if
13: end for
14: return [Sample, TestSample];
15: end function

http://www.frccsc.ru/ckp
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Algorithm A2. Estimation of the mixture parameters by the method of minimizing χ2 estimates

1: function CHIAPPROX(x, y)
2: pEmp←DIFF(y); // Null values are excluded
3: N←LENGTH(pEmp);
4: χ2(θ)←STAT(pEmp,x, y, N);
5: options←CONSTRAINTS( ); // Constraints to minimize χ2 statistics
6: // Finding the minimum of a function (14), constrained optimization
7: [ChiParams, ChiPval]←FMINCON(x,χ2(θ), N, options);
8: return [ChiParams, ChiPval];
9: end function

Algorithm A3. Clustering the parameters of the mixture approximation of the particle size
distributions of the lunar regolith

1: function REGOLITHCLUSTERING(Params, NumClust)
2: Paramsµm ←PARAMSTOµm(Params); // Conversion of parameters from φ scale to µm
3: // k-medoids clustering
4: [Clustφ, Medφ]←KMEDOIDS(Params, NumClust); // Values in φ scale
5: [Clustµm, Medµm]←KMEDOIDS(Paramsµm, NumClust); // Values in µm
6: // c-means clustering
7: [FClustφ, Centersφ]←FCM(Params, NumClust);
8: [FClusµm, Centersµm]←FCM(Paramsµm, NumClust);
9: Clusters←[Clustφ, Medφ, Clustµm, Medµm, FClustφ, Centersφ, FClustµm, Centersµm];

10: return Clusters;
11: end function

Algorithm A4. Analysis of lunar regolith

1: function LUNARREGOLITH(RegolithSamples, Size1, Size2)
2: INIT( ); // Loading data and initializing parameters
3: PARPOOL( ); // Launching tools for parallel processing
4: for all RegolithSamples do
5: // PhiSize(i) is a particle size of ith sample in φ scale
6: // Values(i) is a proportion of particles with PhiSize(i) size
7: ECDF←FIT(PhiSize(i), Values(i)); // Interpolation of ECDF
8: // Simulating samples (see Algorithm A1)
9: [Sample, TestSample]←GENSAMPLES(ECDF, Size1, Size2);

10: // EM algorithm for finite normal mixtures
11: Params(i)←NORMALAPPROX(Sample);
12: // Approximation errors (one sample KS test)
13: KSERROR(Params(i), ECDF, TestSample);
14: // Minimizing χ2 statistics (see Algorithm A2)
15: [CHIPARAM, CHIPVAL]=CHIAPPROX(PhiSize(i), Values(i));
16: end for
17: // Parameters clustering (see Algorithm A3)
18: Clusters←REGOLITHCLUSTERING(Params);
19: PLOT(RegolithSamples, Params, Clusters); // Visualization
20: return ;
21: end function
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Appendix B. Figures

This section presents the above-described figures.

Figure A1. Soil 12042,24 (“Apollo 12”).

Figure A2. Soil 14156,22 (“Apollo 14”).

Figure A3. Soil 14259,52 (“Apollo 14”).
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Figure A4. Soil 15003,324 (“Apollo 15”).

Figure A5. Soil 15004,17 (“Apollo 15”).

Figure A6. Soil 24077,9 (“Luna 24”).
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Figure A7. Soil 63321,9 (“Apollo 16”).

Figure A8. Soil 72141,15 (“Apollo 17”).

Figure A9. Soil 75081,36 (“Apollo 17”).
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Figure A10. Approximation errors (one sample Kolmogorov–Smirnov test).

Figure A11. Soil 12042,24 (“Apollo 12”).

Figure A12. Soil 14156,22 (“Apollo 14”).
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Figure A13. Soil 14259,52 (“Apollo 14”).

Figure A14. Soil 15003,324 (“Apollo 15”).

Figure A15. Soil 15004,17 (“Apollo 15”).
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Figure A16. Soil 24077,9 (“Luna 24”).

Figure A17. Soil 63321,9 (“Apollo 16”).

Figure A18. Soil 72141,15 (“Apollo 17”).
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Figure A19. Soil 75081,36 (“Apollo 17”).

Figure A20. Approximation errors (χ2 test).

Figure A21. Clustering the mixture parameters (bootstrap, φ scale).
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Figure A22. Clustering the mixture parameters (bootstrap, µm).

Figure A23. Clustering the mixture parameters (minimizing χ2 estimates, φ scale).

Figure A24. Clustering the mixture parameters (minimizing χ2 estimates, µm).
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Figure A25. Clustering the mixture parameters (bootstrap, φ scale), 3D.

Figure A26. Clustering the mixture parameters (minimizing χ2 estimates, φ scale), 3D.

Figure A27. Clustering the mixture parameters (bootstrap, µm), 3D.
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Figure A28. Clustering the mixture parameters (minimizing χ2 estimates, µm), 3D.
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