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Abstract

:

The purpose of this paper is to study intuitionistic fuzzy bases (  I F B s  ) and the intuitive structure of a   G − V    I F M  . Firstly, the intuitionistic fuzzy basis (  I F B  ) of a   G − V    I F M   is defined; then the h-range and properties of an   I F B   are presented and a necessary and sufficient condition of a closed   G − V    I F M   is studied. Especially, a necessary and sufficient condition of judging an   I F B   is presented and the intuitive tree structure of a closed   G − V    I F M   is proposed and its properties are discussed.
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1. Introduction


Whitney’s 1935 article laid the groundwork for the field of combinatorial geometries and matroid [1]. Matroid theory has been widely applied to combinatorial mathematics, combinatorial optimization and group theory [2,3,4,5,6,7,8]. Based on the fuzzy set theory proposed by Zadeh in 1965 [9], matroid theory has been generalized to various forms related to fuzzy sets. Shi [10,11] proposed the   ( L , M )  -fuzzy matroid based on latticevalued fuzzy set theory and studied the base axioms of fuzzitying matroids [12,13,14]. Hsueh presented a fuzzification of matroids which extends the independence axioms of matroids [15]. Al-Hawary introduced a method to the fuzzifying of matroids which is called fuzzy C-matroids [16,17]. In 1988, Goetschel and Voxman proposed an important fuzzy matroid (briefly,   G − V   fuzzy matroid) in [18]. They further studied some important concepts and their properties, such as the fuzzy bases and the fuzzy rank function [19,20,21,22]. Following them, some scholars studied the axioms, the connectedness and the structure of   G − V   fuzzy matroid, etc. [23,24,25].



The intuitionistic fuzzy set (  I F S  ), introduced by Atanassov originally in 1983 [26] and made widely accessible in 1986 [27], is a generalization of Zadeh’s fuzzy set. An   I F S   of each element is an ordered pair which is called an intuitionistic fuzzy value (  I F V  ) and each   I F V   is characterized by a membership degree, a nonmembership degree and a hesitancy degree. From then on, many scholars were attracted to study the   I F S   and obtained a lot of valuable results. For ranking the   I F S s  , Hong and Choi proposed the accuracy function in 2000 [28] and Szmidt and Kacprzyk proposed a similarity function of   I F S s   in 2004 [29]. Based on the accuracy function and the similarity function, Zhang and Xu introduced a new method for ranking   I F S s   in 2012 [30]. In 2013, Rangasamy et al. proposed a method by ranking to be done using the scores and accuracy for finding the shortest hyperpath in an intuitionistic fuzzy weighted hypergraph [31]. Some other scholars studied the aggregation operators and fuzzy clustering of   I F S s   [32,33,34]. After decades of effort from scholars, the relevant achievements of intuitionistic fuzzy theory became very rich. In 1999, Atanassov completed his first monograph which discussed the concept and operators of   I F S s  , the interval valued   I F S s  , some other extensions of   I F S s  , the elements of   I F S s   and the applications of   I F S s  [35]. There are some other scholars’ results worthy of learning and researching; see [36,37,38]. In 2017, Li and Yi proposed an intuitionistic fuzzy matroid based on matroids and intuitionistic fuzzy sets [39]. In [40], Li et al. extended   G − V   fuzzy matroids and introduced a   G − V   intuitionistic fuzzy matroid and studied the induced matroid sequence and the rank function. In this paper, based on the literature [19,25,40], we study the bases and the structure of a   G − V   intuitionistic fuzzy matroid (briefly,   G − V    I F M  ), which are actually generalizations of some conclusions of   G − V   fuzzy matroid.



This paper is arranged as follows. Some basic definitions and results are introduced in Section 2. The   I F B s   of a   G − V    I F M   are studied in Section 3. The judgment of an   I F B   is investigated in Section 4. Finally, we propose the tree structure of a closed   G − V    I F M   and study its properties in Section 5.




2. Preliminaries and Notations


We introduce some basic and useful concepts related to matroid theory here; see [41,42]. Firstly, we introduce the concept of the matroid.



Definition 1.

Let I be a nonempty family of subsets of a finite set E and satisfy:




	1.

	
  ∅ ∈ I  .




	2.

	
If  X ∈ I  , and  Y ⊂ X  , then  Y ∈ I  .




	3.

	
If  X , Y ∈ I  , and  | Y | > | X |  , then there exists an  x ∈ Y \ X  such that  X ∪ { x } ∈ I  .









Then the pair  M = ( E , I )  is called a matroid (or a crisp matroid). For any  A ⊆ E  , if  A ∈ I  , then A is called an independent set; otherwise A is called a dependent set.





In matroid theory, rank function and its submodularity are very important. They are defined as follows.



Definition 2.

Let  P ( E )  be the power set of finite set E and  M = ( E , I )  be a matroid. R is called rank function of M, where  R : P ( E ) → { 0 , 1 , 2 , ⋯ , | E | }  is a mapping and is defined as follows:


   R ( X )  = m a x  { | Y | | Y ⊆ X  , a n d  Y ∈ I } .   













From the definition of R, the following properties can be easily obtained.




	
If   X ⊆ Y  , then   R ( X ) ≤ R ( Y )  ;



	
  R ( X ) ≤ | X |   for any   X ∈ P ( E )  ;



	
If   X ∈ I  , then   R ( X ) = | X |  ,








where   X , Y ∈ P ( E ) .  



Definition 3.

Let   σ : P ( E ) → [ 0 , ∞ )   be a mapping, where   P ( E )   is the power set of finite set E. σ is called submodular if


   σ ( X ) + σ ( Y ) ≥ σ ( X ∩ Y ) + σ ( X ∪ Y ) ,   








for each   X , Y ∈ P ( E )  .





Theorem 1.

The rank function R of a matroid   M = ( E , I )   is submodular.





Next, some concepts and notations concerning fuzzy sets or intuitionistic fuzzy sets are cited; see [9,18,19,26,27,28,29,30,31,32,33,34,35,36,37,38,40].



Definition 4.

Let X be a fixed set. Then


   A = {  ( x ,  μ A   ( x )  )  | x ∈ X }   








is called a fuzzy set, where    μ A   ( x )    is the membership degree of x to A,   0 ≤  μ A   ( x )  ≤ 1  . The collection of fuzzy sets on X is denoted by   F S ( X )  .





Definition 5.

Let X be a fixed set. Then


   A = {  ( x ,  μ A   ( x )  ,  ν A   ( x )  )  | x ∈ X }   








is called an   I F S   (i.e., intuitionistic fuzzy set). For any   x ∈ X  ,    μ A   ( x )   ,    ν A   ( x )    and    π A   ( x )    are called membership degree, non-membership degree and hesitancy degree, respectively, where    μ A   ( x )  ,  ν A   ( x )  ,  π A   ( x )  ≥ 0   and    μ A   ( x )  +  ν A   ( x )  +  π A   ( x )  = 1  . The collection of   I F S s   on X is denoted by   I F S ( X )  . If for all   x ∈ X  ,    π A   ( x )  = 0  , then    μ A   ( x )  +  ν A   ( x )  = 1   and   I F S  A is reduced to a fuzzy set. In this paper, we use   (  μ α  ,  ν α  ,  π α  )   to denote intuitionistic fuzzy set and   (  μ α   ( x )  ,  ν α   ( x )  ,  π α   ( x )  )   to denote intuitionistic fuzzy value.





For convenience and suitable for the study of   G − V   intuitionistic fuzzy matroids later, an   I F S    (  μ α  ,  ν α  ,  π α  )   is abbreviated as   (  μ α  ,  π α  )   and an   I F V    (  μ α   ( x )  ,  ν α   ( x )  ,  π α   ( x )  )   is denoted by   (  μ α   ( x )  ,  π α   ( x )  )  . Note that this notation is different from that in Definition 5.



Definition 6.

Let    (  μ α  ,  π α  )  ∈ I F S  ( X )    be an   I F S  . Then the accuracy function H of   (  μ α   ( x )  ,  π α   ( x )  ) ,  ( x ∈ X )    is denoted by


   H  (  μ α   ( x )  ,  π α   ( x )  )  = 1 −  π α   ( x )    













Definition 7.

Let    (  μ α  ,  π α  )  ∈ I F S  ( X )    be an   I F S  . Then the similarity function h of   (  μ α   ( x )  ,  π α   ( x )  )   for any   x ∈ X   is





   h  (  μ α   ( x )  ,  π α   ( x )  )  = 1 −   1 −  μ α   ( x )    1 +  π α   ( x )  .     











In the special case    π α   ( x )  = 0  , we have   h  (  μ α   ( x )  ,  π α   ( x )  )  =  μ α   ( x )   .





Let X be a finite set and    (  μ α  ,  π α  )  ,  (  μ β  ,  π β  )  ∈ I F S  ( X )    be   I F S s   and   x ∈ X  . We now introduce the following notation and results; see [40]:




	
   H  (  μ α  ,  π α  )    ( x )  = H  (  μ α   ( x )  ,  π α   ( x )  )   .



   h  (  μ α  ,  π α  )    ( x )  = h  (  μ α   ( x )  ,  π α   ( x )  )   .



   (  μ α  ,  π α  )   ( x )  =  (  μ α   ( x )  ,  π α   ( x )  )   .



	
   (  μ α  , 0 )  =  (  μ α  ,  π α  )    if    π α   ( x )  = 0   for any   x ∈ X  .



	
  h  (  μ α  ,  π α  )  ≤ h  (  μ β  ,  π β  )   : for any   x ∈ X  ,   h  (  μ α   ( x )  ,  π α   ( x )  )  ≤ h  (  μ β   ( x )  ,  π β   ( x )  )   .



  h  (  μ α  ,  π α  )  = h  (  μ β  ,  π β  )   : for any   x ∈ X  ,   h  (  μ α   ( x )  ,  π α   ( x )  )  = h  (  μ β   ( x )  ,  π β   ( x )  )   .



  h  (  μ α  ,  π α  )  < h  (  μ β  ,  π β  )   :   h  (  μ α  ,  π α  )  ≤ h  (  μ β  ,  π β  )    and   h  (  μ α   ( x )  ,  π α   ( x )  )  < h  (  μ β   ( x )  ,  π β   ( x )  )    for some   x ∈ X .  



	
  H  (  μ α  ,  π α  )  ≤ H  (  μ β  ,  π β  )   : for any   x ∈ X  ,   H  (  μ α   ( x )  ,  π α   ( x )  )  ≤ H  (  μ β   ( x )  ,  π β   ( x )  )   .



  H  (  μ α  ,  π α  )  = H  (  μ β  ,  π β  )   : for any   x ∈ X  ,   H  (  μ α   ( x )  ,  π α   ( x )  )  = H  (  μ β   ( x )  ,  π β   ( x )  )   .



  H  (  μ α  ,  π α  )  < H  (  μ β  ,  π β  )   :  H  (  μ α  ,  π α  )  ≤ H  (  μ β  ,  π β  )    and   H  (  μ α   ( x )  ,  π α   ( x )  )  < H  (  μ β   ( x )  ,  π β   ( x )  )    for some   x ∈ X  .



	
   (  μ α  ,  π α  )  ⪯  (  μ β  ,  π β  )   :  h  (  μ α  ,  π α  )  ≤ h  (  μ β  ,  π β  )    and   H  (  μ α  ,  π α  )  ≤ H  (  μ β  ,  π β  )   .



   (  μ α  ,  π α  )  ≺  (  μ β  ,  π β  )   :  h  (  μ α  ,  π α  )  < h  (  μ β  ,  π β  )    and   H  (  μ α  ,  π α  )  ≤ H  (  μ β  ,  π β  )   .



   (  μ α  ,  π α  )  =  (  μ β  ,  π β  )   :  h  (  μ α  ,  π α  )  = h  (  μ β  ,  π β  )    and   H  (  μ α  ,  π α  )  = H  (  μ β  ,  π β  )   .



	
supp   (  μ α  ,  π α  )  =  { x ∈ X | h  (  μ α   ( x )  ,  π α   ( x )  )  > 0 }   .



	
  m  (  μ α  ,  π α  )  = i n f  { h  (  μ α   ( x )  ,  π α   ( x )  )  |  x ∈  supp  (  μ α  ,  π α  ) }  .



	
   C r   (  μ α  ,  π α  )  =  { x ∈ X | h  (  μ α   ( x )  ,  π α   ( x )  )  ≥ r }   , where   0 ≤ r ≤ 1  .



	
   R +   (  μ α  ,  π α  )  =  { h  (  μ α   ( x )  ,  π α   ( x )  )  | h  (  μ α   ( x )  ,  π α   ( x )  )  > 0 , x ∈ X }    is called the positive   h − r a n g e   of   (  μ α  ,  π α  )  .



	
   |   (  μ α  ,  π α  )   | =   ∑  x ∈ X   h  (  μ α   ( x )  ,  π α   ( x )  )    is called the "cardinality" of an   I F S  .








Definition 8.

Let    (  μ α  ,  π α  )  ,  (  μ β  ,  π β  )    be two intuitionistic fuzzy sets,   x ∈ X  .    (  μ γ  ,  π γ  )  =  (  μ α  ,  π α  )  ∨  (  μ β  ,  π β  )    and    (  μ ω  ,  π ω  )  =  (  μ α  ,  π α  )  ∧  (  μ β  ,  π β  )    are called the union and intersection of   (  μ α  ,  π α  )   and   (  μ β  ,  π β  )  , respectively, where   (  μ γ  ,  π γ  )   is defined by


    (  μ γ  ,  π γ  )   ( x )  =       (  μ α  ,  π α  )   ( x )      ,   i f       h  (  μ α  ,  π α  )    ( x )  >  h  (  μ β  ,  π β  )    ( x )  ,        (  μ β  ,  π β  )   ( x )      ,   i f       h  (  μ α  ,  π α  )    ( x )  <  h  (  μ β  ,  π β  )    ( x )  ,        (  μ α  ,  π α  )   ( x )      ,   i f       h  (  μ α  ,  π α  )    ( x )  =  h  (  μ β  ,  π β  )    ( x )       a n d       H  (  μ α  ,  π α  )    ( x )  ≥  H  (  μ β  ,  π β  )    ( x )  ,        (  μ β  ,  π β  )   ( x )      ,   i f       h  (  μ α  ,  π α  )    ( x )  =  h  (  μ β  ,  π β  )    ( x )       a n d       H  (  μ α  ,  π α  )    ( x )  <  H  (  μ β  ,  π β  )    ( x )  .        











and   (  μ ω  ,  π ω  )   is defined by


    (  μ ω  ,  π ω  )   ( x )  =       (  μ β  ,  π β  )   ( x )      ,   i f       h  (  μ α  ,  π α  )    ( x )  >  h  (  μ β  ,  π β  )    ( x )  ,        (  μ α  ,  π α  )   ( x )      ,   i f       h  (  μ α  ,  π α  )    ( x )  <  h  (  μ β  ,  π β  )    ( x )  ,        (  μ β  ,  π β  )   ( x )      ,   i f       h  (  μ α  ,  π α  )    ( x )  =  h  (  μ β  ,  π β  )    ( x )       a n d       H  (  μ α  ,  π α  )    ( x )  ≥  H  (  μ β  ,  π β  )    ( x )  ,        (  μ α  ,  π α  )   ( x )      ,   i f       h  (  μ α  ,  π α  )    ( x )  =  h  (  μ β  ,  π β  )    ( x )       a n d       H  (  μ α  ,  π α  )    ( x )  <  H  (  μ β  ,  π β  )    ( x )  .        













Definition 9.

Let E be a finite set and   ψ ⊆ I F S ( E )   be a nonempty family of fuzzy sets. The pair   ( E , ψ )   is called a   G − V    I F M   on E if it satisfies the following conditions:




	1.

	
If    (  μ α  ,  π α  )  ∈ ψ ,  (  μ β  ,  π β  )  ∈ I F S  ( E )   , and    (  μ β  ,  π β  )  ≺  (  μ α  ,  π α  )   , then   (  μ β  ,  π β  ) ∈ ψ  .




	2.

	
If    (  μ α  ,  π α  )  ,  (  μ β  ,  π β  )  ∈ ψ  , and |supp  (  μ α  ,  π α  ) | < |  supp  (  μ β  ,  π β  ) |  , then there exists   (  μ ω  ,  π ω  ) ∈ ψ  , such that:




	(a) 

	
   (  μ α  ,  π α  )  ≺  (  μ ω  ,  π ω  )  ⪯  (  μ α  ,  π α  )  ∨  (  μ β  ,  π β  )   ;




	(b) 

	
  m  (  μ ω  ,  π ω  )  ≥ m i n  { m  (  μ α  ,  π α  )  , m  (  μ β  ,  π β  )  }   .

















Suppose that   ( E , ψ )   is a   G − V    I F M  .   (  μ α  ,  π α  ) ∈ ψ   is called an independent   I F S   and  ψ  is called the set of independent   I F S s  .   (  μ β  ,  π β  ) ∉ ψ   is called a dependent   I F S  .



If for any    (  μ α  ,  π α  )  ∈ I F S  ( E )    and for any   x ∈ E  ,    π α   ( x )  = 0  , then   I F S ( E )   is actually   F S ( E )  . Thus,   ( E , ψ )   is reduced to   G − V    F M  .



Theorem 2.

Let   ( E , ψ )   be a   G − V    I F M  . For each r,   0 ≤ r ≤ 1  , let





    I r  =  {  C r   (  μ α  ,  π α  )  |  (  μ α  ,  π α  )  ∈ ψ }    











Then for each r,   0 < r ≤ 1  ,





    M r  =  ( E ,  I r  )    











is a matroid.





Theorem 3.

Let  ( E , ψ )  be a  G − V    I F M  . Let   M r  =  ( E ,  I r  )   be a matroid on E defined in Theorem 2, where  0 < r ≤ 1  . Then there is a finite sequence   r 0  <  r 1  < ⋯ <  r n   such that:




	(i) 

	
   r 0  = 0  ,   r n  = 1  .




	(ii) 

	
   I s  ≠  { ϕ }    if   0 < s ≤  r n   ,   I s  =  { ϕ }    if   s >  r n   .




	(iii) 

	
If    r i  < s , t <  r  i + 1    , then    I s  =  I t   , where   0 ≤ i ≤ n − 1  .




	(iv) 

	
If    r i  < s <  r  i + 1   < t <  r  i + 2    , then    I s  ⊂  I t   , where   0 ≤ i ≤ n − 2  .









Then the sequence    r 0  ,  r 1  ,  r 2  , ⋯ ,  r n    is called the fundamental sequence of   ( E , ψ )  . Moreover, if for any i,   1 ≤ i ≤ n  , let     r ¯  i  =   r  i − 1    r i    , then we can get a sequence of matroids    M   r ¯  n   ⊂  M   r ¯   n − 1    ⊂ ⋯ ⊂  M   r 2  ¯   ⊂  M   r 1  ¯     which is called the   i n d u c e d   matroid sequence.



Note that    C r   (  μ α  ,  π α  )  =  { x ∈ E | h  (  μ α   ( x )  ,  π α   ( x )  )  ≥ r }   , where   0 < r ≤ 1  , and    I r  =  {  C r   (  μ α  ,  π α  )  |  (  μ α  ,  π α  )  ∈ ψ }   , so    I s  =  { ϕ }    not but    I s  =  { ϕ }    when   s >  r n   .





A matroid sequence can be constructed from a   G − V    I F M   above. On the contrary, a   G − V    I F M   can be constructed from a matroid sequence.



Theorem 4.

Let   0 =  s 0  <  s 1  <  s 2  < ⋯ <  s n  ≤ 1   be a finite sequence. Suppose that    M  s 1   ,  M  s 2   , ⋯ ,  M  s  n − 1    ,  M  s n     (   M  s i   =  ( E ,  I  s i   )  , 1 ≤ i ≤ n  ) is a matroid sequence on a finite set E and satisfies    I  s  i + 1    ⊂  I  s i     (  0 ≤ i ≤ n − 1 )  . For any   0 ≤ s ≤ 1  , let


    I s  =      I  s i      ,  i f       s  i − 1   < s ≤  s i  ,  0 ≤ i ≤ n ,       { ϕ }     ,  i f       s n  < s ≤ 1 .        











and let





    ψ *  =  {  (  μ α  ,  π α  )  ∈ I F S  ( E )  |  C s   (  μ α  ,  π α  )  ∈  I s  , 0 < s ≤ 1 }  .   











Then   ( E ,  ψ *  )   is a   G − V    I F M   and its   i n d u c e d   matroid sequence is    M  s n   ⊂  M  s  n − 1    ⊂ ⋯ ⊂  M  s 2   ⊂  M  s 1    , where for   1 ≤ i ≤ n  ,    M  s i   =  ( E ,  I  s i   )   .





Theorem 5.

Let   ( E , ψ )   be a   G − V    I F M  , and for each r, let   0 < r ≤ 1  ,    M r  =  ( E ,  I r  )    be a matroid defined by Theorem 2. Let    ψ *  =  {  (  μ α  ,  π α  )  ∈ I F S  ( E )  |  C r   (  μ α  ,  π α  )  ∈  I r  , 0 < r ≤ 1 }   . Then   ψ =  ψ *   .





Theorem 6.

Let   ( E , ψ )   be a   G − V    I F M   and    (  μ α  ,  π α  )  ∈ I F S  ( E )   . Then   (  μ α  ,  π α  ) ∈ ψ   if and only if    C λ   (  μ α  ,  π α  )  ∈  I λ    for each   λ ∈  R +   (  μ α  ,  π α  )   .





Theorem 7.

Suppose that   ( E , ψ )   is a   G − V    I F M   with the fundamental sequence   0 =  r 0  <  r 1  <  r 2  < ⋯ <  r n  ≤ 1  . If    I r  =  I  r i     for any    r  i − 1   < r ≤  r i    (  0 ≤ i ≤ n  ), then   ( E , ψ )   is called a closed   G − V    I F M  .






3. Bases of   G − V    IFMs 


Based on   G − V    I F M s   and bases of matroids or fuzzy matroids, we propose the concept of the intuitionistic fuzzy basis of a   G − V    I F M  .



Definition 10.

Let   ( E , ψ )   be a   G − V    I F M  .   (  μ α  ,  π α  ) ∈ ψ   is said to be maximal in ψ. If for any   (  μ β  ,  π β  ) ∈ ψ   and    (  μ α  ,  π α  )  ⪯  (  μ β  ,  π β  )   , then    (  μ α  ,  π α  )  =  (  μ β  ,  π β  )   . I.e., there does not exist   (  μ β  ,  π β  ) ∈ ψ   such that    (  μ α  ,  π α  )  ≺  (  μ β  ,  π β  )   ).





An intuitionistic fuzzy basis (  I F B   for short) of a   G − V    I F M    ( E , ψ )   is a maximal member   (  μ α  ,  π α  ) ∈ ψ  .



Suppose that   (  μ α  ,  π α  )   is an   I F B   and    (  μ β  ,  π β  )  ∈ I F S  ( E )   . Let   h  (  μ β  ,  π β  )  = h  (  μ α  ,  π α  )    and   H  (  μ β  ,  π β  )  < H  (  μ α  ,  π α  )   ; then    (  μ β  ,  π β  )  ⪯  (  μ α  ,  π α  )    and    |   (  μ β  ,  π β  )   | = |   (  μ α  ,  π α  )   |   . Obviously,   (  μ β  ,  π β  ) ∈ ψ  . Therefore,   (  μ β  ,  π β  )   here is called an intuitionistic fuzzy sub-basis (  I F S B   for short) with respect to   I F B    (  μ α  ,  π α  )   for a   G − V    I F M    ( E , ψ )  . Generally, there are infinite   I F S B s   for a   G − V    I F M   and their cardinality is the same as that of the corresponding   I F B  .



Definition 11.

An   I F S    (  μ α  ,  π α  )   is an elementary   I F S   if    R +   (  μ α  ,  π α  )  = 1  . If   (  μ α  ,  π α  )   is an elementary   I F S   with   A =  supp  (  μ α  ,  π α  )   and    R +   (  μ α  ,  π α  )  =  { r }   , then   (  μ α  ,  π α  )   is denoted by   ω ( A , r )   with support A and height r.





Theorem 8.

Suppose that   (  μ α  ,  π α  ) ∈ ψ   is an   I F B   of a   G − V    I F M    ( E , ψ )  , then    π α   ( x )  = 0   for each   x ∈ E  .





Proof. 

Assume that there exists an    x 0  ∈ E   such that    π α   (  x 0  )  = η > 0  . Let   h  (  μ β  ,  π β  )  = h  (  μ α  ,  π α  )    for each   x ∈ E   and


   π β   ( x )  =       π α   ( x )      ,  i f      x ∈ E  a n d  x ≠  x 0  ,        η 2           ,  i f      x =  x 0  .       











Then   H  (  μ α  ,  π α  )  < H  (  μ β  ,  π β  )   . It follows that    (  μ α  ,  π α  )  ⪯  (  μ β  ,  π β  )   . However, for each   λ ∈  R +   (  μ α  ,  π α  )   , we have    C λ   (  μ β  ,  π β  )  =  C λ   (  μ α  ,  π α  )  ∈  I λ   . Then   (  μ β  ,  π β  ) ∈ ψ   from Theorem 6. This contradicts the hypothesis.



Here, we will use Theorem 6 to prove the next theorem. □





Theorem 9.

Let   ( E , ψ )   be a   G − V    I F M   with the fundamental sequence   0 =  r 0  <  r 1  <  r 2  < ⋯ <  r n  ≤ 1   and suppose   (  μ α  ,  π α  )   is an   I F B   of   ( E , ψ )  ; then





    R +   (  μ α  ,  π α  )  ⊆  {  r 1  ,  r 2  , ⋯ ,  r n  }  .   













Proof. 

Let   (  μ α  ,  π α  )   be an   I F B   of   ( E , ψ )  . Then   (  μ α  ,  π α  ) ∈ ψ  . It follows that    C λ   (  μ α  ,  π α  )  ∈  I λ    for each   λ ∈  R +   (  μ α  ,  π α  )   .



Assume that there is an   s ∈  R +   (  μ α  ,  π α  )    such that    r i  < s <  r  i + 1    . We take   ε = (  r  i + 1   − s ) / 2   and let   (  μ β  ,  π β  )   be the elementary   I F S   which is defined by supp   (  μ β  ,  π β  )  =  C s   (  μ α  ,  π α  )    and    R +   (  μ β  ,  π β  )  =  s + ε   .



If we let    (  μ ω  ,  π ω  )  =  (  μ α  ,  π α  )  ∨  (  μ β  ,  π β  )   , then for each   r ∈ ( 0 , 1 ]  , we have


   C r   (  μ ω  ,  π ω  )  =       C s   (  μ α  ,  π α  )  ∈  I s      ,  i f  r ∈ ( s , s + ε ] ,        C r   (  μ α  ,  π α  )  ∈  I r      ,  i f  r  ∉ ( s , s + ε ] .       











By Theorem 6, we have   (  μ ω  ,  π ω  ) ∈ ψ  .



By the hypothesis, for   (  μ α  ,  π α  )  , we have that there exists    x 0  ∈ s u p p  (  μ α  ,  π α  )    such that   h (  μ α   (  x 0  )  ,  π α   (  x 0  )  ) = s  . Thus   h (  μ ω   (  x 0  )  ,  π ω   (  x 0  )  ) = s + ε  . Since    (  μ α  ,  π α  )  ⪯  (  μ ω  ,  π ω  )   ,    (  μ α  ,  π α  )  ≺  (  μ ω  ,  π ω  )   . This contradicts that   (  μ α  ,  π α  )   is an   I F B  . □





Theorem 10.

Suppose that   ( E , ψ )   is a   G − V    I F M   and   0 =  r 0  <  r 1  <  r 2  < ⋯ <  r n  ≤ 1   is the fundamental sequence of   ( E , ψ )  . Then   ( E , ψ )   is closed if and only if for any   (  μ α  ,  π α  ) ∈ ψ  , there exists an   I F B    (  μ β  ,  π β  ) ∈ ψ   such that    (  μ α  ,  π α  )  ⪯  (  μ β  ,  π β  )   .





Proof. 

Assume that for any   (  μ α  ,  π α  ) ∈ ψ  , there exists an   I F B    (  μ β  ,  π β  ) ∈ ψ   such that    (  μ α  ,  π α  )  ⪯  (  μ β  ,  π β  )   . If   ( E , ψ )   is not closed.



Let   i 0   be a positive integer such that if    r   i 0  − 1   < t <  r  i 0    , then    I  r  i 0    ⊂  I t   , where


   I r  =  {  C r   (  μ α  ,  π α  )  |  (  μ α  ,  π α  )  ∈ ψ }  .  











Let A be a basis of   I t   but not a basis of   I  r  i 0    . Let   ω ( A , t )   be the elementary   I F S  . Obviously,    C r   ( ω  ( A , t )  )  = A ∈  I r    for any   r ∈ ( 0 , t ]  , and    C r   ( ω  ( A , t )  )  = ∅ ∈  I r    for any   r ∈ ( t , 1 ]  . It follows that   ω ( A , t ) ∈ ψ  .



Suppose that   (  μ β  ,  π β  ) ∈ ψ   is an   I F B   and   ω  ( A , t )  ⪯  (  μ β  ,  π β  )   . Then    C t   (  μ β  ,  π β  )  ∈  I t    and   A ⊆  C t   (  μ β  ,  π β  )   . Since A is a crisp basis of   I t  ,   A =  C t   (  μ β  ,  π β  )   .



Since    I  r  i 0    ⊆  I t    and by Theorem 5 and Theorem 9, we have


  A =  C t   (  μ β  ,  π β  )  =  C  r  i 0     (  μ β  ,  π β  )  ∈  I  r  i 0    .  











Conversely, suppose that   ( E , ψ )   is closed. Let   (  μ α  ,  π α  ) ∈ ψ   and    R +   (  μ α  ,  π α  )  =  {  t 1  ,  t 2  , ⋯ ,  t k  }   , where    t 1  <  t 2  < ⋯ <  t k   . Let   {  t  p 1   ,  t  p 2   , ⋯ ,  t  p s   }   be a subsequence of   {  t 1  ,  t 2  , ⋯ ,  t k  }   and   {  r  q 1   ,  r  q 2   , ⋯ ,  r  q s   }   be a subsequence of   {  r 0  ,  r 1  , ⋯ ,  r n  }   such that    t  p 1   =  t 1   , and for a given   t  p j   , there is    r  q j   = min  {  r i  |  r i  ≥  t  p j   }   , and for a given   r  q j    there is    t  p  j + 1    = min  {  t i  |  t i  >  r  q j   }   . It follows that




	(1)

	
   t  p 1   =  t 1   ;




	(2)

	
   r  q  j − 1    <  t  p j   <  r  q j   , j = 1 , 2 , ⋯ , s  ;




	(3)

	
If    t  p j   <  t i  <  t  p  j + 1     , then    r  q  j − 1    <  t i  ≤  r  q j    ;




	(4)

	
If    t  p s   >  t i   , then    r  q  s − 1    <  t i  ≤  r  q s    .









Let    A n  ⊆  A  n − 1   ⊆ ⋯ ⊆  A 1    be a nested sequence such that




	(a)

	
supp   (  μ α  ,  π α  )  ⊆  A 1   , where   A 1   is a basis of   ( E ,  I  r 1   )  ;




	(b)

	
For   i ≥ 2   (where i is an integer), we have    q  j − 1   < i <  q j   (  q 0  = 0 )    and   A i   is a maximal subset of   A  i − 1    in   I  r i    that contains    C  t  p j     (  μ α  ,  π α  )   ;




	(c)

	
For    q t  < i ≤ n   (where i is an integer), we have A is a maximal subset of   A  i − 1    in   I  r i   .









Let   (  μ  β i   ,  π  β i   )   be the elementary   I F S    ω (  A i  ,  r i  )  , where   i ∈ [ 1 , n ]  . If    (  μ β  ,  π β  )  =  ⋁  i = 1  n   (  μ  β i   ,  π  β i   )   , then we can easily get    C r   (  μ β  ,  π β  )  ∈  I r  , r ∈  ( 0 , 1 ]   . By Theorem 6,   (  μ β  ,  π β  ) ∈ ψ  . From the construction of   (  μ β  ,  π β  )  ,    (  μ α  ,  π α  )  ⪯  (  μ β  ,  π β  )  ∈ ψ   and   (  μ β  ,  π β  )   is an   I F B   for   ( E , ψ )  , the conclusion is established. □






4. The Judgement of an  IFB  for a   G − V    IFM 


From the proof of Theorem 10, we can get the following result.



Theorem 11.

Suppose that   ( E , ψ )   is a closed   G − V    I F M   with the fundamental sequence   0 =  r 0  <  r 1  <  r 2  < ⋯ <  r n  ≤ 1   and the induced matroid sequence    M  r 1   ⊃  M  r 2   ⊃ ⋯ ⊃  M  r n    , where    M  r i   =  ( E ,  I  r i   )   (  1 ≤ i ≤ n  ). Let    (  μ α  ,  π α  )  ∈ I F S  ( E )   . If   (  μ α  ,  π α  )   is an   I F B   of   ( E , ψ )  , then supp   (  μ α  ,  π α  )  =  C  m (  μ α  ,  π α  )    (  μ α  ,  π α  )    is a basis of matroid   ( E ,  I  r 1   )  .





Proof. 

Suppose that   m (  μ α  ,  π α  )   is an   I F B   of   I F M  . Then    R +   (  μ α  ,  π α  )  ⊆  {  r 1  ,  r 2  , ⋯ ,  r n  }    and    C r   (  μ α  ,  π α  )  ∈  I r    for any   r ∈  R +   (  μ α  ,  π α  )   .



Assume that supp   (  μ α  ,  π α  )  =  C  m (  μ α  ,  π α  )    (  μ α  ,  π α  )    is not a basis of matroid   ( E ,  I  r 1   )  ; then there exists a basis A of   ( E ,  I  r 1   )   such that supp   (  μ α  ,  π α  )  =  C  m (  μ α  ,  π α  )    (  μ α  ,  π α  )  ⊂ A  . Let


  h  (  μ ω   ( x )  ,  π ω   ( x )  )  =       r 1                  ,  i f       x ∈ A \  C  m (  μ α  ,  π α  )    (  μ α  ,  π α  )  ,       h (  μ α   ( x )  ,  π α   ( x )  )     ,  i f       x ∈  C  m (  μ α  ,  π α  )    (  μ α  ,  π α  )  ,       0                  ,     o t h e r w i s e .       











Then    (  μ α  ,  π α  )  ≺  (  μ ω  ,  π ω  )   ,    R +   (  μ ω  ,  π ω  )  ⊆  {  r 1  ,  r 2  , ⋯ ,  r n  }    and    C  r 1    (  μ ω  ,  π ω  )  = A ∈  I  r 1    . Thus, for any    r 1  < r < m  (  μ α  ,  π α  )   ,





   C r   (  μ ω  ,  π ω  )  =  C  m (  μ α  ,  π α  )    (  μ α  ,  π α  )  ∈  I  m (  μ α  ,  π α  )   ⊆  I r  ,  








and for any   m (  μ α  ,  π α  ) ≤ r ≤ 1  ,





    C r   (  μ ω  ,  π ω  )  =  C r   (  μ α  ,  π α  )  ∈  I r  .   











From Theorem 6, it follows that   (  μ ω  ,  π ω  ) ∈ ψ  . Since    (  μ α  ,  π α  )  ≺  (  μ ω  ,  π ω  )   , it contradicts that   (  μ α  ,  π α  )   is an   I F B   of   I F M  . □





The following necessary and sufficient condition can be used to judge whether a fuzzy set is a fuzzy basis.



Theorem 12

([25]). Let   ( E , ψ )   be a closed   G − V   fuzzy matroid on E and   0 =  r 0  <  r 1  < ⋯ <  r n  ≤ 1   be the fundamental sequence. Let   μ ∈ F S ( E )  . Suppose    M  r 1   ⊃  M  r 2   ⊃ ⋯ ⊃  M  r n     is the induced matroid sequence (where    M  r i   =  ( E ,  I  r i   )   ,  i = 1 , 2 , ⋯ , n  ). Then μ is a fuzzy basis of   ( E , ψ )   if and only if μ satisfies:




	(i) 

	
  A 1  =suppμ is a basis of matroid   ( E ,  I  r 1   )  .




	(ii) 

	
There exists a sequence    A 2  , ⋯ ,  A  n − 1   ,  A n    (   A i  ∈  I  r i    ) which satisfies   A i   is a maximal subset of   A  i − 1    in   I  r i   (  i = 2 , 3 , 4 , ⋯ , n  ) and    A 1  ⊇  A 2  ⊇ ⋯ ⊇  A  n − 1   ⊇  A n    such that for any   x ∈  A n   ,   μ  ( x )  =  r n    and for any   x ∈  A i  \  A  i + 1    ,   μ  ( x )  =  r i   , where   i = 1 , 2 , 3 , ⋯ , n − 1  .











This result can be extended to intuitionistic fuzzy sets.



Theorem 13.

Suppose   ( E , ψ )   is a closed   G − V    I F M   with the fundamental sequence   0 =  r 0  <  r 1  <  r 2  < ⋯ <  r n  ≤ 1   and the induced matroid sequence    M  r 1   ⊃  M  r 2   ⊃ ⋯ ⊃  M  r n    , where    M  r i   =  ( E ,  I  r i   )    (  1 ≤ i ≤ n  ). Let    (  μ α  ,  π α  )  ∈ I F S  ( E )   ; then   (  μ α  ,  π α  )   is an   I F B   of   ( E , ψ )   if and only if   (  μ α  ,  π α  )   satisfies:




	(I) 

	
   π α   ( x )  = 0   for each   x ∈ E  ;




	(II) 

	
The set    A 1  = s u p p  (  μ α  ,  π α  )    is a crisp basis of matroid   ( E ,  I  r 1   )  ;




	(III) 

	
There exists a sequence    A 2  , ⋯ ,  A  n − 1   ,  A n    (   A i  ∈  I  r i    ) which satisfies   A i   is a maximal subset of   A  i − 1    in   I  r i    (  i = 2 , 3 , ⋯ , n  ) and    A 1  ⊇  A 2  ⊇ ⋯ ⊇  A  n − 1   ⊇  A n    such that for any   x ∈  A n   ,   h  (  μ α   ( x )  ,  π α   ( x )  )  =  r n   , and for any   x ∈  A i  \  A  i + 1     (  i = 1 , 2 , ⋯ , n − 1  ),   h  (  μ α   ( x )  ,  π α   ( x )  )  =  r i   .











Proof. 

By Theorem 8 and Theorem 11, we have




	(I)

	
   π α   ( x )  = 0   for each   x ∈ E  ;




	(II)

	
The set   A 1  =supp  (  μ α  ,  π α  )   is a basis of matroid   ( E ,  I  r 1   )  .









Now we just prove that (III) holds.



Let    A i  =  C  r i    (  μ α  ,  π α  )    (  2 ≤ i ≤ n  ). By the hypothesis, we have    C  r n    (  μ α  ,  π α  )  ⊆  C  r  n − 1     (  μ α  ,  π α  )  ⊆ ⋯ ⊆  C  r 2    (  μ α  ,  π α  )  ⊆  C  r 1    (  μ α  ,  π α  )   , That is    A n  ⊆  A  n − 1   ⊆ ⋯ ⊆  A 2  ⊆  A 1   .



Next, we will prove   A i   is a maximal subset of   A  i − 1    in   I  r i   , where   k + 1 ≤ i ≤ n  .



Note that   A 1  =supp  (  μ α  ,  π α  )   is the basis of   ( E ,  I  r 1   )  .



Assume that there exists    A i  ∈  I  r i     (  2 ≤ i ≤ n  ) such that   A i   is not a maximal subset of   A  i − 1    in   I  r  i − 1    . Then there is   B ∈  I  r i     such that    A i  ⊂ B   and B is a maximal subset of   A  i − 1   .



Let    (  μ β  ,  π β  )  ∈ I F S  ( E )    and    π β   ( x )  = 0   for each   x ∈ E  , and if   i = 2  , let


  h  (  μ β   ( x )  ,  π β   ( x )  )  =       r 1               ,     x ∈  A 1  \ B ,        r 2               ,     x ∈ B \  A 2  ,       h (  μ α   ( x )  ,  π α   ( x )  )    ,     x ∈  A 2  .       











If   3 ≤ i ≤ n  , let


  h  (  μ β   ( x )  ,  π β   ( x )  )  =       r j               ,     x ∈  A j  \  A  j + 1   ,        r  i − 1                ,      x ∈  A  i − 1   \ B ,        r i               ,      x ∈ B \  A i  ,       h (  μ α   ( x )  ,  π α   ( x )  )    ,     x ∈  A i  .       








where   j = 1 , 2 , ⋯ , i − 2  . Then    (  μ α  ,  π α  )  ⪯  (  μ β  ,  π β  )   . Since    C  r i    (  μ β  ,  π β  )  = B ∈  I  r i    , it follows that    C  r j    (  μ β  ,  π β  )  =  A j  ∈  I  r j    , for any   1 ≤ j ≤ i − 1  , and    C  r j    (  μ β  ,  π β  )  =  C  r j    (  μ α  ,  π α  )  ∈  I  r j     for any   i + 1 ≤ j ≤ n  . Then, by Theorem 6,   (  μ β  ,  π β  ) ∈ ψ  , which contradicts that   (  μ α  ,  π α  )   is an   I F B   of   ( E , ψ )  .



Conversely, from condition (II) (III),    A 1  =  supp  (  μ α  ,  π α  )   is a crisp basis of matroid   ( E ,  I  r 1   )  ,    R +   (  μ α  ,  π α  )  ⊆  {  r 1  ,  r 2  , ⋯ ,  r n  }    and    C  r i    (  μ α  ,  π α  )  =  A i  ∈  I  r i     for any    r i  ∈  R +   (  μ α  ,  π α  )    (  i = 1 , 2 , ⋯ , n  ). It follows that   (  μ α  ,  π α  ) ∈ ψ   from Theorem 6. □





  (  μ α  ,  π α  )   is not an   I F B   of   ( E , ψ )  . Since   (  μ α  ,  π α  ) ∈ ψ   and   ( E , ψ )   is a closed   I F M  , there exists an   I F B    (  μ β  ,  π β  )   of   ( E , ψ )   such that    (  μ α  ,  π α  )  ≺  (  μ β  ,  π β  )   , so   m  (  μ α  ,  π α  )  ≤ m  (  μ β  ,  π β  )    and supp  (  μ α  ,  π α  ) ⊆  supp  (  μ β  ,  π β  )  .



Case 1. supp  (  μ α  ,  π α  ) =   supp  (  μ β  ,  π β  )  . Since   (  μ β  ,  π β  )   is an   I F B   of   ( E , ψ )  , then    π β   ( x )  = 0   for each   x ∈ E   and    A 1  =  supp  (  μ α  ,  π α  ) =  supp  (  μ β  ,  π β  )   is a basis of matroid   ( E ,  I  r 1   )  . As    A 1  ⊇  A 2  ⊇ ⋯ ⊇  A  n − 1   ⊇  A n    and   A i   is a maximal subset of   A  i − 1   , where    A i  ∈  I  r i     (  i = 2 , 3 , ⋯ , n  ), for any   x ∈  A n   ,   h  (  μ β   ( x )  ,  π β   ( x )  )  =  r n    and for any   x ∈  A i  \  A  i + 1     (  i = 1 , 2 , ⋯ , n − 1  ),   h  (  μ β   ( x )  ,  π β   ( x )  )  =  r i   , for any   x ∈   supp  (  μ α  ,  π α  ) =  supp  (  μ β  ,  π β  )  , we have   h  (  μ α   ( x )  ,  π α   ( x )  )  = h  (  μ β   ( x )  ,  π β   ( x )  )   . Since    π α   ( x )  =  π β   ( x )  = 0   for each   x ∈ E  ,   H  (  μ α   ( x )  ,  π α   ( x )  )  = H  (  μ β   ( x )  ,  π β   ( x )  )   . It follows that    (  μ α  ,  π α  )  =  (  μ β  ,  π β  )   , which contradicts that    (  μ α  ,  π α  )  ≺  (  μ β  ,  π β  )   ,   m  (  μ α  ,  π α  )  ≤ m  (  μ β  ,  π β  )   .



Case 2. supp  (  μ α  ,  π α  ) ⊂   supp  (  μ β  ,  π β  )  . Since   (  μ β  ,  π β  )   is an   I F B   of   ( E , ψ )  ,    C  m (  μ β  ,  π β  )    (  μ β  ,  π β  )  =   supp  (  μ β  ,  π β  )   is a basis of matroid   ( E ,  I  r 1   )  . From condition (II),    C  m (  μ α  ,  π α  )    (  μ α  ,  π α  )  =  supp  (  μ α  ,  π α  )   is also a basis of matroid   ( E ,  I  r 1   )  . Then supp  (  μ α  ,  π α  ) =  supp  (  μ β  ,  π β  )  , which is in contradiction with supp  (  μ α  ,  π α  ) ⊂  supp  (  μ β  ,  π β  )  .



Therefore,   (  μ α  ,  π α  )   is an   I F B   of   ( E , ψ )  .



The following corollary is obvious.



Corollary 1.

Suppose   ( E , ψ )   is a closed   G − V    I F M   with the fundamental sequence   0 =  r 0  <  r 1  <  r 2  < ⋯ <  r n  ≤ 1   and the induced matroid sequence    M  r 1   ⊃  M  r 2   ⊃ ⋯ ⊃  M  r n    , where    M  r i   =  ( E ,  I  r i   )    (  1 ≤ i ≤ n  ). Let    (  μ α  , 0 )  ∈ I F S  ( E )   . Then   (  μ α  , 0 )   is an   I F B   of   ( E , ψ )   if and only if the   I F S    (  μ α  , 0 )   satisfies:




	(1) 

	
  A 1   is a crisp basis of   ( E ,  I  r 1   )  , where    A 1  = s u p p  (  μ α  , 0 )   .




	(2) 

	
There exist    A 2  , ⋯ ,  A  n − 1   ,  A n    (   A i  ∈  I  r i    ) which satisfy    A 1  ⊇  A 2  ⊇ ⋯ ⊇  A  n − 1   ⊇  A n    and   A i   is a maximal subset of   A  i − 1    (  i = 2 , 3 , ⋯ , n  ) such that   h  (  μ α   ( x )  , 0 )  =  μ α   ( x )  =  r n    for any   x ∈  A n   , and   h  (  μ α   ( x )  , 0 )  =  μ α   ( x )  =  r i    for any   x ∈  A i  \  A  i + 1    ,   i = 1 , 2 , ⋯ , n − 1  .











Theorem 14.

Let E be a finite set. Suppose that there is the same fundamental sequence   0 =  r 0  <  r 1  <  r 2  < ⋯ <  r n  ≤ 1   and the same induced matroid sequence    M  r 1   ⊃  M  r 2   ⊃ ⋯ ⊃  M  r n     for   G − V   fuzzy matroid   ( E ,  ψ ¯  )   and   G − V    I F M    ( E , ψ )  , where    M  r i   =  ( E ,  I  r i   )    (  i = 1 , 2 , ⋯ , n − 1  ). Then    μ α  ∈ F S  ( E )    is a fuzzy basis of   F M = ( E ,  ψ ¯  )   if and only if    (  μ α  , 0 )  ∈ I F S  ( E )    is an   I F B   of   ( E , ψ )  .





Proof. 

By the hypothesis and Theorem 12, we have   μ α   is a fuzzy basis of   ( E ,  ψ ¯  )   if and only if the fuzzy set   μ α   satisfies:




	(1)

	
  A 1   is a basis of   ( E ,  I  r 1   )  , where   A 1  =supp  μ α  .




	(2)

	
There exist    A 2  , ⋯ ,  A  n − 1   ,  A n    which satisfy   A i   is a maximal subset of   A  i − 1    (  i = 2 , 3 , ⋯ , n  ) and    A 1  ⊇  A 2  ⊇ ⋯ ⊇  A  n − 1   ⊇  A n    such that for any   x ∈  A n   ,    μ α   ( x )  =  r n   , and for any   x ∈  A i  \  A  i + 1      ( i = 1 , 2 , ⋯ , n − 1 ) ,     μ α   ( x )  =  r i   .









These two conditions hold if and only if   (  μ α  , 0 )   satisfies:




	(1)

	
   A 1  = s u p p  (  μ α  , 0 )    is a crisp basis of matroid   ( E ,  I  r 1   )  .




	(2)

	
For the above    A i  , i = 1 , 2 , ⋯ , n  , we have for any   x ∈  A n   ,   h  (  μ α   ( x )  , 0 )  =  μ α   ( x )  =  r n   , and for any   x ∈  A i  \  A  i + 1      ( i = 1 , 2 , ⋯ , n − 1 ) ,    h  (  μ α   ( x )  , 0 )  =  μ α   ( x )  =  r i   .









□






5. A Tree Structure of a Closed   G − V    IFM 


From Theorem 13, a tree structure of a closed   G − V    I F M   is proposed below, which is similar to the tree structure introduced in [25].



Let   ( E , ψ )   be a closed   G − V    I F M   on E,   0 =  r 0  <  r 1  <  r 2  < ⋯ <  r n  ≤ 1   be the fundamental sequence and    M  r 1   ⊃  M  r 2   ⊃ ⋯ ⊃  M  r n     be the   I F M  -induced matroid sequence (where    M  r i   =  ( E ,  I  r i   )    (  1 ≤ i ≤ n  )). Suppose that   (  μ α  ,  π α  )   is an   I F B   of   ( E , ψ )   and    B 1  =  supp  (  μ α  ,  π α  )   is a crisp basis of matroid   ( E ,  I  r 1   )  . Then, from Theorem 13, there exists a sequence    B  2 , 1   , ⋯ ,  B  n − 1 , 1   ,  B  n , 1     (   B  i , 1   ∈  I  r i    ,   i = 2 , 3 , ⋯ , n  ) such that   B  i , 1    is a maximal subset of   B  i − 1 , 1    (  i = 2 , 3 , ⋯ , n  ) in   I  r i    and    B 1  ⊇  B  2 , 1   ⊇ ⋯ ⊇  B  n − 1 , 1   ⊇  B  n , 1    . Obviously,    C  r i    (  μ α  ,  π α  )  =  B  i , 1    ,   i = 1 , 2 , ⋯ , n  . The number of the sequence    B 1  ,  B  2 , 1   , ⋯ ,  B  n − 1 , 1   ,  B  n , 1     is determined by the number of the maximal subsets of the previous maximal subset in the next level based on the same   I F B    (  μ α  ,  π α  )  . Obviously, each of the sequence can be constructed a brunch of a tree. All the sequences of the same   I F B    (  μ α  ,  π α  )   can be constructed a tree. Since there are many   I F B s  , there are many trees which become a forest. The forest is called a tree structure of the closed   G − V    I F M    ( E , ψ )   (Figure 1).



Definition 12.

The set of trees constructed by the sequences in Theorem 13 is the tree structure of a closed   G − V    I F M    ( E , ψ )  , denoted by   T ( E , ψ )   (T for short) (Figure 1), which is defined below.





Remark 1.

There is one branch corresponding to a leaf in T and vice versa. From Theorem 13 and the construction of T, a branch of T and an   I F B   of   ( E , ψ )   are one-to-one corresponding. Thus, for   ( E , ψ )  , the number of the   I F B   is equal to the number of leaves   (  B  n , j   )   of T.





Example 1.

Let   E = { a , b , c }  ,    I 1  =  { ∅ ,  { a }  ,  { b }  }   ,    I  1 / 3   =  { ∅ ,  { a }  ,  { b }  ,  { c }  ,  { a , b }  ,  { a , c }  }   ,    I  1 / 5   =  { ∅ ,  { a }  ,  { b }  ,  { c }  ,  { a , b }  ,  { a , c }  ,  { b , c }  }   . Then   ( E ,  I 1  )  ,   ( E ,  I  1 / 3   )   and   ( E ,  I  1 / 5   )   are all matroids, and   I  1 / 5   ,   I  1 / 3   ,   I 1  . Let


    I r  =      I  1 / 5      ,  0 < r ≤  1 5  ,       I  1 / 3      ,   1 5  < r ≤  1 3  ,        I 1         ,   1 3  < r ≤ 1 .        








and let   ψ = {  (  μ α  ,  π α  )  ∈ I F S  ( E )  |  C r   (  μ α  ,  π α  )  ∈  I r  }  , where   r ∈ ( 0 , 1 ]  . From Definition 2.16,   ( E , ψ )   is a closed   G − V    I F M  . The tree structure T is shown in Figure 2.





From Figure 2, there are three trees and five leaves in T. By Remark 1, there are five   I F B s   of   ( E , ψ )  , which are as follows:


   (  μ  α 1    ( x )  ,  π  α 1    ( x )  )  =      ( 1 , 0 )     ,  x = a ,       (  1 3  , 0 )     ,  x = b ,       ( 0 , 0 )     ,  x = c .       










   (  μ  α 2    ( x )  ,  π  α 2    ( x )  )  =      (  1 3  , 0 )     ,  x = a ,       ( 1 , 0 )     ,  x = b ,       ( 0 , 0 )     ,  x = c .       










   (  μ  α 3    ( x )  ,  π  α 3    ( x )  )  =      ( 1 , 0 )     ,  x = a ,       ( 0 , 0 )     ,  x = b ,       (  1 3  , 0 )     ,  x = c .       










   (  μ  α 4    ( x )  ,  π  α 4    ( x )  )  =      ( 0 , 0 )     ,  x = a ,       ( 1 , 0 )     ,  x = b ,       (  1 5  , 0 )     ,  x = c .       










   (  μ  α 5    ( x )  ,  π  α 5    ( x )  )  =      ( 0 , 0 )     ,  x = a ,       (  1 5  , 0 )     ,  x = b ,       (  1 3  , 0 )     ,  x = c .       











Then the values of the similarity function h for the five   I F B s   are below:


  h  (  μ  α 1    ( x )  ,  π  α 1    ( x )  )  =     1    ,  x = a ,       1 3     ,  x = b ,      0    ,  x = c .       










  h  (  μ  α 2    ( x )  ,  π  α 2    ( x )  )  =      1 3     ,  x = a ,      1    ,  x = b ,      0    ,  x = c .       










  h  (  μ  α 3    ( x )  ,  π  α 3    ( x )  )  =     1    ,  x = a ,      0    ,  x = b ,       1 3     ,  x = c .       










  h  (  μ  α 4    ( x )  ,  π  α 4    ( x )  )  =     0    ,  x = a ,      1    ,  x = b ,       1 5     ,  x = c .       










  h  (  μ  α 5    ( x )  ,  π  α 5    ( x )  )  =     0    ,  x = a ,       1 5     ,  x = b ,       1 3     ,  x = c .       











Next, we discuss the properties of T for   ( E , ψ )  .



Theorem 15.

Let   ( E , ψ )   be a closed   G − V    I F M   on E,   0 =  r 0  <  r 1  < ⋯ <  r n  ≤ 1   be the fundamental sequence and    M  r 1   ⊃  M  r 2   ⊃ ⋯ ⊃  M  r n     (where    M  r i   =  ( E ,  I  r i   )    (  1 ≤ i ≤ n  )) be the induced matroid sequence. Let T be the tree structure of   ( E , ψ )  . Then each basis   B i  k i    of the induced matroid   ( E ,  I  r i   )  (  i = 1 , 2 , ⋯ , n .    k i   is a positive integer) is in   r i   level of T.





Proof. 

For any i(  i = 1 , 2 , ⋯ , n  ), if   i = 1  , since each basis   B 1  k 1    of matriod    M  r 1   =  ( E ,  I  r 1   )    is the root of each tree in T,   B 1  k 1    is in   r 1   level.



If   i ≠ 1  (  i = 2 , 3 , ⋯ , n  ), for any basis   B i  k i    of matroid    M  r i   =  ( E ,  I  r i   )   —since    ( E ,  I  r i   )  ⊂  ( E ,  I  r  i − 1    )   , it follows that    B i  k i   ∈  I  r  i − 1     —then there exists a basis   B  i − 1   k  i − 1     of   ( E ,  I  r  i − 1    )   such that    B i  k i   ⊆  B  i − 1   k  i − 1     . Obviously,   B i  k i    is a maximal subset of   B  i − 1   k  i − 1     in   I  r i   . It implies that   B i  k i    is in   r i   level of T.



Note that the converse of Theorem 15 does not hold. In Example 1,   { a , b }  ,  { a , c }   are both the bases of matroid   ( E ,  I  1 / 3   )   in the second level, but   { b }  ,  { c }   are not the bases. □





Theorem 16.

Let   ( E , ψ )   be a closed   G − V    I F M   on E,   0 =  r 0  <  r 1  < ⋯ <  r n  ≤ 1   be the fundamental sequence and    M  r 1   ⊃  M  r 2   ⊃ ⋯ ⊃  M  r n     (where    M  r i   =  ( E ,  I  r i   )    (  1 ≤ i ≤ n  )) be the induced matroid sequence. Let T be the tree structure of   ( E , ψ )  . Suppose that   B i   is the collection of the sets in   r i   level of T, where   i = 1 , 2 , ⋯ , n  . Let    J  r i   =  { X ∣ X ⊆ B , B ∈  B i  }   . Then    J  r i   =  I  r i    .





Proof. 

For any   Y ∈  I  r i    , by the hypothesis, there is a basis B of matroid   ( E ,  I  r i   )   such that   Y ⊆ B  . By Theorem 15, all bases of   ( E ,  I  r i   )   are in   r i   level T, where   i = 1 , 2 , ⋯ , n  . Then   B ∈  B i   . It implies that   Y ∈  { X | X ⊆ B , B ∈  B i  }  =  J  r i    . Thus,    I  r i   ⊆  J  r i    .



On the other hand, for any   Y ∈  J  r i    , there exists a set   B ∈  B i    in   r i   (  i = 1 , 2 , ⋯ , n  ) level of T such that   Y ⊆ B  . By Theorem 13,   B ∈  I  r i    ,   Y ∈  I  r i    . That implies that    J  r i   ⊆  I  r i    .



Therefore,    J  r i   =  I  r i    . □





Remark 2.

Let   ( E , ψ )   be a closed   G − V    I F M   on E and T be its tree structure. Suppose that   B i   is the collection of the maximal subsets in   r i   level of T. Then the bases of    M  r i   =  ( E ,  I  r i   )    (  i = 1 , 2 , ⋯ , n  ) belong to   B i  .





Theorem 17.

Let   ( E , ψ )   be a closed   G − V    I F M   on E and T be its tree structure. Suppose that the sequence    B 1  ,  B 2  , ⋯ ,  B n    (  B i   is in   i − t h   level) of T satisfying    B n  ≠ ∅   and    B 1  ⊃  B 2  ⊃ ⋯ ⊃  B n   . For any   x ∈  B n   , let    (  μ α  ,  π α  )  ∈ I F S  ( E )    and    k n  = h  (  μ α   ( x )  ,  π α   ( x )  )    and for any   x ∈  B i  \  B  i + 1     (  i = 1 , 2 , ⋯ , n − 1  ), let    k i  = h  (  μ α   ( x )  ,  π α   ( x )  )   . Then   0 =  k 0  ,  k 1  ,  k 2  , ⋯ ,  k n    is the fundamental sequence of   ( E , ψ )  . 





Proof. 

Let   0 =  r 0  <  r 1  <  r 2  < ⋯ <  r n  ≤ 1   be the fundamental sequence of   ( E , ψ )  . By the hypothesis and Theorem 13,   (  μ α  ,  π α  )   is a fuzzy basis of   ( E , ψ )  . Thus    R +   (  μ α  ,  π α  )  ⊆  {  r 1  ,  r 2  , ⋯ ,  r n  }   . Suppose that a sequence    B 1  ,  B 2  , ⋯ ,  B n    satisfies    B n  ≠ ∅   and    B 1  ⊃  B 2  ⊃ ⋯ ⊃  B n   . It follows that    B i   \   B  i + 1   ≠ ∅   (  i = 1 , 2 , ⋯ , n − 1  ). Then    k i  = h  (  μ α  ,  π α  )  ≠ 0   for any i (  i = 1 , 2 , ⋯ , n − 1  ) and    R +   (  μ α  ,  π α  )  =  {  k 1  ,  k 2  , ⋯ ,  k n  }   . Thus    {  k 1  ,  k 2  , ⋯ ,  k n  }  ⊆  {  r 1  ,  r 2  , ⋯ ,  r n  }   . That implies that    {  k 1  ,  k 2  , ⋯ ,  k n  }  =  {  r 1  ,  r 2  , ⋯ ,  r n  }   .



Therefore,    k 0  ,  k 1  ,  k 2  , ⋯ ,  k n    is the fundamental sequence of   ( E , ψ )  . □






6. Conclusions


In this paper, the   I F B   of   G − V    I F M s   was defined by using the related concept of   G − V   fuzzy matroids. Some conclusions of   G − V   fuzzy matroids have been extended to   G − V    I F M s  . Especially, the judgement of an   I F B   was presented and proven, and the tree structure of closed   G − V    I F M s   and its properties were discussed. We will discuss another important concept and its properties of   G − V    I F M s  –intuitionistic fuzzy circuits in a subsequent article.
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	  G − V   fuzzy matroid or   G − V     F M  
	Fuzzy matroid proposed by Goetschel and Voxman



	  I F M  
	Intuitionistic fuzzy matroid



	  I F B  
	Intuitionistic fuzzy basis



	  F S  
	Fuzzy set



	  I F S  
	Intuitionistic fuzzy set
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Figure 1. The tree structure of a closed G-V   I F M  . 
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Figure 2. The tree structure of Example 5.3. 
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