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Abstract: In this paper, we discuss stochastic differential-algebraic equations (SDAEs) and the
asymptotic stability assessment for such systems via Lyapunov exponents (LEs). We focus on index-1
SDAEs and their reformulation as ordinary stochastic differential equations (SDEs). Via ergodic
theory, it is then feasible to analyze the LEs via the random dynamical system generated by the
underlying SDEs. Once the existence of well-defined LEs is guaranteed, we proceed to the use of
numerical simulation techniques to determine the LEs numerically. Discrete and continuous QR
decomposition-based numerical methods are implemented to compute the fundamental solution
matrix and use it in the computation of the LEs. Important computational features of both methods
are illustrated via numerical tests. Finally, the methods are applied to two applications from power
systems engineering, including the single-machine infinite-bus (SMIB) power system model.

Keywords: stochastic differential-algebraic equations; lyapunov exponent; power system stability;
spectral analysis; stochastic systems; numerical methods

1. Introduction

Modeling the dynamic behavior of systems employing differential-algebraic equations is
a mathematical representation paradigm that is widely used in many areas of science and engineering.
On the other hand, the dynamics of systems perturbed by stochastic processes have been adequately
modeled by stochastic differential equations (SDEs). The need of a generalized concept that covers
both DAEs and SDEs, and allows the modeling and analysis of constrained systems subjected to
stochastic disturbances, has led to the formulation of stochastic differential-algebraic equations
(SDAEs). While there has been a broad and fruitful development both in the field of DAEs and
SDEs (see, e.g., [1-3] and [4-6], respectively), studies of the concepts and the numerical treatment
of SDAEs are rather limited, see e.g., [7-9]. The main reason for this is that the proper treatment of
algebraic constraints in SDAEs pose many difficulties, except in the case that all of the constraints are
explicitly given and can be resolved during the numerical integration process, which is the case that
we will discuss.
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As tool for the stability analysis we use Lyapunov exponents (LEs) introduced as characteristic
exponents in [10]. The theory of LEs experienced a crucial development with the work [11], which,
via the Multiplicative Ergodic Theorem (MET), ensures the regularity and existence of the LEs
belonging to a linear cocycle over a metric dynamical system, see [12] for a detailed presentation of the
theory. We review and extend the main concepts of this approach for asymptotic stability assessment
of differential-algebraic equations driven by Gaussian white noise and apply the technique in the
setting of power systems.

Following the ideas from [7-9,13,14], properties such as the existence and uniqueness of solutions
are reviewed. Analogously to the DAE case, we define the class of strangeness-free (index-1) SDAEs
and show that SDAE systems with this structure can be reduced to a classical SDE system that describes
the dynamics of the original SDAE for which the MET can be applied to define the LEs of the system.

Once we have extended the theoretical framework that guarantees the existence of well-defined
LEs, we study numerical methods, based on the QR factorization of the fundamental solution matrix,
which allow the numerical computation of spectral values that are associated to the Lyapunov spectra.
The first technique requires computing the fundamental solution matrix and forming an orthogonal
factorization, while the second one involves performing a continuous QR decomposition of the
fundamental solution matrix. Both techniques have been extensively studied in deterministic ODE
and DAE systems, see [15-20]. This paper follows the ideas exposed in [21], where these QR-based
methods were extended to the stochastic case.

Finally, these concepts and computational techniques are used to assess the asymptotic stability of
power systems affected by stochastic fluctuations. We illustrate the results with elementary test cases,
such as a single-machine infinite-bus system.

The paper is organized, as follows: in Section 2, we recall the main theory of strangeness-free
SDAEs, their relation with the SDEs, and the existence of LEs generated by such SDEs. Section 3
presents the discrete and continuous QR-based decomposition methods and their evaluation.
Interesting study-cases in the power systems area are presented in Section 4. We finish with some
conclusions in Section 5.

2. Review of the Theory

2.1. Stochastic Differential-Algebraic Equations
Consider a system of quasi-linear stochastic differential-algebraic equations (SDAEs) of the form

Edx; = f(x;)dt + ifj(xt)dw{, tel, (1)
j=1

with a singular matrix E € R"*" of rank d < n. The function f, € C¥(D, R") (for some k > 1) is known
as drift, and fy,..., f,, € Ck"1(Dy, R") are the diffusions. Here, I := [t,, te] C R™ is a closed time

interval and D, C R" is an open set. Furthermore, w]t (forj =1,...,m) form an m-dimensional Wiener
process defined on the complete probability space (Q, 7, P) with a filtration (F})s>¢,, where F = B(Q))
is the o-algebra of Borel sets in (). Each j-th Wiener process w; is understood as a process such that
wi(w) = w(t), where w € (), i.e., the elements of () are identified with the paths. We recall that the
Wiener process has stationary independent increments, such that (w; — ws) ~ N (0,t —s), i.e., is a
Gaussian random variable for all 0 < s < t, such that

wy=0, Elw—ws]=0, Ew;— ws]z =t—s.

Because the Wiener process is nowhere differentiable, it is more convenient to represent
Equation (1) in its integral form as
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Ex; = Exy, +/ fo(xs)ds + 2/ f] Xs) dws, tel (2)

Here, the first integral is a stochastic Riemann-Stieltjes integral, and the second one is a stochastic
Ito-type integral, see e.g., [6].

We assume consistent initial values x;, = xo independent of the Wiener processes w} and with
finite second moments [6]. A solution x; = x(t, w) of (2) is an n-dimensional vector-valued Markovian
stochastic process depending on t € T and w € Q) (the parameter w is commonly omitted in the
notation of x). Such a solution can be defined as strong solution if it fulfills the following conditions,
seee.g., [9,13].

e x(-) is adapted to the filtration (F;)s>t,,

. ftf |f§(xs)|ds < oo almost sure (a.s.), forall £ =1,...,n,

. ft |f£ (xs)[2dw! < oo as., forallj=1,...,m,and £ =1,...,n and
e (2 holds foreveryt € I as.

Because of the presence of the algebraic equations that are associated with the kernel of E,
the solution components associated with these equations would be directly affected by white noise
and not integrated. In order to avoid this, a reasonable restriction is to ensure that the noise sources do
not appear in the algebraic constraints. According to [8,9], this assumption can be accomplished in
SDAE systems whose deterministic part

Ex; = fo(xt), tel, (3)

is a DAE with tractability index-1 [9,22], in which the constraints are regularly and globally uniquely
solvable for parts of the solution vector. We slightly modify this assumption and consider SDAE
systems whose deterministic part (3) is a regular strangeness-free DAE [3] i.e., it has differentiation
index-1. A system with these characteristics can be transformed into a semi-explicit form by means
of an appropriate kinematic equivalence transformation [1,19], i.e., there exist pointwise orthogonal
matrix functions P and Q such that, pre-multiplying (1) by PP, and changing the variables x; according
to the transformation x; = Q3% one obtains a system in semi-explicit form

A ~D/,.D . ~D/,.D A j
dx? =fo (xtD,x{‘)dt—l— Zf] (x?,x{‘)dwi, (4a)
j=1
fAAADAAd mAAADAAdwi b
O_fo(xt'xt)t+2fj(xt/xt) t (4b)
j=1

where %P and & is a separation of the transformed state into differential and algebraic variables,
. . . . . ~A
respectively, which is performed in such a way that the Jacobian of the function f; with respect to the
algebraic variables is nonsingular, see [3] for details of the construction. The condition that the noise
. o A ) ..
sources do not appear in the constraints, implies that Z]m 1fj =0, s0 that the algebraic equation in (4b)

can be solved as #{' = FA(P) and inserted in the dynamic Equation (4a) yielding an ordinary SDE

A~

= fo RP, FAGP))dt + Y 7 (2P, FA(RP))dw). 5)
j=1

This equation is called underlying SDE of the strangeness-free SDAE. It acts in the
lower-dimensional subspace R?, with d = 1 — a (where a denotes the number of algebraic equations).
The SDE system (5) preserves the inherent dynamics of a strangeness-free SDAE system [22]. Note that,
in this way, the algebraic equations have been removed from the system, but, whenever a numerical
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method is used for the numerical integration, then one has to make sure that the algebraic equations
are properly solved at each time step, so that the back-transformation to the original state variables
can be performed.

2.2. Random Dynamical Systems Generated by SDEs

In the previous section, we have discussed the reduction of an autonomous strangeness-free
SDAE to its underlying SDE, which preserves the dynamic characteristics of the original system.
Using the back-transformation, the definitions and properties attributed to the underlying SDE,
and the analysis performed on it, can be extended to the original SDAE. For simplicity, we use the
following representation, where the drift and diffusion terms are combined into one term.

dxy = fo(xe)dt + if]-(xt)duﬂ = f:fj(xf)dw{’ tel ©)
j=1 j=0

where f, € C]g"s, fir--fm € C§+1'5 and Z}-":l 2?21 f]la%f] € C]b("s for some k > 1 and ¢ > 0. Here, Clg"s

is the Banach space of C* vector fields on RY with linear growth and bounded derivatives up to
order k and the k-th derivative is 6-Ho6lder continuous. In addition, we assume that the differential
operator L := f;+ 3 Y (f ]-)2 is strong hypoelliptic in the sense that the Lie algebra L(f,, f1,.--, f,,)

generated by the vector fields f f (withj = 0,...,m) has dimension 4 for all x; € R [12]. Once again,

w]t (for j =0,...,m) is a m-dimensional Wiener process, this time with the convention dw? = dt.

For a given initial value, the solution process generates a Markovian stochastic process, and the
SDE (6) generates a random dynamical system (RDS) ©® = (6, ) which is an object consisting of a metric
dynamical system (MDS) 6 for modeling the random perturbations, and a cocycle ¢ : RT x Q x RY —
R? over this system. The ergodic MDS is denoted by 8 = (Q, F, P, (6;);cr) with the filtration (F¢)i>+,,
and defined by the Wiener shift

biw(-) =w(t+-) —w(t), tel,

which means that a shift transformation given by 6 is measure-preserving and ergodic [23].
Together with the SDE (6), we define the variational system

, @)

x(Eto)

dvy = Ij(xt)vt dwi, tel, with Ij(xt) = —
=0

]

obtained after linearizing (6) along a solution. If we denote by @ (¢, w, x) the Jacobian of ¢(t, w) at xy,
then @ is the unique solution of the variational Equation (7), satisfying

D(t,w,x)=1;+ i /t]j(qo(s)x)é(s, x)dwé, tel, (8)
j=070

where I; denotes the identity matrix of size d. Therefore, @ it is a matrix cocycle over ©. The system
(6) and (7) uniquely generates a C k=1 RDS (@, @) over 0. Moreover, the determinant of @ satisfies the
Liouville equation

det @ = exp (i /ttr(]j(go(s)x)dwé> , tel, )
j=0"0

being then a scalar cocycle over © (see Theorems 2.3.32 and 2.3.39-40 in [12] for details).
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2.3. Lyapunov Exponents of Ergodic RDSs

An important result of the theory of RDSs is the so-called Multiplicative Ergodic Theorem (MET)
developed in [11]. This concept allows for the definition of LEs for linear cocycles over a ergodic MDS.
First, the MET assumes for the linear cocycle @ that the integrability condition

10g+‘|¢(t/w/x)” E Ll(Q/F/P)/

is satisfied (log" denotes the positive part of log). This guarantees that the variational Equation (7)
associated with (6) is well-posed. Additionally, let y be an ergodic invariant measure with respect
to the cocycle @ [12]. Subsequently, the MET assures the existence of an invariant set ) C Q of full
p-measure, such that, for each w € ), there is a measurable decomposition

Rd = Ll((U) b--- @Lp<w)/

of R? into random linear subspaces L;(w), which are invariant under ©. Here p < d, where d; € N
denotes the dimension of the subspace L;(w) (with 1 < i < p), and Zle d; = d. This splitting is
dynamically characterized by real numbers A; > ... > Aj,, which quantify the exponential growth
rate of the subspaces. These are called Lyapunov exponents, and they are defined by

1
Aji= tlim ?log||¢l>(t,w,x)\| whenever x € L;(w) \ {0}.
—00

According to [24], p. 118, the LEs A; are independent of (w,x) and thus they are universal
constants of the cocycle generated by (7) under the ergodic invariant probability measure . Finally,
if the following identity holds for @

d 1
A; = lim = log |det ®(t, w, x)|, (10)
=1

t—oo

1

the system is said to be Lyapunov regular (Lyapunov regularity condition) [21,25]. In practice, it is hard
(if not impossible) to verify Lyapunov regularity for a particular system [12]. One of the key statements
of the MET is that linear RDS (whether these are constant, periodic, quasi-periodic, or almost-periodic)
are a.s. Lyapunov regular.

The concept of LEs plays an important role in the asymptotic stability assessment of dynamical
systems subjected to stochastic disturbances. Under appropriate regularity assumptions, the negativity
of all LEs of the system of variational equations implies the exponential asymptotic stability of both
the linear SDE and original nonlinear SDE system.

3. QR Methods for Computing LEs

In this section, we derive the numerical techniques to compute the finite-time approximation
of the LEs. Inspired by [21], the present paper proposes an adaptation of the ideas from the purely
deterministic case [17,18,26] to noise-driven dynamical systems. The methods take advantage on the
existence of a Lyapunov transformation of the linear RDS to an upper-triangular structure, and the
feasibility to retrieve a numerical approximation of the LEs from that form. The transformation is
performed through an orthogonal change of variables. The approach is made under the assumption of
Lyapunov regularity of the system. In order to explain the methods, let us consider again the SDE as
an initial value problem of the form

m .
dx; = ij(xt)dwi, tel, x4 =x, (11)
=0
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where f; are sufficiently smooth functions. The corresponding variational equation (11) along with the
solutions x;(xp), turned into a matrix initial value problem, is given by

m .
dvi =Y Ji(xi)Vidw), Vo =1, (12)
j=0

ox
functions f f (x¢),and V € C(T x R¥*4) is the fundamental solution matrix, whose columns are linearly

independent solutions of the variational equation. A key theoretical tool for determining the LEs is the
computation of the continuous QR factorization of V;,

of.
with the identity matrix I; € R?*¢ as initial value, where J j(xt) = i are the Jacobians of the vector

Vi=QRy,

where Q, is orthogonal, i.e., Qf Q; = I, and R; is upper triangular with positive diagonal elements
Rii fori =1,...,d. Applying the MET theory presented in Section 2.3, and taking into account the
norm-preserving property of the orthogonal matrix function Q,, we have

1 1
Ap = lim —log||Vep;|| = lim - log||Rep; |, (13)

where {p;} is an orthonormal basis associated with the splitting of R?. Lyapunov regular systems
preserve their regularity under kinematic similarity transformations. Subsequently, considering the
regularity condition (10), the Liouville Equation (9), and performing some algebraic manipulations
(see details in [21], p. 150), the LEs are given by

1 ..
Ai = lim ~log|R}| as., for i=1,...,d. (14)
t—oo t

The QR methods require to perform the QR decomposition of V; for a long enough time, so that
the Ri have started to converge. Depending on whether the decomposition is performed after or
before integrating numerically the variational equation, the method is called discrete or continuous
QR method.

3.1. Discrete QR Method

The discrete QR method is a very popular method for computing LEs in ODEs and DAEs.
In this approach, the fundamental solution matrix V; and its triangular factor R; are indirectly
computed by a reorthogonalized integration of the variational Equation (12) through an appropriate
QR decomposition. Thus, given grid points 0 =ty < t; < ... < ty_1 < ty = T, we can write V;, in
terms of the state-transition matrices as

Vie =2ttt ) Zitatea) " L) it Vio: (15)
At tg = 0, we perform a standard matrix QR decomposition
Vto - Qi‘oRtO’

and for/ =1,2,...,N, we determine Z(
the matrix initial value problem

t,t, ;) as the numerical solution (via numerical integration) of

m .
AZy,1, ) = ,Z(:)I]'(xt)z(fi,tul)dw]t’ Zithy) = Quyyr b1 =t=ty, (16)
]:

and then compute the QR decomposition



Mathematics 2020, 8, 1393 7 of 26

Zitota) = QR )
where R(;, ;, ,) has positive diagonal elements. From (15), the value of the fundamental matrix V}, is
determined via
= Qi Rty )Rty 1) Rty ty) Rt o) Reos

which is again a QR factorization with positive diagonal elements. Because this is unique, for the QR
decomposition Vi, = Q, , R;,, we have

R;

¢ R(téfté—l)R(té—lrtf—z) o 'R(fz t1) tlrtO Rfo H Ry.

Here, we denote, as Ry, the triangular transition matrices R
the LEs are thus computed as

tot 1) withx =0,1,...,¢. From (14),

4

[1x!

k=0

Ai = lim llog

(oo ty

1 ¢ .
= lim — Y log|RY, i=1,...,d. 17
fim  Zos el @

3.2. Continuous QR Method

The implementation of the continuous QR technique requires determining a system of SDEs
for the Q factor and the scalar equations for the logarithms of the diagonal elements of the R factor
elementwise. Subsequently, once the orthogonal matrix Q is computed by numerical integration,
the logarithms of the diagonal elements of R can also be obtained.

By differentiating in the Itd sense the decomposition V; = Q;R; and using the orthogonality
QtTQt = I;, we obtain

dVi = (dQy)R; + Q;(dRy), (18)
0= (dQ/)Q; + Q/ (dQy). (19)

Inserting (18) into the variational Equation (12), and multiplying by QtT from the left and by R, 1

from the right, we obtain

Qf (dQ,) + (dRy)R; ! = ZQt J;(x1) Q). (20)

=

Because (dR;)R; ! is upper triangular, the skew-symmetric matrix dS; := Q[ (dQ,) satisfies

.
oo (QnQ,) ), i,
dsil = { o, i=1, (21)
m T L j .
—o (Qn Q) dwl, i<l

This results in an SDE for Q; given by

dQ; = QudS; = Z Qt xt/ Qt)dwtr (22)

=

where the matrices T{(xt, Q,) (forj =0,...,m) are defined via
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([ (erne) i
(Tix @) =1 0, =), (23)
(i), i<t
A corresponding SDE for R; can be obtained from (20) and (21) via

dRy = Z(QtTIj(xt)Qt — Ti(x, Qt))thwj, (24)

j=0

and the equation for the ith diagonal element R is given by

dry = Y (Qf Ji(x)Qy)"Ridw), fori=1,...,d. (25)
j=0

Because the computed LEs can be obtained from (14), we make use of the Itd6 Lemma to introduce
the following SDE for the function ¢! = log R from (25),

2

) m 1 m .. ;
Ay} = d(og RY) = (QF 1 (x)Q) dw] — 5 LE(QtTff(xf)Qt)”dwi 26)
j=0 =0

If we assume that there are no correlations between the diffusion terms in the SDE system, then we
do not have terms dwt dwt (forl <k <m,and 1 < ¢ < m, with k # {) in the SDE (26). Additionally,

using that dt dt = 0, dt dwt =0,and dw; dwi = dt for 1 < k < m, the SDE (26) is reduced to

dyi = Y (T (x) Q)] - 3 Y- [(@FT(x) @)t @)

=0 =1

By integrating this SDE, it is possible to obtain the LEs A; from
A= lim Sgf, i=1,...d (28)
j=lm oyl i=1..,d

The alternative expressions (27) and (28), while easy to implement numerically, improve the
numerical results in comparison to (25), and they lead to better robustness for large time intervals,
as will be illustrated in the numerical examples.

In summary, the difference between the discrete and the continuous QR method is that for the
first one, the orthonormalization is performed numerically at every discrete time step, while the
continuous QR method maintains the orthogonality via solving differential equations that encode the
orthogonality continuously.

3.3. Computational Considerations

In this section, we discuss additional aspects of the computational implementation of discrete
and continuous QR-based methods to calculate LEs. The application of the discrete QR technique
mainly requires the numerical integration of the SDEs (11) and (16). This task is performed by
using standard weak Euler-Maruyama and Milstein schemes, integrators for whom the ergodicity
preservation property has been proved (see [27,28]).

On the other hand, the numerical integration of the SDEs (11), (22) and (27) in the computational
implementation of the continuous QR technique, must be performed in such a way that it preserves the
orthogonality of the factor Q in each integration step. This can be achieved via projected orthogonal
schemes which consist of a two-step process in which first an approximation is computed via any



Mathematics 2020, 8, 1393 9 of 26

standard scheme, and then the result is projected into the set of orthogonal matrices [29]. Again, we use
the Euler-Maruyama and Milstein method, as in the discrete case.

We have implemented the two QR methods in MATLAB. However, to obtain a unique QR
factorization in each step, we have modified the QR decomposition provided by MATLAB to ensure
this uniqueness, by forming a diagonal matrix Z with Z; ; = sign(R;;), fori = 1,...,d; and, then setting
Q:=QZand R:=ZIR.

3.4. Numerical Examples

In this section, we illustrate the described QR-based procedures via two strangeness-free SDAE
systems in order to compare the computational efficiency, accuracy, and robustness of both the
discrete and continuous QR-based methods using the numerical integration schemes Euler-Maruyama
and Milstein. The four numerical methods will be denoted as D-EM, D-Milstein, C-EM, C-Milstein,
respectively. The computations are carried out with MATLAB Version 9.7.0(R2019b) on a computer
with CPU Intel Core i7 composed by six cores of 2.20 GHz, and 16 GB of RAM.

3.4.1. Example 1

Let us consider the simple SDAE equation system

b o+

with « € RT. The nonlinear functions in both the drift and diffusion part are continuous on RT,
with continuous and bounded derivatives, and wy is a one-dimensional Wiener process. The underlying
SDE of (29) is

_xz

dt +
—axq + arctan (x7) + xp

(xF Jg 1)2] dw;, (29)

d%; = [—afy + arctan (£,)]dt + (£ +1) 2 dw;, (30)

whose LE exists and it can be explicitly represented as the following integral with respect to the
solution of a stationary Fokker-Planck equation (see further details in [12])

$2
A=—a+ % /R %ﬁp(x)dx, (31)
where p(x) is the stationary density of the unique invariant probability law of £;. By solving
numerically (31) for & = 2, we obtain the exact value of the LE associated to (30) and its original SDAE
(29), which is A = —1.3385. The accuracy of the QR-based methods will be assessed by comparing
with this value as reference.

A large number of simulations have been carried out for stepsizes
h=1x10"29x1073,...,1x107% with T = 1000,2000,...,12,000; to obtain computed
approximations of the LE truncated at the final time t¢ := T, denoted by Ar. To complete our stochastic
numerical analysis of the LE, we have calculated the values of expectation E[At], standard deviation
o[Ar], and variance V[Ar]; estimated from 100 independent realizations. Some results are presented in
Tables A1-A4, taking T = 6000, 12,000, 20,000, and # =1 x 1071, 1 x 1072, 1 x 1073, 1 x 107,

Observe that the time scale presented in Figure 1 has been conveniently adjusted to the range
[0, 250], in order to show the exponential drop of the LE for the different realizations in the four
methods, along the time evolution. While in Figure 2 the time scale has been adjusted to the range
[0, 10, 000], to better display the convergence of the mean and variance of the LE.



Mathematics 2020, 8, 1393 10 of 26

—1.15

|
—
o
S
1

Discrete QR with EM 4 Discrete QR with Milstein

|
—
o
S
1
1

Approximated LE
Lol
o 90
[ (=]
1 1
1 1

—1.40 4 1

—1.45 T T T T
—1.15

—1.20 Continuous QR with EM i Continuous QR with Milstein

—1.25 1 1

Approximated LE

| |
— —
o @
(2 (=]
1 1
— 4
—
— e
e—g
|y
e
—
o
em—
o
g
(R
SEE—
-
&=
S
-
— e
7 a—
-
——
—e—
-

—1.40 A b

—1.45 T T T T T T T T
0 50 100 150 200 250 0 50 100 150 200 250
Time Time

Figure 1. Discrete and continuous QR-based approximations of the Lyapunov exponent (LE)
corresponding to stochastic differential-algebraic equation (SDAE) (29) via Euler-Maruyama and
Milstein integrators, with a stepsize h = 1 x 1073 and T = 250. The solid circles show mean and the
whiskers the 95% confidence intervals of the trajectories.
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Figure 2. Discrete and continuous QR-based approximations of the LE corresponding to SDAE (29)
via Euler-Maruyama and Milstein integrators, with a stepsize i = 1 x 1073 and T = 10,000. The black
dashed line in the left-hand side subplot shows the analytic value of A.

Based on the analytic expression of the LE, given by Equation (31), the LE A can be considered as
a deterministic quantity. According to the numerical results obtained from the four QR-based methods,
the sequences of random variables A, reveal a trend towards null variance and convergence to the
mean as / tends to infinity. Such evolution can be seen in Figure 1, and more obviously in Figure 2.
For all the methods, an exponential decay is illustrated in E[At,] and V[A;,] as £ tends to infinite.
This behavior indicates a mean square (m.s.) convergence of those sequences to a degenerate random
variable, based on the implication that if A;, is such that E[A;,] = p,, for all £, and V[A;,] Z~>—oo> 0,

then Ay, ;n—s> #p. This means that the limit of A;, can be interpreted as a deterministic value with
e ,

probability 1. This enables us to state that the stochastic approximations A;, converge in m.s. sense to a
number (a degenerate random variable), which is expected to represent the LE A.
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In Figure 3, we compare the relative error of the accuracy of the four numerical methods for
different stepsize h and time interval [0, T]. From this graphical representation, we observe that
continuous methods obtain better results than discrete ones, as expected. We also observe that
the Milstein method has, in general, better accuracy than the Euler-Maruyma scheme, since its
convergence order is higher, but requies more computational time. This latter fact is evidenced in
Figure 4, where a comparison of CPU time (in seconds) is shown for different values of i and T. Here,
we observe that all the methods are affected to the same extent by incrementing the simulation interval
T, via a logarithmic increment, and by narrowing the stepsizes &, via an exponential increment. A more
pronounced difference between the methods should be observed in higher dimensional systems.

[ D-EM
[ D-Milstein
I C-EM
I C-Milstein

10°

107!

1072

[%] 10110 OATYR[OY

1073

2x 1073
4x1073
6x107% .y
0 . 70
10000 8x 1073 5’@?“&
1x1072

Figure 3. Comparison of relative errors for discrete and continuous QR-based approximations of the
LE corresponding to SDAE (29) via Euler-Maruyama and Milstein integrators, with a range of stepsizes
betweenh =1 x 1072,...,1 x 1073; and with T = 1000, ..., 12,000.

0 D-EM
[ D-Milstein
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102
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10!

2x 1073
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1 6000 6x107% .
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Figure 4. Comparison of the computing-time for discrete and continuous QR-based approximations
of the LE corresponding to SDAE (29) via Euler-Maruyama and Milstein integrators, with a range of
stepsizes between h = 1 x 1072,...,1 x 1073; and with T = 1000, ..., 12,000.
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3.4.2. Example 2

In this example, we make use of the Chua’s circuit perturbed by noise, showed in the Figure 5.
The Chua’s circuit is a simple electronic system that exhibits chaotic behavior due to its nonlinear
negative resistance called Chua’s diode.

Figure 5. Chua’s circuit diagram.

For the purpose of our example, we consider the circuit is affected by an external noisy
interference [30]. The noise, assumed to be coupled to the circuit in its left-hand side loop, is modeled
as an additive voltage source, see Figure 5. On the other hand, the nonlinear relation between the
voltage vp with the current ip in the Chua’s diode is modeled through the continuous cubic polynomial
function ip := ng% — Kypvp, where K; and K}, are positive constants, see [31]. By means of Kirchhoff’s
circuit laws, the Chua’s circuit can be naturally written as an It6-type strangeness-free SDAE system,
as follows

Cl 0 0 0 00 (4e) *iR*Z’D 0
0 C, 0 0 0 0 ve, ig +ip 0
0 0 L 0 0 0 ir e €

-d = 2 dt dwy, 32
0 0 0000 ir ve, —ve, —Rig | o] * (32)
0 0 0000 vp vc, — Up 0
L0 0 0 0 0 0] L ip | | Kq03, — Kyop — ip | 10

where [0¢, vc, i]T are state variables and [ig vp ip]”

been omitted in this formulation for simplicity. The noise intensity constant is represented by e.
The SDAE (32) can be reduced to its underlying SDE form

are algebraic variables, the subscript “t” has

RCydoc, = [-RK,0g, + (RKy — 1)oc, + ¢, ldt,
RCZdeZ = [UCI —vc, + Rip]dt, (33)
LdlL = _szdt + edw;.

For the numerical simulations, we have chosen as constants R = 1.00; C; = 0.0915; C, = 1.00;
L = 0.0714; K, = 0.0625; K, = 1.00. Additionally, we have assigned the value ¢ = 0.25 to the
noise intensity constant. Under these values the Chua’s system still tends to evolve around its
characteristic double scroll attractor, but in a different way in comparison to the deterministic case
(i.e., with e = 0.00). The system presents a stochastic bifurcation, specifically a phenomenological
bifurcation (or P-bifurcation), because of the qualitative changes in the stationary probability
distributions of the system’s states [12,32]. Despite the qualitative changes in the Chua’s system
due to the stochastic perturbation, its chaotic behavior remains, as can be seen in Figure 6.
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with e =0.00 + 4 with € = 0.25

i

(a) (b)
Figure 6. Chua’s system phase-portraits in chaotic regime, (a) without stochastic perturbation; (b) with
stochastic perturbation.

Because the positiveness of the largest Lyapunov exponent (LLE) in a nonlinear dynamical
is usually an indication (although not sufficient) that the system is chaotic, we make use of the
QR-based methods to compute the LEs in order to test for the presence of chaos in the dynamics of
the noise-driven oscillator (32). Furthermore, it is known the sum of all LEs allows for identifying
dissipative dynamical systems. If S := Y"4_, A; in negative, the system is dissipave [25].

Unfortunately, is unfeasible to analytically obtain LEs for the present example, doing a precision
test of the methods impossible to perform. Therefore, the assessment of the QR-based techniques this
time is rather focused on the observation of consistent, time-convergent, and homogeneous computed
LEs for all of the numerical methods. In addition, the preservation of the dissipative characteristic of
the system for all the simulations through the computed value § is verified as well.

Figure 7 shows the time evolution computed LEs by using the four QR-based methods.
The simulation was carried out with the stepsize h = 1 x 10~ and the interval T = 6000. It can be
seen the convergence of each LE for a single realization. We additionally present the numerical values
of §. Here, the neganiveness of S evidences that, in our example, the stochastic Chua’s circuit is
a dissipative system.

0.8
0.6
0.4
0.2
0.0
-0.2

—— D-EM
—— D-Milstein
— C-EM
—— C-Milstein

—
~<

—2.8
-3.0

T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Time Time

Figure 7. Time evolution of the computed LEs in stochastic Chua’s system (32) using the four QR-based
methods for a stepsize i = 1 x 10~% and an interval T = 6000.

As it can be seen, the computed LEs of the Chua’s system (32), and hence the sum of LEs S as
well, exhibit a satisfactory convergence along the time even with a single realization. This is a suitable
indicator of the numerical robustness and, a good performance of the proposed QR-based methods
when they are implemented in complex situations, such as the positiveness of the computed LLE.
Even though in Figure 7 we present results only for a stepsize & = 1 x 10~#, similar satisfactory results
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can be obtained for wider stepsizes. In Table A5, we collect the numerical results corresponding to
h=1x1073,5x107%1x107%

4. Application of LEs to Power Systems Stability Analysis

The concept of stability (based on Lyapunov exponents) in power systems is, in essence, the same
as that for a general dynamical system. In the literature, power system stability is defined as the stability
to regain an equilibrium state after being subjected to physical disturbances [33,34]. Such equilibrium
is characterized through three significant quantities during the power system operation: angles of nodal
voltages, frequency, and nodal voltage magnitudes. Based on this triplet, there is an entire classification
proposed by the Institute of Electrical and Electronics Engineers (IEEE) and the International Council
on Large Electric Systems (CIGRE) in [34], which is illustrated in Figure 8. The test cases presented
in this paper are oriented to evaluate the angle and voltage stability of power systems subjected
to small or large disturbances. Studies considering small disturbances are commonly known as
small-signal stability assessment (SSSA). Here, linear stability analysis via eigenvalues has been one of
the traditional analysis tools to predict the degree of stability of the power system [33,35]. However,
eigenvalue analysis is limited to linear time-invariant systems or systems close to a stationary solution.
When time-varying systems are tested, as is the case of systems subjected to stochastic disturbances,
then eigenvalue analysis is no longer applicable. On the other hand, the stability analysis of power
systems affected by large disturbances, known as transient stability assessment, is mainly performed
with verification strategies that are based on time-domain integration [34,36].

Power system stability

[ |

Rotor angle Frequency Voltage
stability stability stability
! I
| | I |
Small Transient Small Large
disturbance stabili disturbance disturbance
angle stability by voltage stability voltage stability

Figure 8. IEEE/CIGRE Power systems stability classification [34].

Because the concept of LEs is based on the trajectories of the dynamical systems, the method
is an interesting measure of dynamic stability for power systems under stochastic disturbances in
general. Accordingly, testing asymptotic stability of power systems via LEs has become an attractive
approach for the two areas mentioned before, namely, the SSSA of rotor angles and voltages, by using
the linearized set of SDAEs which model the system [37,38]; and strategies for the rotor angles via
transient analysis using the nonlinear SDAE system and its variational equation [39,40]. For both cases,
asymptotic stability is checked via approximations of the LLE of the system. In particular, a negative
LLE indicates that the dynamics of the system is asymptotically stable. In the next subsections, test
cases are presented that illustrate for strangenss-free SDAE systems the negativity of the LLE.

4.1. Modeling Power Systems through SDAEs

Under the assumption of deterministic dynamic behavior, power systems are typically modelled
via a system of quasi-linear DAEs with partitioned variables, see [33,35], of the form

Endxijl = (1)31 (xtDl,xf‘)dt, (34a)

0=, xf), (34b)
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where E;; € R4*41 ig a diagonal block matrix, f(l))1 € Cl(Rd1+”, ]Rdl), f(’)q € Cl(]Rler”,R”), x?l € R%
are the dynamic state variables, and xf € R? are the algebraic state variables and we set ny = dq +a.
The DAE system (34) is strangeness-free (or differentiation index-1).

The dynamic behavior of synchronous machines, system controllers, power converters,
transmission lines, or power loads are adequately represented through such a DAE formulation.
However, in current real world systems, the dynamic behavior of power systems is affected by
disturbances of a stochastic nature, such as renewable stochastic power generation, rotor vibrations
in synchronous machines, stochastic variations of loads, electromagnetic transients, or perturbations
originated by the measurement errors of control devices, see [41]. Such disturbances can be modeled
through It6 SDEs of the form

dx?z = (?Z(x?lfxt s X} )dt+f (xt ,x?z,xt )dw. (35)

Here, f(l)j 2 ¢ CY(R%2%4,R%) is the drift, f? 2 ¢ C2(R%+4,R?) is the diffusion, x? € R are the
stochastic variables, and w; is the Wiener process. By combining (34) and (35), and assuming that xtD2
perturbs (34a) and (34b), we obtain a strangeness-free SDAE system of the form

Elde1 = fOD1 (x?l,xtDz,xf‘)dt (36a)
D, Dy (..Dq D,

dx® = fo2 (e 20?2t + f2 (] 2, 2 day, (36b)

0= fo (", x2 xf), (36¢)

or in simplified notation, as

Edx; = fO(xt)dt + fl (xt)dwt, Xty = X0, (37)
with
Dy
Ey 00 X
E;:[Oldzo},xt;: x?z ,
0 00 xtA

drift f, € C}(R",R"), and diffusion f; € C*>(R",R"), where n = dy + d + a.

The study-cases that are presented below are formulated as the form (36). An alternative approach
for including the stochastic disturbances is to directly implement the Wiener process in the underlying
ODE of the system, turning them into SDEs (see [23,42] for examples).

4.2. Modeling Stochastic Perturbations

In this subsection, we discuss the modeling of stochastic variations via SDEs. We employ the
well known mean-reverting process termed Ornstein-Uhlenbeck (OU) process [41,43]. The SDE that
defines the OU process has the form

dne = a(p — n)dt + Bdwy, Nty = "o, tel, (38)

where a, 1, € RT. The OU process is a stationary autocorrelated Gaussian diffusion process
distributed as N(u, B?/2a). Another mean-reverting choice, similar to the OU process would be
the Cox-Ingersoll-Ross (CIR) process, whose realizations are always nonnegative, in fact, it is a sum of
squared OU process [44].

It is usually recommended to ensure the boundedness of the stochastic variations for the numerical
implementations. In this regard, suitable resources are odd trigonometric functions, such as a
sin or arctan, to guarantee boundedness. For example, if from (38) we generate a process with a
normal distribution N (i, 02), for 4 = 0 and ¢ = 0.16, this value of variance enables us to generate
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a mean-reverting stochastic trajectory, whose confidence interval of 95% (+20) is inside the threshold
of £1. Subsequently, through the functions

. 2
¢(ny) = sinmy, or x(ne) = p arctan g, (39)

we obtain a bounded stochastic variation inside the interval [—1, 1], and the OU SDEs, which generate
the stochastic variations, are represented by (36b).

To couple the parameters of the system in (36a) and (36¢) with a bounded stochastic disturbance,
we use

p(nt) = po+pG(1e),

where pg is a constant parameter, #; is the stochastic process that describes the variations of the
parameter, and p € R is a factor that controls the magnitude of the perturbation.

4.3. Test Cases

In this subsection, we present results of our implementation of the QR-based methods for the
calculation of LEs at the hand of several test cases of power systems represented by strangeness-free
SDAEs models of so-called single-machine-infinite-bus (SMIB) systems. This simplified model is
frequently used in the area of power systems in order to understand the local dynamic behavior
of a specific machine connected to a complex power network. The SMIB consists of a synchronous
generator connected through a transmission line to a bus with a fixed bus voltage magnitude and
angle, called infinite bus, which represents the grid. A diagram of the system is shown in Figure 9.

E'z6, Vz£0°

X, /
/

infinite bus

Figure 9. Single-machine infinite-bus (SMIB) scheme.

In each test case, we consider a different type of disturbance. For Case 1, the disturbance is
a stochastic load connected to the system. In Case 2, the disturbance is due to noise caused by a
measurement error in a transducer of the machine control system. In both cases, the maximum
disturbance that the system can admit without loosing stability is analyzed, as well as the effect
(positive or negative) of the disturbance for the system in the stable region. The whole SMIB system,
i.e., the synchronous machine, system constraints, and stochastic disturbances; are modeled by a
strangeness-free SDAE system. The dimension of this system is mainly defined by the type of model
used in the synchronous machine; we use a classical model and a flux-decay model, see [33,35,36,45]
for detailed descriptions.

4.3.1. Case 1: SMIB with Stochastic Load

In this test case, we make use of the LEs to assess the impact of stochastic disturbances associated
with an active power load, over the rotor angle stability of a synchronous generator. Both the machine
and load are connected to the same bus, and this bus, in turn, is linked to the grid through a
transmission line. This kind of SMIB model is typically used to analyze the effects of renewable
energy sources, or aggregated random power consumption, see Figure 10. For this version of SMIB
system called classical model, the dynamic behavior of the synchronous machine is represented by
the swing equations where the rotor angle J; and the rotor speed w; are the state variables, see [35,36].
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The algebraic constraint in the system is given by the active power balance, expressed in terms of
P, the mechanical power, P, the electrical power, and P;, the constant power consumed by the load.
A stochastic process 77; is modeled by an OU SDE. We consider that p#; is the stochastic component of
power consumption that perturbs additively the active power balance of the system, where p is the
size of the disturbance. This leads to the system

déy = [wt - ws]dt, (40a)
2Hdw; = [Py — Pe — Kp(w; — ws)]dt, (40b)
N = —andt + Bdwy, (40c¢)
!
\%4
0= cos o + (PL + p17t) — P.. (40d)
Xeg

By computing the LEs of this SDAE system and checking the LLE, we can determine the maximal
perturbation size p (via successive increments of p) admitted by the SMIB system before loosing rotor
angle stability. The numerical tests are performed for the values P, = 0.8; P = 0.3; X,y = 0.8;
H =35;Kp = 0.4; ws =2750; V = 1.0; E' = 1.05; &« = 1.0; B = 0.4. Most of the values are expressed
in the per-unit system (pu) [45]. The QR methods are executed with step size h = 1 x 1072 and a
simulation time T = 20,000. Figure 11 displays the computed LLE utilizing the four QR-based methods
for incremental disturbance sizes p = 0.00,0.05, ...,2.00. As expected, at p = 0.0 when the system
is not affected by a stochastic disturbance, i.e., the system is deterministic, the computed LEs match
closely with the real parts of the eigenvalues obtained from the Jacobian matrix of the linearization
of (40). When increasing p, all of the methods reveal the same monotonically increasing behavior
of the calculated value of the LLE towards the unstable region. First, there is a slow increase for
0.00 < p < 0.60, and then an abrupt increase of the LLE in the interval 0.60 < p < 0.75. In the interval
0.75 < p < 1.20, even though the LLE has not yet reached the instability region, for this particular case
the characteristics, such as a low damping coefficient and the presence of the stochastic disturbance,
provokes a behavior in the system called pole slipping. This is, in a certain sense, a different kind of
instability because the system looses synchronism as it reaches another equilibrium point near another
attractor, see ([35], Section 5.8) for further details. The different aspects of this study-case are better
illustrated with the phase portraits in Figure 12. The charts display the trajectories of the dynamical
system (40) projected onto the J; — w;/ws plane for the disturbance sizes p = 0.0, 0.3, 0.7, 1.0, 1.5.
Deatiled numerical data for this case are presented in Table A6.

E'z6, Vz0°

X, /
/

Py /\f"/\/ infinite bus

Figure 10. Scheme of a SMIB system with a stochastic load used in Test Case 1.
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Figure 11. Largest Lyapunov exponent (LLE) considering different disturbance sizes p for the SMIB
Test Case 1, tested with four QR-based methods.
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Figure 12. Phase portraits of the system (40) considering different disturbance sizes p for the SMIB Test
Case 1.

This test case shows the large potential of using LEs as an indicator of instability for nonlinear power
systems. These could also be used in multi-machine study cases, where, however, the computational
complexity has to be reduced, e.g., by model reduction.

4.3.2. Case 2: SMIB with Regulator Perturbed by Noise

In this subsection, we consider an SMIB system with a synchronous machine described by a
third-order flux-decay model. Here, in addition to the rotor angle J; and the rotor speed w; associated
to the swing equations, the system includes the effect of the field flux ¢z; described by the field
circuit dynamic equations and constraints. In this model, the machine is equipped with an automatic
voltage regulator (AVR) to keep the generator output voltage magnitude in a desirable range, and a
power system stabilizer (PSS) to damp out low-frequency oscillations, see Figure 13. The AVR and
PSS add to the system three more state variables v1, v, and vs; together with their corresponding
DAEs, which describe the dynamic behavior and constraints of the controllers into the SMIB system.
The resulting model is a nonlinear system of strangeness-free DAEs. We use the LEs to analyze the
system stability at a specific operation point in the state-space when it is subjected to small-disturbances.
Using the small-signal stability assessment (SSSA), the set of DAEs that describes the dynamics of the
power system is linearized around the desired operating point. The final result is a linear DAE system.
A comprehensive explanation of this model, its linearization, and reduction to an underlying ODE
system can be found in [33] (ch. 12). We consider a disturbance of stochastic nature entering in the
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exciter block of the AVR as an error of the reference signal [33,37], by adding the stochastic variable %
to v1 in Equation (41c). Resolving the algebraic constraints leads to the linearized system of SDEs

dAé = wsAwdt, (41a)
2HdAw = [—K1A5 — KpAw — Koy + ATm} dt, (41b)
T3dAsy = | —K3K4Ad — (14 K3KKa)Aprg — K3Ka (1 + p1)Avy
+K3K4Avs] dt, (41¢)
TrdAvy = [—KsA8 + KeAgpps — Avl] dt, (41d)
dAvy = | ~KiKs7A8 — KpKsrAw — KoKsrAgpsg — L pvy+ BT AT L at, (41e)
I Ty 2H
TrdAvs = | —K1Kg1T1 A6 — KpKgrT1 Aw — KzKSTTlAl/de + <? + 1) Avy
L 2%
1 KsrTh
—ZA AT, | dt 41f
Tz Os 2H m} ¢ (41f)
dny = —andt + Bdw, (41g)

where AJ, Aw, Ay fds Avy, Avy, Avs, 1 are the state variables of the linear underlying SDE system
(in the same way than Example 2 in Section 3.4.2, the subscript t has been omitted in the formulation
for simplicity). Once again, the stochastic perturbation is generated via an OU SDE, and the size of the
perturbation is controlled by the parameter p. The numerical analysis is done for the values ws = 2760;
H = 3.0; Ky = 1.591; K, = 1.50; Kp = 0.0; K3 = 0.333; Ky = 1.8; K5 = —0.12; K¢ = 0.3; K4 = 200.0;
Tr = 0.02; K7 =95, T4 =0.154; T, = 0.033; T3 = 1.91; Ty = 1.4, 2 = 1.0; p = 0.4; AT, = 0.0.

Based on the analysis of Section 3.4.1, we only consider the continuous Euler-Maruyama QR-based
method. The results of computing the LLE of the SMIB system for incremental values of the
perturbation size p, are presented graphically in Figure 14. The values of the LLE when increasing
perturbation size p clearly mark four defined intervals. In the leftmost interval with 0.00 < p < 0.40,
the calculated LLE is practically constant and equal to the real part of the right-most eigenvalue from
the deterministic system. In this region, there is no impact of the disturbance on the system stability.
In the interval 0.40 < p < 1.30, a curious situation occurs, as the size of the disturbance increases,
the distance from the LLE to the positive region increases, in other words, the noise improves the
stability of the system. In the interval 1.30 < p < 2.60, the situation changes completely, and the
LLE converges to zero. Finally, from p ~ 2.60 onward, the system is unstable. Table A7 shows the
numerical values of this test case.

E'z6, V£0°
X, E
AVR G FYYYA
Efd E
A
Aw
infinite bus
PSS
vpPSs Uref

Figure 13. SMIB system scheme equipped with automatic voltage regulator (AVR) and power system
stabilizer (PSS), corresponding to Test Case 2.
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Figure 14. Computed LLE for the dimension 7 SMIB system of Test Case 2, considering different
disturbance sizes and using the continuous Euler-Maruyama QR-based method.

Finally, we have evaluated the computing-times for this 7-dimensional test case. The results are
shown in Figure 15. Although the computational cost for all method is similar for the different methods
as a factor of the step sizes h and time interval [0, T], the computational costs strongly increase.
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Figure 15. Computing-time comparison of LE calculation for the dimension 7 SMIB Test Case 2.
Comparison performed for the four QR-based methods in a range of step sizes between h = [1 x
1072,1 x 1073] and with T = [1000, 12,000].

Even though the present work has been oriented for testing the asymptotic stability of transmission
power systems under uncertainty through the computation of LEs, as shown in the last two study-cases,
the numerical QR-based techniques for computing the LEs in stochastic dynamical systems can also
be a suitable assessment tool in a vast range of fields, such as physics, chemistry, biology, sociology,
economics, etc. Moreover, beyond its use as a tool for the asymptotic stability assessment, LEs are
useful for other quantitative studies, such as the characterization of synchronization or chaos.
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5. Conclusions

We have revisited the theory of strangeness-free SDAE systems, as well as the concepts of
LEs associated with the RDEs generated via such SDAEs. We have adapted and implemented
stochastic versions of continuous and discrete QR-based methods to calculate approximations of
the LEs, and assessed them by using Euler-Maruyama and Milstein schemes over the corresponding
underlying SDE. The results obtained from our numerical experiments illustrate the approximations
of the corresponding LE converge to degenerate random variables, i.e., the LE can be interpreted as a
deterministic value, since in the limit the variance of the approximations tends to zero. Both QR-based
method provide reliable results, but, in general, continuous methods provide better accuracy than the
discrete counterpart at the expenses of higher computational cost and higher memory requirement.
We have illustrated the QR-based methods for SMIB power system problems and shown the usefulness
of the LEs as a stability indicator for the rotor angle and voltage stability analysis of power systems
affected by bounded stochastic disturbances.

As future work, we suggest the use of discretization schemes for SDAEs in order to directly apply
the numerical integration to the SDAE system. Furthermore, methods for computing the LEs based
on Singular Value Decompositions, a combination with model reduction, and a careful comparison
with QR-based methods would be of interest. Concerning to the applications to power systems and
dynamical network systems in general, stability assessment of large-scale cases are remarkable works
to be performed. Although the aim of this paper has been to develop reliable computational methods
to compute the LEs associated to SDAEs with no correlated noises modeling power systems, as future
work it would be interesting to extend our analysis to SDAEs with correlated noises, including their
applications to other engineering problems.

Author Contributions: All authors contributed to this manuscript. Conceptualization, A.G.-Z., PE-d.-C., and V.M,;
data curation, A.G.-Z.; formal analysis A.G.-Z., VM., and ].-C.C.; investigation A.G.-Z.; methodology A.G.-Z.
and V.M.; software A.G.-Z.; supervision and validation, PF.-d.-C., ].-C.C., and V.M.; writing—original draft
preparation, A.G.-Z.; writing—review and editing, PF-d.-C., ].-C.C., and V.M.; visualization A.G.-Z. All authors
have read and agreed to the published version of the manuscript.

Funding: A.G.-Z. was supported by Secretaria Nacional de Ciencia y Tecnologia SENESCYT (Ecuador), through
the scholarship “Becas de Fomento al Talento Humano”, and Deutsche Forschungsgemeinschaft through Collaborative
Research Centre Transregio. SFB TRR 154. P.E-d.-C. was partially supported by grant no. RT12018-102256-B-100
(Spain). J.-C.C. acknowledges the support by the Spanish Ministerio de Economia, Industria y Competitividad
(MINECO), the Agencia Estatal de Investigaciéon (AEI), and Fondo Europeo de Desarrollo Regional (FEDER
UE) grant MTM2017-89664-P. V.M. was partially supported by Deutsche Forschungsgemeinschaft through the
Excellence Cluster Math™ in Berlin, and Priority Program 1984 “Hybride und multimodale Energiesysteme:
Systemtheoretische Methoden fiir die Transformation und den Betrieb komplexer Netze”.

Acknowledgments: A.G.-Z. is grateful to the Interdisciplinary Modeling Group InterTech from Universitat Politecnica
de Valencia, lead by PF.-d.-C., for the support during his doctoral studies and the development of this paper.
Many thanks to the Fachgebiet Numerische Mathematik from the Technische Universitét Berlin, lead by V.M., for the
inspiring enviroment and fruitful discussions with its members during his research stay in Germany. Thanks also
to J.-C.C. for his generous collaboration with this work, and to Rafael Villanueva from UPV for his help carrying
out the numerical tests. Last but not the least, the authors thank to the anonymous reviewers for their valiable
comments and suggestions that led to this improved version of the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2020, 8, 1393

Abbreviations

AVR

automatic voltage regulator

CIGRE Conseil International des Grands Réseaux Electriques
DAE differential-algebraic equation

IEEE Institute of Electrical and Electronics Engineers
LE Lyapunov exponent

LLE largest Lyapunov exponent

MDS metric dynamical system

MET Multiplicative Ergodic Theorem

ODE ordinary differential equation

ou Ornstein—Uhlenbeck

PSS power system stabilizer

RDSs random dynamical system

SDA

SDE stochastic differential equation
SMIB single-machine infinite-bus
SSSA small-signal stability assessment
Appendix A

E  stochastic differential-algebraic equation

In this Appendix we present the numerical values for several different simulations.
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Table A1l. Numerical results of the calculated LE for SDAE system (29) computed via Discrete

QR-EM method.

T h E[AT] ol[Ar] V[Ar] Rel. Error [%] CPU-Time [s]
6000 1x107' —1.51906 0.00476 2.266 x 107° 13.48994 0.9827
6000 1x1072 —1.35231 0.00296 8.734 x 10~° 1.03179 12.6422
6000 1x1073 —1.33874 0.00234 5.483 x107° 0.01807 125.6875
6000 1x107% —1.33903 0.00225 5.042 x 10~° 0.03958 4367.2676

12,000 1x10"! —1.51870 0.00334 1.116 x 10~ 13.46268 2.0336
12,000 1x1072 —1.35217 0.00184 3.392 x 107° 1.02160 249517
12,000 1x1073 —1.33920 0.00161 2.579 x 10° 0.05206 252.4366
12,000 1x107* —1.33902 0.00134 1.795x 107° 0.03848 8815.9035
20,000 1x10~! —1.51780 0.00262 6.858 x 10~° 13.39551 3.3806
20,000 1x1072 —1.35236 0.00139 1.944 x 10~° 1.03533 41.2975
20,000 1x1073 —1.33936 0.00133 1.781 x 10~° 0.06437 416.3228
20,000 1x10~% —1.33902 0.00119 1.415x10°° 0.03922 13,870.1475

Table A2. Numerical results of the

QR-Milstein method.

calculated LE for SDAE system (29) computed via Discrete

T h E[A7] o[Ar] V[Ar] Rel. Error [%] CPU-Time [s]
6000 1x10~1 —1.47000 0.00356 1.267 x 10~ 9.82471 1.3947
6000 1x1072 —1.34911 0.00205 4.217 x 10~ 0.79239 14.2033
6000 1x1073 —1.33883 0.00185 3.415x 10~° 0.02480 139.4657
6000 1x10~* —1.33901 0.00224 5.039 x 10~°© 0.03812 4786.6657

12,000 1x10~1 —1.46914 0.00249 6.202 x 10~° 9.75996 2.8596
12,000 1x1072 —1.34925 0.00186 3.466 x 10~° 0.80302 27.8426
12,000 1x10~3 —1.33889 0.00176 3.093 x 10~° 0.02924 280.9451
12,000 1x10~*% —1.33900 0.00134 1.794 x 10~° 0.03700 9629.9437
20,000 1x10~1 —1.46973 0.00159 2.517 x 10~ 9.80448 4.6544
20,000 1x1072 —1.34924 0.00141 1.982 x 10~° 0.80274 46.9282
20,000 1x1073 —1.33915 0.00130 1.6991 x 10~° 0.04854 465.2272
20,000 1x10~% —1.33900 0.00119 1.416 x 10~ 0.03770 15,121.3377
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Table A3. Numerical results of the calculated LE for SDAE system (29) computed via Continuous

QR-EM method.

T h E[AT] olAT] V[Ar] Rel. Error [%] CPU-Time [s]
6000 1x10"1 —1.35864 0.00326 1.061 x10°° 1.50459 1.3841
6000 1x1072 —1.34005 0.00278 7.743 x 10~° 0.11616 13.6211
6000 1x1073 —1.33822 0.00277 7.651x10°° 0.02128 135.0360
6000 1x10~% —1.33892 0.00224 5.025x10° 0.03152 46426202

12,000 1x10"1 —1.35932 0.00226 5.091 x 10°© 1.55512 2.7334
12,000 1x1072 —1.33999 0.00186 3.459 x 10~ 0.11134 26.9335
12,000 1x1073 —1.33813 0.00159 2.535x 10— 0.02786 272.8842
12,000 1x10"% —1.33891 0.00134 1.794 x 107° 0.03052 9217.7371
20,000 1x10"! —1.35888 0.00196 3.835 x 10~° 1.52252 44753
20,000 1x1072 —1.34010 0.00096 9.306 x 10~ 0.11965 45.0326
20,000 1x1073 —1.33807 0.00148 2.187 x 10~° 0.03224 465.5119
20,000 1x107% —1.33892 0.00119 1.417 x 107 0.03121 14,583.8282

Table A4. Numerical results of the calculated LE for SDAE system (29) computed via Continuous
QR-Milstein method.

T h E[AT] o[Ar] V[Ar] Rel. Error [%]  CPU-Time [s]
6000 1x10"! —1.33950 0.00287 8.228 x 10~° 0.07468 1.5009
6000 1x1072 —1.33767 0.00253 6.386 x 10~° 0.06235 14.8586
6000 1x107% —1.33810 0.00232 5.402 x 10~° 0.02998 147.5276
6000 1x10™* —1.33890 0.00225 5.052x107° 0.02988 5082.6248

12,000 1x107! —1.33931 0.00259 6.692 x 10~ 0.06075 3.0427
12,000 1x1072 —1.33864 0.00121 1.460 x 10~° 0.01053 29.3666
12,000 1x1073 —1.33769 0.00153 2.329 x 10~° 0.06087 299.2588
12,000 1x107% —1.33889 0.00134 1.802 x 10~ 0.02878 10, 035.9100
20,000 1x10"1 —1.33990 0.00182 3.296 x 10~° 0.10453 49331
20,000 1x1072 —1.33828 0.00152 2.310 x 10~ 0.01654 49.5662
20,000 1x1073 —1.33853 0.00140 1.960 x 10~ 0.00258 505.4304
20,000 1x107* —1.33889 0.00119 1.416 x 10~° 0.02948 15,917.1861

Table A5. Numerical results of the calculated LEs for the Chua’s system (32) computed via the four
QR-based methods for T = 6000.

Method h A Ao A3 S
1x107% 023994 —0.06890 —3.22041 —3.04936
D-EM 5x107% 0.24207 —0.07063 —3.23055 —3.05911
1x10"% 024824 —0.07093 —3.20410 —3.05678
1x107% 024166 —0.07304 —3.23649 —3.06788
D-Mil 5x107% 0.24486 —0.06837 —3.24114 —3.06465
1x107% 024738 —0.06726 —3.24892 —3.05880
1x1073 022970 —0.06103 —3.22547 —3.05680
C-EM 5x107% 0.22962 —0.06231 —3.23562  —3.06831
1x107* 023400 —0.06837 —3.24523 —3.06960
1x107% 023514 —0.06963 —3.23238 —3.05686
C-Mil 5x107% 023169 —0.06858 —3.21973 —3.05662
1x10*% 023287 —0.07468 —3.21613 —3.05794
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Table A6. Numerical results of the approximated LLE of SMIB system (40) corresponding to the
study-case 1, computed via the four QR-based techniques.

p D-EM D-Mil C-EM C-Mil p D-EM D-Mil C-EM C-Mil

0.00 —0.02849 —0.02849 —0.02864 —0.02864 1.05 —0.00287 —0.00267 —0.00268 —0.00114
0.05 —0.02848 —0.02847 —0.02863 —0.02863 1.10 —0.00075 —0.00159 —0.00158 —0.00278
010 —0.02843 —0.02845 —0.02860 —0.02863 1.15 —0.00436 —0.00259 —0.00261 —0.00136
015 —0.02845 —0.02841 —0.02857 —0.02859 1.20 0.00184 0.00093 0.00091 —0.00191
020 —0.02832 —0.02852  —0.02867 —0.02863 1.25 0.00175 —0.00149  —0.00154 0.00217
025 —0.02815 —0.02836  —0.02852 —0.02833 1.30 0.00149 0.00029 0.00026 0.00059
030 —0.02837 —0.02811 —0.02828 —0.02837 1.35 0.00038 0.00044 0.00040 0.00409
035 —0.02827 —0.02795 —0.02811 —0.02811 1.40 0.00870 0.00284 0.00279 0.00311
040 —0.02734 —0.02778 —0.02797 —0.02762 1.45 0.00338 0.00072 0.00075 0.00314
0.45 —0.02722 —0.02758 —0.02775 —0.02773 1.50 0.00409 0.00570 0.00564 0.00607
050 —0.02676  —0.02658 —0.02674 —0.02675 1.55 0.00644 0.00806 0.00802 0.01024
0.55 —0.02702  —0.02575 —0.02590 —0.02537 1.60 0.01014 0.00642 0.00638 0.00553
0.60 —0.02508 —0.02606 —0.02620 —0.02591 1.65 0.00797 0.01089 0.01086 0.00915
0.65 —0.01250 —0.00779  —0.00781  —0.02359 1.70 0.00724 0.00896 0.00892 0.00826
0.70 —0.01016 —0.00549 —0.00550 —0.00353 1.75 0.00828 0.00808 0.00805 0.00815
0.75 —0.00412 —0.01408 —0.01417 —0.00428 1.80 0.01366 0.00658 0.00654 0.01361
0.80 —0.00503 —0.00544 —0.00546 —0.00454 1.85 0.00776 0.00977 0.00974 0.01083
085 —0.00505 —0.00656 —0.00658 —0.00505 1.90 0.01068 0.01346 0.01341 0.01192
090 —0.00372 —0.00471  —0.00475 —0.00350 1.95 0.01537 0.01313 0.01305 0.01072
095 —0.00503 —0.00452 —0.00454 —0.00406 2.00 0.01248 0.01225 0.01219 0.01031
1.00 —0.00353 0.00024 0.00023 —0.00314

Table A7. Numerical results of the approximated LLE of SMIB system (41) corresponding to the
study-case 2, computed via C-EM method.

p LLE P LLE P LLE p LLE p LLE

0.00 —-0.74586 0.60 —0.76208 120 —0.88585 1.80 —0.64744 240 —0.17751
0.05 —0.74593 0.65 —0.76663 125 —0.89951 1.85 —0.64093 245 —0.09607
010 —0.74572 070 —0.77893 130 —0.88447 190 —0.60895 250 —0.07736
015 —0.74632 075 —0.78894 135 —0.89645 195 —0.56286 2.55 0.01194
020 —0.74647 080 —0.78972 140 —-0.87056 2.00 —0.53564 2.60 —0.00056
025 —0.74694 085 —0.81366 145 —0.86469 2.05 —0.51171 2.65 0.04541
030 —0.74786 090 —0.83571 150 —0.84152 2.10 —0.45690 2.70 0.16176
035 —0.74901 095 —0.85522 155 —0.81798 2.15 —0.41292 275 0.20227
040 —-0.75015 1.00 —0.85872 1.60 —0.80238 220 —0.28496 2.80 0.27489
045 —0.75187 1.05 —0.86683 1.65 —0.77636 225 —0.35850 2.85 0.28201
050 —0.75370 1.10 —0.88458 1.70 —0.72155 230 —0.25838 2.90 0.33127
055 —0.75980 1.15 —-0.89293 1.75 —0.73500 235 —0.13307 2.95 0.38053
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