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Abstract: In this paper, we review the Fourier-spectral method for some phase-field models:
Allen–Cahn (AC), Cahn–Hilliard (CH), Swift–Hohenberg (SH), phase-field crystal (PFC),
and molecular beam epitaxy (MBE) growth. These equations are very important parabolic partial
differential equations and are applicable to many interesting scientific problems. The AC equation is
a reaction-diffusion equation modeling anti-phase domain coarsening dynamics. The CH equation
models phase segregation of binary mixtures. The SH equation is a popular model for generating
patterns in spatially extended dissipative systems. A classical PFC model is originally derived to
investigate the dynamics of atomic-scale crystal growth. An isotropic symmetry MBE growth model
is originally devised as a method for directly growing high purity epitaxial thin film of molecular
beams evaporating on a heated substrate. The Fourier-spectral method is highly accurate and simple
to implement. We present a detailed description of the method and explain its connection to MATLAB
usage so that the interested readers can use the Fourier-spectral method for their research needs
without difficulties. Several standard computational tests are done to demonstrate the performance
of the method. Furthermore, we provide the MATLAB codes implementation in the Appendix A.

Keywords: Fourier-spectral method; phase-field equations; code implementations

1. Introduction

In this paper, we review the unconditionally gradient stable Fourier-spectral method for
several phase-field equations. The phase-field models are derived from the variational approach
that minimizes the free energy of the system. Thus, the derived system follows a law of energy
dissipation, which configures thermodynamic consistency, and hence leads to a mathematically
well-posed model. The spectral methods, which belong to the collection of weighted residual
methods, are originally derived to solve the spatial part of partial differential equations. For detailed,
rigorous, and numerical aspect information on spectral methods, see [1,2] and the references therein.
In spectral methods, one usually takes a finite set of the expansion functions (so called trial or
basis functions) to represent the numerical solution as a linear combination of those functions.
Choosing the expansion parts is important because they form a basis for entire spectral domain.
Furthermore, we implicitly assume that those functions are smooth, therefore the most common
choices are orthogonal polynomials and trigonometric functions. Since our focus is the Fourier-spectral
method, the trigonometric basis functions are regarded as the trial functions. Moreover, instead of
regarding entire continuous space, the representation is imposed only at discrete points; this is why
this method is so called pseudo-spectral method. It is enable to one can save the computing resources
in evaluating differentiation and employ the efficient algorithm such as the fast Fourier transform
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when the number of grid points is even. In addition, the error is decreasing exponentially when one
employs the Fourier-spectral method while the finite difference methods lead to the algebraically
decreasing order in fact. Figure 1 shows the order of spectral accuracy compared with the order
of accuracy of finite difference. In this case, we use a simple function u(x) = log(10 + cos x);
hence u′(x) = − sin x/(10+ cos x). An error is defined as Error = max1≤i≤N |u′(xi)−Dui|where Dui
is an approximation of u′(xi).
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Figure 1. Convergence of second-order finite difference and Fourier-spectral method where
u(x) = log(10 + cos x). Note that both axes are on log-scale.

According to Figure 1, the error is decreasing exponentially via Fourier-spectral method indeed.
Furthermore, we verify the efficiency of the Fourier-spectral method employing the following
initial-boundary value problem in one-dimensional space with the 2π-periodic boundary condition.

ut = uxx , u(x, 0) = sin(x); (x, t) ∈ [0, 2π]× (0, 1] . (1)

Then, the exact solution of Equation (1) is u(x, t) = e−t sin(x). Define uk
i as a numerical

approximation to u(xi, k∆t) for 1 ≤ k ≤ Nt where ∆t is a time step and Nt is the number of iterations.
Figure 2 depicts the convergence of second-order central finite difference scheme and Fourier-spectral
method. Note that the backward difference method in time is employed to both cases and an error

is defined as Error =
√

∑N
i=1(u(xi, 1)− uNt

i )2/N where N is the number of grid points, hence the
number of modes, and it is easily verified that the Fourier-spectral method requires relatively few grid
points within similar accuracy indeed.
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Figure 2. Convergence of second-order finite difference and Fourier-spectral method with backward
difference in time to Equation (1). Note that both axes are on log-scale and ∆t = 0.1.
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Sometimes, an interpolant cannot apply to less flexible domains since the method employs
implicitly periodic or homogeneous boundary conditions though there is an advantage in numerical
accuracy. Therefore, a somewhat subtle additional process is required to employ complex or mixed
boundary conditions. Moreover, it causes Gibbs phenomenon if there is a point of discontinuity, i.e.,
when it has a sharp gradient. Figure 3 shows the oscillations near discontinuities when one employs
the Fourier interpolant.
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Figure 3. (a–d) are the Gibbs phenomena due to implement of the Fourier interpolant. Note that
N denotes the number of terms in polynomial. The values are overshooted near discontinuities or
sharp gradients.

Moreover, we set all the mobility terms in phase-field models as constant for convenience,
more precisely set to 1 without loss of generality, since it requires further manipulation to handle a
variable mobility in spectral methods [3].

The Allen–Cahn (AC) equation is discussed first. It describes the temporal evolution of a
non-conserved order field during anti-phase domain coarsening [4]:

∂φ(x, t)
∂t

= − F′(φ(x, t))
ε2 + ∆φ(x, t) , x ∈ Ω, t ≥ 0, (2)

where φ(x, t) is defined as the difference between the concentrations of the two components in a
mixture, which varies on −1 to 1, F(φ) = 0.25(φ2 − 1)2 is the free energy potential, and ε is a small
constant related to the interfacial energy. Note that F′(φ) = φ3 − φ. The AC equation has a wide range
of applications such as mean curvature flows, two-phase incompressible fluids, complex dynamics
of dendritic growth, image inpainting, and image segmentation, see Figure 4 for some of these
examples [5–7].

Lee and Lee [8] presented unconditionally energy stable first- and second-order semi-analytical
Fourier-spectral methods for the AC equation to reduce the errors caused by large time step.
Those methods were originated by decomposition of original equation into two parts, linear and nonlinear,
that have closed-form solutions; hence operator splitting steps ensure high-order nonlinear solvers.
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Figure 4. (a) Tissue growth on bioscaffolds. Reprinted from [5] with permission from MDPI. (b) Image
segmentation. Reprinted from [6] with permission from Hindawi. (c) Crystal growth. Reprinted
from [7] with permission from KSIAM.

The next is a similar type to the previous one, the Cahn–Hilliard (CH) equation, which models
the process of spinodal decomposition in conserved binary alloys [9]:

∂φ(x, t)
∂t

= ∆
(

F′(φ(x, t))− ε2∆φ
)

, x ∈ Ω, t ≥ 0. (3)

The CH equation is widely used in applications such as phase separation, topology optimization,
multiphase incompressible fluid flows, image inpainting, surface reconstruction, diblock copolymer,
tumor growth simulation, and microstructures with elastic inhomogeneity, see Figure 5 for some of
these examples [10].

Recently in [11], the discretization via nonlinear stabilized splitting scheme to the CH equation
was reviewed and was solved by using a nonlinear multigrid method. Further in [12], Lee researched
energy stability of the second-order strong-stability-preserving implicit-explicit Runge–Kutta methods
for the CH equation. Christlieb et al. [13] presented the unconditionally gradient nonlinearly stabilized
method for the CH equation, which is originally proposed by Eyre [14], within Fourier method
and proposed an iterative scheme which is convergent for large time steps. There are a bunch
of research related in AC and CH equations so far, some selected literatures are listed as follows.
Montanelli and Bootland [15] proposed several exponential integration formula and compared their
performance within stiff partial differential equations including AC and CH models. Such models are
rewritten to sum of linear operator part with high-order terms and nonlinear operator part, and then
Fourier-spectral method is applied in order to employ exponential integrator to this semilinear ordinary
differential equations. Zhang and Liu [16] used several AC or CH type equations to represent the spatial
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patterns in ecological and biological system. Shen and Yang [17] presented numerical approximations
of the AC and CH equations for semi-implicit or implicit schemes which are unconditionally energy
stable, with stability analysis and error estimates based on spectral-Galerkin method. The results
confirmed that spectral methods are suitable for diffusive interface models. Regarding on this respect
especially, we introduce a nonlocal CH equation, which is appropriate to apply the Fourier-spectral
method, that can model microphase separation in diblock copolymers, which consist of two different
types of monomers [18] and an explicit form is listed as follows:

∂φ(x, t)
∂t

= ∆
(

F′(φ(x, t))− ε2∆φ
)
− σ

(
φ(x, t)− φ

)
, x ∈ Ω, t ≥ 0, (4)

where σ is inversely proportional to the square of the total chain length of the copolymer and φ =∫
Ω φ(x, 0)/|Ω| is the average concentration over the domain Ω. Block copolymer is a linear-chain

molecule consists of at least two subchains connected to each other to make a polymer chain. A diblock
copolymer exists if the subchain consists of two distinct monomer blocks. Related mathematical models
have been developed in order to investigate the behaviors of phase separation of block copolymers
and to find an available technique to manufacture nano-structured materials [19–22]. There is a direct
applications of Equation (4) in [23] recently, where the authors employ the spectral method and see the
references therein to check more details.

(a)

(b)

(c)

(d)

Figure 5. (a) Image inpainting, (b) microstructures with elastic inhomogeneity, (c) topology
optimization, and (d) tumor growth simulation. Reprinted from [10] with permission from Hindawi.
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The Swift–Hohenberg (SH) equation was originally derived to model patterns from the influence
of thermal fluctuations in hydrodynamics [24]:

∂φ(x, t)
∂t

= −
(

φ3 + (1− ε)φ + 2∆φ + ∆2φ
)

, x ∈ Ω, t ≥ 0, (5)

where φ is a density field and ε is a temperature related positive constant. There are several applications
to employ this model such as cellular materials, metallurgy, laser dynamics, electrohydrodynamics,
crystallography, etc. See [25–28] and the references therein for more details. In addition, we introduce a
classical phase field crystal (PFC) equation which takes account for atomic-crystallization growth [29]:

∂φ(x, t)
∂t

= ∆
[
φ3 + (1− ε)φ + 2∆φ + ∆2φ

]
, x ∈ Ω, t ≥ 0. (6)

This model has a variety of applications such as crystallization in liquid-liquid interface with
undercooled material, isotropic phase separation, etc. On the atomistic/molecular scale freezing,
a theoretical approach to undercooled liquids crystallization has been studied in [30,31], and the
efficient numerical methods based on the operator splitting method or spectral method are developed
for the phase-field crystal model [32,33]. The operator splitting method with Fourier-spectral method
can relax the time step restriction or shorten the computation time depending on which a solver is
applied for each stage.

A molecular beam epitaxy (MBE) growth model describes a process in which a thin single crystal
layer is deposited on a single crystal substrate using molecular beams [34,35]:

∂φ(x, t)
∂t

= −ε∆2φ−∇ ·
[
(|1−∇φ|2)∇φ

]
, x ∈ Ω, t ≥ 0. (7)

The MBE model is a substantially used approach for thin-film deposition of a surface or
interface quality determined to single-monolayer precision. This procedure is widely applied in
semiconductor heterostructures and persistently studied topic in material science. Consequently,
considerable mathematical models have been evolved to study the epitaxy dynamics, covering from
continuum models to molecular dynamical simulations. The readers are referred to the following references
for more details [36–43].

The main purpose of this paper is to present brief reviews, to describe numerical solution
algorithms, and to provide the MATLAB code implementations of the unconditionally gradient
stable Fourier-spectral method for the several phase-field equations. In particular, we highlight the
caution that needs to be taken when applying the MATLAB based fast Fourier transform to the
Fourier-spectral method.

The outline of this paper is as follows. The numerical solutions in two- and three-dimensional
cases of the above phase-field models are described in Sections 2 and 4, respectively. In Sections 3 and 5,
we present the basic numerical simulations to the stated phase-field models in both two- and
three-dimensional cases. We finalize the paper with the conclusion in Section 6. In the Appendix A,
we provide the MATLAB codes for the numerical implementation of the presented equations.

2. Numerical Solutions in 2D

In this section, we present unconditionally stable Fourier-spectral methods for the phase-field
models in two-dimensional space Ω = [lx, rx] × [ly, ry]. Let Nx, Ny be positive even integers and
Lx = rx − lx, Ly = ry − ly be the length of each direction, respectively; hence define hx = Lx/Nx

and hy = Ly/Ny as the spatial step size in each direction, respectively. We denote discretized points
as (xm, yn) = (lx + mhx, ly + nhy) where 0 ≤ m ≤ Nx and 0 ≤ n ≤ Ny are integers. Let φk

mn be an
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approximation of φ(xm, yn, tk), where tk = k∆t and ∆t is the temporal step size. For the given data
{φk

mn|m = 1, . . . , Nx and n = 1, . . . , Ny}, the discrete Fourier transform is defined as

φ̂k
pq =

Nx

∑
m=1

Ny

∑
n=1

φk
mne−i(ξpxm+ηqyn), − Nx

2
+ 1 ≤ p ≤ Nx

2
, −

Ny

2
+ 1 ≤ q ≤

Ny

2
, (8)

where ξp = 2πp/Lx and ηq = 2πq/Ly. The inverse discrete Fourier transform is

φk
mn =

1
Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

φ̂k
pqei(ξpxm+ηqyn). (9)

Note that we can obtain spectral derivatives as if we perform analytic differentiations in the
Fourier space. We assume that φ(x, y, t) is sufficiently smooth and extended to continuous version
of the numerical approximation φk

mn. The following shows step-by-step description of how the
differentiation works in the Fourier transform with finite basis.

∂

∂x
φ(x, y, t) =

1
Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

(iξp)φ̂(ξp, ηq, t)ei(ξpx+ηqy),

∂

∂y
φ(x, y, t) =

1
Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

(iηq)φ̂(ξp, ηq, t)ei(ξpx+ηqy).

(10)

This process enables one can derive spectral derivatives in the Fourier space easily, not differentiate
directly in the physical space. Therefore, we can represent the Laplacian to coefficients in the Fourier
space as follows:

∆φ(x, y, t) =
1

Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

∆̂φ(ξp, ηq, t)ei(ξpx+ηqy)

=
1

Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

−(ξ2
p + η2

q)φ̂(ξp, ηq, t)ei(ξpx+ηqy),

(11)

where the first line is the definition of the inverse Fourier transform and the second line is just applying
Equation (10) twice to x- and y-direction to φ(x, y, t) and its Fourier transform.

Now we present the numerical solutions of phase-field equations. First, we derive the numerical
solution of the AC equation. We apply the linearly stabilized splitting scheme [14] to Equation (2).

φk+1
mn − φk

mn
∆t

= −2φk+1
mn + f (φk

mn)

ε2 + (∆φk+1)mn, (12)

where f (φ) = φ3 − 3φ. Thus, Equation (12) can be transformed into the discrete Fourier space
as follows:

φ̂k+1
pq − φ̂k

pq

∆t
= −

2φ̂k+1
pq + f̂ k

pq

ε2 −
(

ξ2
p + η2

q

)
φ̂k+1

pq . (13)

Therefore, we obtain the following discrete Fourier transform

φ̂k+1
pq =

ε2φ̂k
pq − ∆t f̂ k

pq

ε2 + ∆t[2 + ε2(ξ2
p + η2

q)]
. (14)
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Then, the updated numerical solution φk+1
mn can be computed using Equation (9):

φk+1
mn =

1
Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

φ̂k+1
pq ei(ξpxm+ηqyn). (15)

Next, we obtain the numerical solution of the CH equation. We employ the linearly stabilized
splitting scheme [14] to Equation (3).

φk+1
mn − φk

mn
∆t

= ∆
(

2φk+1
mn − ε2(∆φk+1)mn + f (φk

mn)
)

mn
. (16)

Thus, Equation (16) can be transformed into the discrete Fourier space as follows:

φ̂k+1
pq − φ̂k

pq

∆t
= −

(
ξ2

p + η2
q

) (
2φ̂k+1

pq + ε2(ξ2
p + η2

q)φ̂
k+1
pq + f̂ k

pq

)
. (17)

Therefore, we obtain the following discrete Fourier transform

φ̂k+1
pq =

φ̂k
pq − (ξ2

p + η2
q)∆t f̂ k

pq

1 + ∆t[2(ξ2
p + η2

q) + ε2(ξ2
p + η2

q)
2]

. (18)

Then, the updated numerical solution φk+1
mn can be computed using Equation (9):

φk+1
mn =

1
Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

φ̂k+1
pq ei(ξpxm+ηqyn). (19)

Now, we present a numerical solution to the SH equation. In a similar manner, we discretize
Equation (5) as follows:

φk+1
mn − φk

mn
∆t

= −(1− ε)φk+1
mn − (∆2φk+1)mn − g(φk

mn)− 2(∆φk)mn, (20)

where g(φ) = φ3. Then we transform Equation (20) as

φ̂k+1
pq − φ̂k

pq

∆t
= −(1− ε)φ̂k+1

pq − (ξ2
p + η2

q)
2φ̂k+1

pq − ĝk
pq + 2(ξ2

p + η2
q)φ̂

k
pq. (21)

Therefore, we have the following result

φ̂k+1
pq =

φ̂k
pq + ∆t[2(ξ2

p + η2
q)φ̂

k
pq − ĝk

pq]

1 + ∆t[(1− ε) + (ξ2
p + η2

q)
2]

, (22)

and hence we have a numerical solution φk+1
mn as follows:

φk+1
mn =

1
Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

φ̂k+1
pq ei(ξpxm+ηqyn). (23)

Similarly, a numerical solution for the PFC model (6) is obtained by the same procedure

φk+1
mn − φk

mn
∆t

= ∆
(
(1− ε)φk+1

mn + (∆2φk+1)mn + g(φk
mn) + 2(∆φk)mn

)
mn

. (24)
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Then Equation (24) is transformed as

φ̂k+1
pq − φ̂k

pq

∆t
= −

(
ξ2

p + η2
q

) (
(1− ε)φ̂k+1

pq + (ξ2
p + η2

q)
2φ̂k+1

pq + ĝk
pq − 2(ξ2

p + η2
q)φ̂

k
pq

)
. (25)

Therefore, we have the following result

φ̂k+1
pq =

φ̂k
pq + ∆t[2(ξ2

p + η2
q)

2φ̂k
pq − (ξ2

p + η2
q)ĝk

pq]

1 + ∆t[(1− ε)(ξ2
p + η2

q) + (ξ2
p + η2

q)
3]

. (26)

Subsequently, we have a numerical solution φk+1
mn as follows:

φk+1
mn =

1
Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

φ̂k+1
pq ei(ξpxm+ηqyn). (27)

The remaining one is a numerical solution to the MBE growth model (7). Discretize Equation (7)
with an expanded divergence term ∆φ and treat this in implicit way,

φk+1
mn − φk

mn
∆t

= −ε(∆2φk+1)mn − (∆φk+1)mn +
(
∇ · [|(∇φk)mn|2(∇φk)mn]

)
mn

. (28)

We define b(φ) = ∇ · [|∇φ|2∇φ]. Then Equation (28) is transformed as

φ̂k+1
pq − φ̂k

pq

∆t
= −ε(ξ2

p + η2
q)

2φ̂k+1
pq + (ξ2

p + η2
q)φ̂

k+1
pq + b̂k

pq, (29)

where b̂k
pq is

b̂k
pq =

(
iξp

iηq

)
· âk

pq , (30)

âk
pq =

[([(
iξpφ̂k

pq
iηqφ̂k

pq

)]
IFT

·
[(

iξpφ̂k
pq

iηqφ̂k
pq

)]
IFT

)[(
iξpφ̂k

pq
iηqφ̂k

pq

)]
IFT

]
FT

. (31)

Note that [·]FT and [·]IFT represent the discrete Fourier transform and the discrete inverse Fourier
transform, respectively. Therefore, we have the following result

φ̂k+1
pq =

φ̂k
pq + ∆tb̂k

pq

1 + ∆t[ε(ξ2
p + η2

q)
2 − (ξ2

p + η2
q)]

, (32)

and then we update a numerical solution φk+1
mn as follows:

φk+1
mn =

1
Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

φ̂k+1
pq ei(ξpxm+ηqyn). (33)

3. Numerical Experiments in 2D

We perform several numerical investigations in this section. Note that we employ the 2π-periodic
boundary condition for overall numerical simulations in two-dimensional case. Sometimes, we employ
the initial conditions as random perturbations in domain since these are adequate to reaction-diffusion
type models. For AC and CH equations, since there are equilibrium solutions in one-dimensional
space as hyperbolic tangent profiles on infinite domain, we use those as initial conditions. Furthermore,
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we take the value of model parameter ε as an approximate value close to εm = hm/[2
√

2 tanh−1(0.9)],
which is used in finite difference methods [44].

3.1. The AC Equation

Numerical simulations are conducted to verify the mean curvature flow of the AC equation at
first. Initial conditions are given as follows:

φ(x, y, 0) = tanh
(

2−
√

x2 + y2
√

2ε

)
, (34)

φ(x, y, 0) = tanh
(

1.7 + 1.2 cos(6θ)−
√

x2 + y2
√

2ε

)
, (35)

where θ = tan−1(y/x) for (x, y) ∈ [−π, π]× [−π, π]. Figure 6 shows the numerical test results at t = 1
to the AC equation using the Fourier-spectral method. Here, we use Nx = Ny = 128, h = 2π/128,
ε = 0.05, and ∆t = 0.0001. The final time is T = 1. The results reflect the motion by mean curvature
characteristic of the AC equation.

-2 0 2
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2

(a)
-2 0 2

-2

0

2

(b)
-2 0 2

-2

0

2

(c)
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(d)
-2 0 2
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(e)
-2 0 2

-2

0
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(f)

Figure 6. (a) Initial condition (34). (b,c) Numerical solutions of the Allen–Cahn (AC) equation after
6000 and 10,000 iterations with ∆t = 0.0001, respectively. (d) Initial condition (35). (e,f) Numerical
solutions of the AC equation after 2000 and 10,000 iterations with ∆t = 0.0001, respectively.

Figure 7 shows the zero-level contours over time with the initial conditions used in Figure 6.
Moreover, an energy dissipation of the AC model (2) is depicted in Figure 8, where a total free

energy E(φ) is defined as

E(φ) =
∫

Ω

(
F(φ)

ε2 +
|∇φ|2

2

)
dx . (36)

Discretize Equation (36) with spectral derivatives, it yields

E h(φk) =
Nx

∑
m=1

Ny

∑
n=1

F(φk
mn)

ε2 h2 +
h2

Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

|ξpφ̂k
pq|2 + |ηqφ̂k

pq|2

2
, (37)
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since the following Parseval’s identity has been applied,

Nx

∑
m=1

Ny

∑
n=1
|φk

mn|2 =
1

Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

| ˆφk
pq|2 . (38)

-2 0 2

-2

0

2

(a)
-2 0 2

-2

0

2

(b)

Figure 7. (a,b) are the zero-level contours over time with the initial conditions Equations (34) and (35),
respectively.
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2

-2 0 2
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2

Figure 8. Energy dissipation over time to the AC equation with the initial condition (34). The final
time is T = 2.

3.2. The CH Equation

Next, we investigate the coarsening dynamics of the CH equation (3) numerically with the
following initial conditions,

φ(x, y, 0) = 0.05rand(x, y), (39)

φ(x, y, 0) = −0.45 + 0.05rand(x, y), (40)

where rand denotes a random number between −1 to 1 and (x, y) ∈ [−0.5, 0.5]× [−0.5, 0.5]. Figure 9
shows the numerical results at t = 0.01. We use Nx = Ny = 1000, h = 1/1000, ε = 0.0025, and ∆t =
0.00001. The results represent well the coarsening dynamics of the CH equation.
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(a) (b) (c)

Figure 9. (a–c) are the snapshots of numerical solutions of the Cahn–Hilliard (CH) equation with the
initial condition (39) using the Fourier-spectral method at t = 100∆t, 300∆t, and 1000∆t, respectively.

Figure 10 shows the numerical simulation results at t = 2.5 to the CH equation with the initial
condition (40). Here, Nx = Ny = 1000, h = hx = hy, ε = 0.0025, and ∆t = 0.001 are used.

(a) (b) (c)

Figure 10. (a–c) are the snapshots of numerical solutions of the CH equation with the initial condition
(40) at t = 100∆t, 500∆t, and 2500∆t, respectively.

Furthermore, an energy dissipation of the CH equation is illustrated in Figure 11. We define a
total free energy as follows:

E(φ) =
∫

Ω

(
F(φ) +

ε2

2
|∇φ|2

)
dx . (41)

Identical process represented in Equation (38) is adopted to Equation (41),

E h(φk) =
Nx

∑
m=1

Ny

∑
n=1

F(φk
mn)h

2 +
h2

Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

ε2

2
(|ξpφ̂k

pq|2 + |ηqφ̂k
pq|2) . (42)

We adopt the initial condition (39) and ∆t = 0.0001.
Further we present the phase separation behavior via nonlocal CH model for diblock copolymers.

An initial condition is given by

φ(x, y, 0) = φ̄ + 0.1rand(x, y) . (43)

A computational domain is given as [0, 2.4]× [0, 2.4]. Here, we use Nx = Ny = 200, h = 2.4/200,
φ̄ = −0.3, σ = 500, ε = h, and ∆t = 0.001. The final time is T = 2. Figure 12 shows the phase
separation behaviors called the hexagonal patterns over time.

Another initial condition is given as follows:

φ(x, y, 0) = φ̄ + 0.2rand(x, y) . (44)
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Figure 11. Energy dissipation over time to the CH equation with the initial condition (39).

(a) (b) (c)

Figure 12. (a–c) are the snapshots of numerical solutions of the nonlocal CH model (4) with the initial
condition (43) at t = 40∆t, 80∆t, and 2000∆t, respectively. For colored figures, see the manuscript of
web version.

A computational domain is given as [0, 3.2]× [0, 3.2]. Parameter values are set to Nx = Ny = 300,
h = 3.2/300, φ̄ = 0, σ = 100, ε = 3h, and ∆t = 0.1. The final time is T = 1000. Figure 13 describes the
phase separation behaviors called the lamellar patterns over time.

(a) (b) (c)

Figure 13. (a–c) are the snapshots of numerical solutions of the nonlocal CH model (4) with the initial
condition (44) at t = 20∆t, 60∆t, and 10000∆t, respectively. For colored figures, see the manuscript of
web version.

Consequently, we illustrate an energy dissipation of the nonlocal CH model (4). A total free
energy is given by

E(φ) =
∫

Ω

[(
F(φ) +

ε2

2
|∇φ|2

)
+

σ

2
|∇ψ|2

]
dx , (45)
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where ψ is obtained by solving −∆ψ = φ− φ̄. Now Equation (45) is discretized as

E h(φk) =
Nx

∑
m=1

Ny

∑
n=1

F(φk
mn)h

2 +
h2

Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

ε2

2
(|ξpφ̂k

pq|2 + |ηqφ̂k
pq|2)

+
h2

Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

σ

2
(|ξpψ̂k

pq|2 + |ηqψ̂k
pq|2) ,

(46)

by using Equation (38). Figure 14 shows the energy dissipation of the nonlocal CH equation with the
discrete energy (46). We employ the same condition in Figure 12 except for ∆t = 0.0001 and T = 0.1.

Figure 14. Energy dissipation over time to the nonlocal CH model (4) with the initial condition (43).
Note that t-axis is on log-scale.

3.3. The SH Equation

We present the pattern formation due to the SH equation (5) in the rectangular domain [0, 120]×
[0, 120]. The initial condition is given as follows:

φ(x, y, 0) = φ̄ + φ̄rand(x, y) , (47)

where φ̄ = 0.05. Here, we choose parameter values as Nx = Ny = 140, h = 120/140, ε = 0.2,
and ∆t = 0.01. The final time is T = 1500. Figure 15 depicts the pattern formation via instability of
thermal fluctuations. Note that we fix the range of colors in [φ̄− 0.6, φ̄ + 0.6].

For the next step, we investigate an energy decay of the following functional

E(φ) =
∫

Ω

(
1
4

φ4 +
(1− ε)

2
φ2 − |∇φ|2 + 1

2
(∆φ)2

)
dx . (48)

Using Equation (38), a discrete version of Equation (48) is defined as

E h(φk) =
Nx

∑
m=1

Ny

∑
n=1

(
1
4
(φk

mn)
4 +

(1− ε)

2
(φk

mn)
2
)

+
h2

Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

(
− (|ξpφ̂k

pq|2 + |ηqφ̂k
pq|2) +

1
2
|(ξ2

p + η2
q)φ̂

k
pq|2
)

.

(49)

Figure 16 illustrates the energy dissipation of Equation (49) via SH equation.
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(a) (b) (c)

(d) (e) (f)

Figure 15. (a–f) are the snapshots of numerical solutions of the SH equation with the initial condition
(47) at t = 1200∆t, 1800∆t, 3000∆t, 30,000∆t, 60,000∆t, and 150,000∆t, respectively. For colored figures,
see the manuscript of web version.

Figure 16. Energy dissipation over time of Equation (49) to the SH equation with the initial condition
(47). Note that t-axis is on log-scale.

3.4. Classical PFC Model

The phase separation behavior of the classical PFC model is described in this section.
Numerical simulation is conducted in the rectangular domain [0, 120]× [0, 120]. The initial condition
is given as follows:

φ(x, y, 0) = φ̄ + φ̄rand(x, y) , (50)

where φ̄ = 0.07. Parameters used here are Nx = Ny = 120, h = 120/120, ε = 0.025, and ∆t = 0.001.
The final time is T = 1500. Figure 17 illustrates the isotropic phase transition behaviors. Note that we
restrict the range of colors in [φ̄− 0.2, φ̄ + 0.2].
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(a) (b) (c)

(d) (e) (f)

Figure 17. (a–f) are the snapshots of numerical solutions of the classical phase-field crystal (PFC)
model with the initial condition (50) at t = 30,000∆t, 210,000∆t, 450,000∆t, 600,000∆t, 900,000∆t, and
1,500,000∆t, respectively. For colored figures, see the manuscript of web version.

Furthermore, we present an illustration of energy dissipation to this PFC model. Since both SH
and PFC equations derived from the same total free energy, we employ Equation (49). Figure 18 depicts
the energy dissipation over time with the corresponding time behaviors.

Figure 18. Energy dissipation over time, Equation (49), to the classical PFC model with the initial
condition (50). Note that t-axis is on log-scale.

3.5. MBE Growth Model

The epitaxial growth of isotropic current MBE growth model is investigated in this section.
Numerical simulation is conducted in the rectangular domain [0, 2π]× [0, 2π]. The initial condition is
given as follows:

φ(x, y, 0) = 0.1(sin 3x sin 2y + sin 5x sin 5y) . (51)

Parameters are used as Nx = Ny = 200, ε = 0.1, and ∆t = 0.001. The final time is T = 15.
Figure 19 illustrates the epitaxial growth in computational domain.
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(a) (b)

(c) (d)

Figure 19. (a–d) are the snapshots of numerical solutions of the molecular beam epitaxy (MBE)
growth model employing the initial condition (51) at t = 0, 5800∆t, 7200∆t, and 15,000∆t, respectively.
For colored figures, see the manuscript of web version.

Further, we present an energy decay to the MBE growth model (7). An energy functional is
given by

E(φ) =
∫

Ω

(
ε

2
|∆φ|2 + 1

4
(|∇φ|2 − 1)2

)
dx . (52)

Discretize Equation (52) using Equation (38),

E h(φk) =
h2

Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

(
ε

2
|−(ξ2

p + η2
q)φ̂

k
pq|2 +

1
4
|ĝk

pq|2
)

, (53)

where ĝk
pq is a coefficient in Fourier space defined

ĝk
pq =

[([
(iξp)φ̂

k
pq

]
IFT

)2
+
([

(iηq)φ̂
k
pq

]
IFT

)2
− 1
]

FT
. (54)

Figure 20 depicts the discrete energy decay over time. Here, we employ the same condition used
in Figure 19.
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Figure 20. Energy decay over time to the MBE model. Note that t-axis is on log-scale.

3.6. Logarithmic Free Energy

In this paper, we have used the polynomial form of double-well potential F(φ). Note that it is not
the only choice. Now, we consider the logarithmic Flory–Huggins free energy [45,46]

F(φ) = θe [(1− φ) ln(1− φ) + (1 + φ) ln(1 + φ)]− θcφ2, (55)

for the AC and CH equations. Here, θe and θc is a positive constant, which are taken as 1 and 1.5,
respectively, in this paper. Figure 21 illustrates the logarithmic free energy.

-1 -0.5 0 0.5 1

-0.25

-0.2

-0.15

-0.1

-0.05

0

Figure 21. Logarithmic Flory–Huggins free energy with θe = 1 and θc = 1.5.

To solve the AC and CH equations with the logarithmic free energy (55), we also apply Eyre’s linearly
stabilized splitting scheme [14]. First, we discretize the AC equation (2) with a free energy (55):

φk+1
mn − φk

mn
∆t

= −2αφk+1
mn + f (φk

mn)

ε2 + (∆φk+1)mn, (56)

where f (φ) = θe ln
(

1+φ
1−φ

)
− 2(1 + α)θcφ, and α is an auxiliary constant for the splitting scheme [47].

Then, Equation (56) can be transformed into the discrete Fourier space as follows:

φ̂k+1
pq − φ̂k

pq

∆t
= −

2αφ̂k+1
pq + f̂ k

pq

ε2 −
(

ξ2
p + η2

q

)
φ̂k+1

pq . (57)

Therefore, we obtain the following discrete Fourier transform

φ̂k+1
pq =

ε2φ̂k
pq − ∆t f̂ k

pq

ε2 + ∆t[2αθe + ε2(ξ2
p + η2

q)]
. (58)
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Then, the updated numerical solution φk+1
mn can be computed using Equation (9):

φk+1
mn =

1
Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

φ̂k+1
pq ei(ξpxm+ηqyn). (59)

We conduct a numerical test with the following initial condition is

φ(x, y, 0) = 0.99 tanh

(
1.7 + 1.2 cos(6θ)−

√
x2 + y2

√
2ε

)
, (60)

where θ = tan−1(y/x) for (x, y) ∈ [π, π]× [π, π]. We set the parameters as Nx = Ny = 128, h = hx =

hy, ε = 0.05, α = 2, and ∆t = 0.0001. Figure 22 shows the zero-level contours over time with the initial
condition (60) according to motion by mean curvature.

-2 0 2

-2

0

2

(a) t = 0
-2 0 2

-2

0

2

(b) t = 2000∆t
-2 0 2

-2

0

2

(c) t = 10000∆t

Figure 22. (a–c) are the zero-level contours over time with the AC equation (2) with the logarithmic
Flory–Huggins free energy (55) and the initial condition (60) at t = 0, 2000∆t, and 10000∆t, respectively.

Next, we obtain the numerical solution of the CH equation (3) with the logarithmic free energy
(55). Applying the linearly stabilized splitting scheme [14] to the governing equation, we get

φk+1
mn − φk

mn
∆t

= ∆
(

2αφk+1
mn − ε2(∆φk+1)mn + f (φk

mn)
)

. (61)

Thus, Equation (61) can be transformed into the discrete Fourier space as follows:

φ̂k+1
pq − φ̂k

pq

∆t
= −

(
ξ2

p + η2
q

) (
2αφ̂k+1

pq + ε2(ξ2
p + η2

q)φ̂
k+1
pq + f̂ k

pq

)
. (62)

Therefore, we obtain the following discrete Fourier transform

φ̂k+1
pq =

φ̂k
pq − (ξ2

p + η2
q)∆t f̂ k

pq

1 + ∆t[2α(ξ2
p + η2

q) + ε2(ξ2
p + η2

q)
2]

. (63)

Then, the updated numerical solution φk+1
mn can be computed using Equation (9):

φk+1
mn =

1
Nx Ny

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

φ̂k+1
pq ei(ξpxm+ηqyn). (64)

We perform the numerical test to the CH equation with the following initial condition (39) on the
computational domain Ω = [−0.5, 0.5]× [−0.5, 0.5]. We use Nx = Ny = 1000, h = hx = hy, ε = 0.0025,
and ∆t = 0.00001. Figure 23a–c shows the numerical results at t = 100∆t, 300∆t, and 1000∆t,
respectively, and represent well the coarsening dynamics of the CH equation.
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(a) t = 100∆t (b) t = 300∆t (c) t = 1000∆t

Figure 23. (a–c) are the snapshots of numerical solutions of the CH equation with the logarithmic
Flory–Huggins free energy (55) and the initial condition (40) at t = 100∆t, 300∆t, and 1000∆t, respectively.

According to the numerical simulation results, the unconditionally stable Fourier-spectral method
ensures the fast convergence that error is decaying exponentially since the collocation points in
physical space guarantee the exact function values in the Fourier space and the method provides a
sufficiently smooth basis function (an exponential basis function in this case), one can obtain high-order
approximations of derivatives. Moreover, it has almost linearly increasing calculation speed when a
large number of grid points are used; hence one can represent the spatial details of numerical results
with sufficient grid points in a short time.

4. Numerical Solutions in 3D

We extend the Fourier-spectral method on two-dimensional space to three-dimensional space,
Ω = [lx, rx]× [ly, ry]× [lz, rz] for the stated phase-field models. Let Nx, Ny, Nz be positive even integers
and Lx = rx − lx, Ly = ry − ly, Lz = rz − lz be the length of each direction, respectively. We denote
discretized points by (xm, yn, zo) = (lx + mhx, ly + nhy, lz + ohz) for 0 ≤ m ≤ Nx, 0 ≤ n ≤ Ny,
0 ≤ o ≤ Nz, where hx = Lx/Nx, hy = Ly/Ny, hz = Lz/Nz is the spatial step size in each direction,
respectively. For tk = k∆t, φ(xm, yn, zo, tk) is denoted by φk

mno, where ∆t is the temporal step. For the
given data {φk

mno| m = 1, . . . , Nx, n = 1, . . . , Ny, o = 1, . . . , Nz}, the discrete Fourier transform is
defined as

φ̂k
pqr =

Nx

∑
m=1

Ny

∑
n=1

Nz

∑
o=1

φk
mnoe−i(ξpxm+ηqyn+ωrzo),

− Nx

2
+ 1 ≤ p ≤ Nx

2
, −

Ny

2
+ 1 ≤ q ≤

Ny

2
, − Nz

2
+ 1 ≤ r ≤ Nz

2
,

(65)

where ξp = 2πp/Lx, ηq = 2πq/Ly, ωr = 2πr/Lz. The inverse discrete Fourier transform is

φk
mno =

1
Nx NyNz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

φ̂k
pqrei(ξpxm+ηqyn+ωrzo). (66)
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Similar to the two-dimensional case, we assume that φ(x, y, z, t) is sufficiently smooth and
extended to continuous version of the numerical approximation φk

mno. Therefore, we can obtain
the following result.

∂

∂x
φ(x, y, z, t) =

1
Nx NyNz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

(iξp)φ̂(ξp, ηq, ωr, t)ei(ξpx+ηqy+ωrz),

∂

∂y
φ(x, y, z, t) =

1
Nx NyNz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

(iηq)φ̂(ξp, ηq, ωr, t)ei(ξpx+ηqy+ωrz),

∂

∂z
φ(x, y, z, t) =

1
Nx NyNz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

(iωr)φ̂(ξp, ηq, ωr, t)ei(ξpx+ηqy+ωrz).

(67)

Consequently, we can write Laplacian as coefficients in the Fourier space as follows:

∆φ(x, y, z, t) =
1

Nx Ny Nz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

∆̂φ(ξp, ηq, ωr, t)ei(ξp x+ηqy+ωrz)

=
1

Nx Ny Nz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

−(ξ2
p + η2

q + ω2
r )φ̂(ξp, ηq, ωr, t)ei(ξp x+ηqy+ωrz),

(68)

where the first line is the definition of the inverse Fourier transform and the second line is just applying
Equation (67) twice to x-, y-, and z-direction to φ(x, y, z, t) and its Fourier transform. Now, we present
the numerical solutions of three-dimensional phase-field models. Since most of the calculations are
redundant, we just briefly list as follows by extending the solvers in two-dimensional space to those of
three-dimensional space. Note that the functions f and g which are defined in Section 2 are simply
extended to three-dimensional domain. The following is a numerical solution to the AC equation (2).

φ̂k+1
pqr =

ε2φ̂k
pqr − ∆t f̂ k

pqr

ε2 + ∆t[2 + ε2(ξ2
p + η2

q + ω2
r )]

. (69)

Then, the renewed numerical solution φk+1
mno can be computed using Equation (66):

φk+1
mno =

1
Nx NyNz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

φ̂k+1
pqr ei(ξpxm+ηqyn+ωrzo). (70)

Next one is a numerical solution to the CH equation (3).

φ̂k+1
pqr =

φ̂k
pqr − (ξ2

p + η2
q + ω2

r )∆t f̂ k
pqr

1 + ∆t[2(ξ2
p + η2

q + ω2
r ) + ε2(ξ2

p + η2
q + ω2

r )
2]

. (71)

Then, the renewed numerical solution φk+1
mno can be calculated using Equation (66):

φk+1
mno =

1
Nx NyNz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

φ̂k+1
pqr ei(ξpxm+ηqyn+ωrzo). (72)

The following is a numerical solution to the SH Equation (5).

φ̂k+1
pqr =

φ̂k
pqr + ∆t[2(ξ2

p + η2
q + ω2

r )φ̂
k
pqr − ĝk

pqr]

1 + ∆t[(1− ε) + (ξ2
p + η2

q + ω2
r )

2]
, (73)
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and hence we have a numerical solution φk+1
mno as follows:

φk+1
mno =

1
Nx NyNz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

φ̂k+1
pqr ei(ξpxm+ηqyn+ωrzo). (74)

Subsequently, we have a numerical solution to the classical PFC model (6) as follows.

φ̂k+1
pqr =

φ̂k
pqr + ∆t[2(ξ2

p + η2
q + ω2

r )
2φ̂k

pqr − (ξ2
p + η2

q + ω2
r )ĝk

pqr]

1 + ∆t[(1− ε)(ξ2
p + η2

q + ω2
r ) + (ξ2

p + η2
q + ω2

r )
3]

. (75)

Therefore, we have a numerical solution φk+1
mno as follows:

φk+1
mno =

1
Nx NyNz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

φ̂k+1
pqr ei(ξpxm+ηqyn+ωrzo). (76)

5. Numerical Experiments in 3D

5.1. The AC Equation

We perform the numerical test to the AC equation (2) with the following initial condition,

φ(x, y, z, 0) = tanh
(

1.3−
√

x2 + y2 + z2
√

2ε

)
, (77)

Figure 24 shows the numerical solutions at t = 0, 480∆t, 800∆t to the 3D AC equation using the
Fourier-spectral method for (x, y, z) ∈ [−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5]. Here, we use Nx = Ny =

Nz = 128, h = 3/128, ε = 2h, and ∆t = 0.001. The final time is T = 0.8. Similar to the two-dimensional
case, the simulation results depict the motion by mean curvature property quite well.

(a) (b) (c)

Figure 24. (a) Initial condition (77). (b,c) are the snapshots of zero level set to the numerical solutions
of the AC equation using the Fourier-spectral method after 480 and 800 iterations with ∆t = 0.001,
respectively.

We performed the numerical experiment for the complex shape to the 3D AC equation.
We defined two initial conditions of complex shape as the following:

φ(x, y, z, 0) = tanh
(

1 + 0.2 cos(6θ)−
√

x2 + 2y2 + z2
√

2ε

)
, (78)

φ(x, y, z, 0) = tanh
(
(x2 + 9y2/4 + z2 − 1)3 − x2z3 − 9y2z3/80√

2ε

)
, (79)
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where θ = tan−1(z/x) for (x, y, z) ∈ [−1.5, 1.5] × [−1.5, 1.5] × [−1.5, 1.5]. Figure 25 shows the
numerical test results at t = 0, 500∆t, 1000∆t. Here, we use Nx = Ny = Nz = 128, h = 3/128,
ε = 0.05, and ∆t = 0.0001.

(a)

(b)

t = 0 t = 500∆t t = 1000∆t
Figure 25. Temporal evolutions of the AC equation using the Fourier-spectral method with
(a) Equation (78) and (b) Equation (79). From left to right, the evolutionary times at each column are
t = 0, 500∆t, and 1000∆t, respectively.

Furthermore, we present the energy dissipation to the AC equation in three-dimensional space.
The discrete energy has a form as follows:

E h(φk) =
Nx

∑
m=1

Ny

∑
n=1

Nz

∑
o=1

F(φk
mno)

ε2 h3

+
h3

Nx NyNz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

|ξpφ̂k
pqr|2 + |ηqφ̂k

pqr|2 + |ωrφ̂k
pqr|2

2
.

(80)

Figure 26 illustrates the non-increase discrete energy Equation (80) over time. Similar settings are
given as above except for T = 0.6.

Figure 26. Energy dissipation over time to the AC equation with the initial condition (77).
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5.2. The CH Equation

Next, we investigated the numerical test to the CH equation (3) with the following
initial conditions,

φ(x, y, z, 0) = 0.05rand(x, y, z), (81)

φ(x, y, z, 0) = −0.45 + 0.05rand(x, y, z), (82)

where rand implies a random number generating function ranged from −1 to 1 and (x, y, z) ∈
[−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5]. Figure 27 shows the numerical investigation results at t =

100∆t, 500∆t, and 1000∆t to the 3D CH equation using the Fourier-spectral method with the initial
condition (81). Here, we use Nx = Ny = Nz = 128, h = 1/128, ε = h, and ∆t = 0.001.

(a) (b) (c)

Figure 27. With the initial condition (81), (a–c) are the snapshots of zero level set to the numerical
solutions of the CH equation using the Fourier-spectral method after 100, 500 and 1000 iterations with
∆t = 0.001, respectively.

Figure 28 depicts the numerical simulation results to the 3D CH equation using the Fourier-spectral
method with the initial condition (82). Here, we use Nx = Ny = Nz = 128, h = 1/128, ε = h,
and ∆t = 0.001. The above results represent well the coarsening dynamics of the CH equation.
Moreover, we present the energy dissipation to the CH equation in three-dimensional space. We extend
Equation (42) to three-dimensional case as follows:

(a) (b) (c)

Figure 28. Temporal evolutions of the CH equation with the initial condition (82) using the
Fourier-spectral method. (a–c) are the snapshots of zero level set to the numerical solutions at t = 500∆t,
1500∆t, and 3000∆t with ∆t = 0.0001, respectively.
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E h(φk) =
Nx

∑
m=1

Ny

∑
n=1

Nz

∑
o=1

F(φk
mno)h

3

+
h3

Nx NyNz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

ε2

2
(|ξpφ̂k

pqr|2 + |ηqφ̂k
pqr|2 + |ωrφ̂k

pqr|2) .

(83)

Figure 29 describes the non-increase energy dissipation over time with the initial condition (81).

Figure 29. Energy dissipation over time to the CH equation with the initial condition (81).

Further we present phase separation behaviors of the nonlocal CH equation in the domain
[0, 1]× [0, 1]× [0, 1]. An initial condition is given by

φ(x, y, z, 0) = φ̄ + 0.15rand(x, y, z) . (84)

Figure 30 shows the snapshots of the spherical pattern formation via nonlocal CH equation. Here,
we use Equation (84) with Nx = Ny = Nz = 80, h = 1/80, ε = 2h, σ = 200, φ̄ = −0.3, and ∆t = 0.1.
The final time is T = 1000.

(a) (b) (c)

Figure 30. (a–c) are the snapshots of the spherical pattern formation via nonlocal CH equation at
t = 400∆t, 500∆t, and 10,000∆t, respectively.

Similarly, we conduct numerical simulations to generate the lamellar patterns. Figure 31 depicts
the snapshots of the lamellar pattern formation via nonlocal CH equation with the initial condition
(84). We take Nx = Ny = Nz = 80, h = 1.2/80, ε = 2.5h, σ = 100, φ̄ = 0, and ∆t = 0.1. The final time
is T = 1000.
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(a) (b) (c)

Figure 31. (a–c) are the snapshots of the lamellar pattern formation via nonlocal CH equation at
t = 100∆t, 1000∆t, and 10,000∆t, respectively.

We present a result of long time energy decay in a numerical way. Figure 32 shows the energy
decay of the nonlocal CH equation, where the discretization is simply extended from Equation (46)
as follows:

E h(φk) =
h3

Nx NyNz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

[
ε2

2
(|ξpφ̂k

pqr|2 + |ηqφ̂k
pqr|2 + |ωrφ̂k

pqr|2)

+
σ

2
(|ξpψ̂k

pqr|2 + |ηqψ̂k
pqr|2 + |ωrψ̂k

pqr|2)
]
+

Nx

∑
m=1

Ny

∑
n=1

Nz

∑
o=1

F(φk
mno)h

3 .

(85)

Figure 32. Energy dissipation over time of Equation (85) via nonlocal CH equation with the initial
condition (84). Each snapshot depicts the evolution at t = 400∆t, 700∆t, and 10,000∆t, respectively.
Note that t-axis is on log-scale.

5.3. The SH Equation

We present numerical simulation results to the SH equation in this section. A computational
domain is [0, 100]× [0, 100]× [0, 100]. An initial condition is given as

φ(x, y, z, 0) = φ̄ + φ̄rand(x, y, z) , (86)

where φ̄ = 0.1. Figure 33 shows the patterns due to the instability of thermal fluctuations. Here, we use
Nx = Ny = Nz = 120, h = 100/120, ε = 0.25, and ∆t = 0.1. The final time is T = 2400.
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(a) (b) (c)

(d) (e) (f)

Figure 33. Temporal evolutions of the SH equation with the initial condition (86) using the
Fourier-spectral method. (a–f) are snapshots at t = 400∆t, 2000∆t, 8000∆t, 14,000∆t, 20,000∆t,
and 24,000, respectively.

As in the case of two-dimensional space, the reduction of the following discrete energy
Equation (87) is represented in Figure 34.

E h(φk) =
h3

Nx NyNz

Nx/2

∑
p=−Nx/2+1

Ny/2

∑
q=−Ny/2+1

Nz/2

∑
r=−Nz/2+1

[
− (|ξpφ̂k

pqr|2 + |ηqφ̂k
pqr|2 + |ωrφ̂k

pqr|2)

+
1
2
|(ξ2

p + η2
q + ω2

r )φ̂
k
pqr|2

]
+

Nx

∑
m=1

Ny

∑
n=1

Nz

∑
o=1

(
1
4
(φk

mno)
4 +

(1− ε)

2
(φk

mno)
2
)

.

(87)

Figure 34. Energy dissipation over time of Equation (87) via SH equation with the initial condition
(86). Each snapshot depicts the evolution at t = 200∆t, 4000∆t, and 24,000∆t, respectively. Note that
t-axis is on log-scale.
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5.4. Classical PFC Model

We present numerical simulation results to the classical PFC model in the three-dimensional
domain [0, 80]× [0, 80]× [0, 80]. An initial condition is given as

φ(x, y, z, 0) = φ̄ + φ̄rand(x, y, z) , (88)

where φ̄ = 0.07. Figure 35 shows the phase transition behaviors of this PFC model. Here, we use
Nx = Ny = Nz = 60, h = 80/60, ε = 0.025, and ∆t = 0.01. The final time is T = 1500.

(a) (b) (c)

(d) (e) (f)

Figure 35. Temporal evolutions of the SH equation with the initial condition (88) using the
Fourier-spectral method. (a–f) are snapshots at t = 150, 300, 450, 600, 900, and 1500, respectively.

We present the energy dissipation in three-dimensional case. Figure 36 shows the energy decay
over time, Equation (87), via classical PFC model.

Figure 36. Energy decay over time of Equation (87) via classical PFC model with the initial condition
(88). Each snapshot illustrates the evolution at t = 4, 400, and 1250, respectively.
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6. Conclusions

In this paper, we briefly investigate the Fourier-spectral method to the phase-field equations in
two- and three-dimensional cases, especially focused on AC, CH, SH, PFC, MBE growth models which
are very important parabolic partial differential equations and are applicable to a lot of interesting
scientific problems. We present detailed descriptions and numerical solutions of the unconditionally
gradient stable Fourier-spectral method and explain its connection to MATLAB usage so that the
interested readers can simply implement the corresponding Fourier-spectral method for their research
needs without difficulties. Numerical simulation results yield the corresponding method represents
well the characteristics of each equation. Furthermore, we provide the MATLAB codes for these
equations in the Appendix A.
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Appendix A

The following MATLAB codes are available from the corresponding author’s webpage:
http://elie.korea.ac.kr/~cfdkim/codes/.

Appendix A.1. The AC Equation in 2D

c l e a r ;
Nx=128; Ny=128; Lx=2* pi ; Ly=2* pi ; hx=Lx/Nx ; hy=Ly/Ny;
x= l i n s p a c e (− 0 . 5 * Lx+hx , 0 . 5 * Lx , Nx) ;
y= l i n s p a c e (− 0 . 5 * Ly+hy , 0 . 5 * Ly ,Ny) ;
[ xx , yy]= ndgrid ( x , y ) ; eps i lon = 0 . 0 5 ; Cahn=eps i lon ^2;
u=tanh ( ( 2 - s q r t ( xx .^2+yy . ^ 2 ) ) /( s q r t ( 2 ) * eps i lon ) ) ;
p=2* pi/Lx * [ 0 : Nx/2 -Nx/2+1:− 1 ] ;
q=2* pi/Ly * [ 0 :Ny/2 -Ny/2+1:− 1 ] ;
p2=p . ^ 2 ; q2=q . ^ 2 ; [ pp2 , qq2 ]= ndgrid ( p2 , q2 ) ;
dt = 0 . 0 1 ; T=3; Nt=round ( T/dt ) ; ns=Nt/20;
f i g u r e ( 1 ) ; c l f ;
contourf ( x , y , r e a l ( u ' ) , [ 0 0 ] ) ; a x i s image
a x i s ( [ x ( 1 ) x (Nx) y ( 1 ) y (Ny) ] )
pause ( 0 . 0 1 )
f o r i t e r =1:Nt
u= r e a l ( u ) ;
s_hat= f f t 2 ( Cahn*u - dt * ( u . ^ 3 - 3 * u ) ) ;
v_hat=s_hat . / ( Cahn+dt * (2+Cahn * ( pp2+qq2 ) ) ) ;

http://elie.korea.ac.kr/~cfdkim/codes/
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u= i f f t 2 ( v_hat ) ;
i f (mod( i t e r , ns ) ==0)
contourf ( x , y , r e a l ( u ' ) , [ 0 0 ] ) ;
a x i s image
a x i s ( [ x ( 1 ) x (Nx) y ( 1 ) y (Ny) ] )
pause ( 0 . 0 1 )
end
end

Appendix A.2. The AC Equation in 3D

c l e a r ;
Nx=128; Ny=128; Nz=128; Lx = 1 . 2 ; Ly = 1 . 2 ; Lz = 1 . 2 ; hx=Lx/Nx ; hy=Ly/Ny; hz=Lz/Nz ;
x= l i n s p a c e (− 0 . 5 * Lx+hx , 0 . 5 * Lx , Nx) ;
y= l i n s p a c e (− 0 . 5 * Ly+hy , 0 . 5 * Ly ,Ny) ;
z= l i n s p a c e (− 0 . 5 * Lz+hz , 0 . 5 * Lz , Nz) ;
[ xx , yy , zz ]= ndgrid ( x , y , z ) ; eps i lon=hx ; Cahn=eps i lon ^2;
u=rand (Nx, Ny, Nz)− 0 . 5 ;
kx=2* pi/Lx * [ 0 : Nx/2 -Nx/2+1:− 1 ] ;
ky=2* pi/Ly * [ 0 :Ny/2 -Ny/2+1:− 1 ] ;
kz=2* pi/Lz * [ 0 : Nz/2 -Nz/2+1:− 1 ] ;
k2x = kx . ^ 2 ; k2y = ky . ^ 2 ; k2z = kz . ^ 2 ;
[ kxx , kyy , kzz ]= ndgrid ( k2x , k2y , k2z ) ;
dt = 0 . 0 1 ; T = 0 . 5 ; Nt=round ( T/dt ) ; ns=Nt/10;
f o r i t e r =1:Nt
u= r e a l ( u ) ;
s_hat= f f t n ( Cahn*u - dt * ( u . ^ 3 - 3 * u ) ) ;
v_hat=s_hat . / ( Cahn+dt * (2+Cahn * ( kxx+kyy+kzz ) ) ) ;
u= i f f t n ( v_hat ) ;
i f (mod( i t e r , ns ) ==0)
f i g u r e ( 1 ) ; c l f ;
p1=patch ( i s o s u r f a c e ( xx , yy , zz , r e a l ( u ) , 0 . ) ) ;
s e t ( p1 , ' FaceColor ' , ' g ' , ' EdgeColor ' , ' none ' ) ; daspect ( [ 1 1 1 ] )
camlight ; l i g h t i n g phong ; box on ; a x i s image ;
view ( 4 5 , 4 5 ) ;
pause ( 0 . 0 1 )
end
end

Appendix A.3. The CH Equation in 2D

c l e a r ;
Nx=150; Ny=150; Lx =1; Ly=1; hx=Lx/Nx ; hy=Ly/Ny;
x= l i n s p a c e (− 0 . 5 * Lx+hx , 0 . 5 * Lx , Nx) ;
y= l i n s p a c e (− 0 . 5 * Ly+hy , 0 . 5 * Ly ,Ny) ;
eps i lon = 0 . 0 1 2 5 ; Cahn=eps i lon ^2;
u = 0 . 0 5 * ( 2 * rand (Nx,Ny) - 1 ) ;
p=2* pi/Lx * [ 0 : Nx/2 -Nx/2+1:− 1 ] ;
q=2* pi/Ly * [ 0 :Ny/2 -Ny/2+1:− 1 ] ;
p2=p . ^ 2 ; q2=q . ^ 2 ; [ pp2 , qq2 ]= ndgrid ( p2 , q2 ) ;
dt = 0 . 0 1 ; T = 0 . 5 ; Nt=round ( T/dt ) ; ns=Nt/50;
f i g u r e ( 1 ) ; c l f ;
contourf ( x , y , r e a l ( u ' ) , [ 0 0 ] ) ; a x i s image
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a x i s ( [ x ( 1 ) x (Nx) y ( 1 ) y (Ny) ] )
pause ( 0 . 0 1 )
f o r i t e r =1:Nt
u= r e a l ( u ) ;
s_hat= f f t 2 ( u ) - dt * ( pp2+qq2 ) . * f f t 2 ( u . ^ 3 - 3 * u ) ;
v_hat=s_hat . / ( 1 . 0 + dt * ( 2 . 0 * ( pp2+qq2 ) +Cahn * ( pp2+qq2 ) . ^ 2 ) ) ;
u= i f f t 2 ( v_hat ) ;
i f (mod( i t e r , ns ) ==0)
contourf ( x , y , r e a l ( u ' ) , [ 0 0 ] ) ;
a x i s image
a x i s ( [ x ( 1 ) x (Nx) y ( 1 ) y (Ny) ] )
pause ( 0 . 0 1 )
end
end

Appendix A.4. The CH Equation in 3D

c l e a r ;
Nx=128; Ny=128; Nz=128; Lx = 1 . 2 ; Ly = 1 . 2 ; Lz = 1 . 2 ; hx=Lx/Nx ; hy=Ly/Ny; hz=Lz/Nz ;
x= l i n s p a c e (− 0 . 5 * Lx+hx , 0 . 5 * Lx , Nx) ;
y= l i n s p a c e (− 0 . 5 * Ly+hy , 0 . 5 * Ly ,Ny) ;
z= l i n s p a c e (− 0 . 5 * Lz+hz , 0 . 5 * Lz , Nz) ;
[ xx , yy , zz ]= ndgrid ( x , y , z ) ; eps i lon = 0 . 0 1 2 5 ; Cahn=eps i lon ^2;
u=rand (Nx, Ny, Nz)− 0 . 5 ;
kx=2* pi/Lx * [ 0 : Nx/2 -Nx/2+1:− 1 ] ;
ky=2* pi/Ly * [ 0 :Ny/2 -Ny/2+1:− 1 ] ;
kz=2* pi/Lz * [ 0 : Nz/2 -Nz/2+1:− 1 ] ;
k2x = kx . ^ 2 ; k2y = ky . ^ 2 ; k2z = kz . ^ 2 ;
[ kxx , kyy , kzz ]= ndgrid ( k2x , k2y , k2z ) ;
dt = 0 . 0 0 1 ; T = 0 . 5 ; Nt=round ( T/dt ) ; ns=Nt/10;
f o r i t e r =1:Nt
u= r e a l ( u ) ;
s_hat= f f t n ( u ) - dt * ( kxx+kyy+kzz ) . * f f t n ( u . ^ 3 - 3 * u ) ;
v_hat=s_hat . / ( 1 . 0 + dt * ( 2 . 0 * ( kxx+kyy+kzz ) +Cahn * ( kxx+kyy+kzz ) . ^ 2 ) ) ;
u= i f f t n ( v_hat ) ;
i f (mod( i t e r , ns ) ==0)
f i g u r e ( 1 ) ; c l f ;
p1=patch ( i s o s u r f a c e ( xx , yy , zz , r e a l ( u ) , 0 . ) ) ;
s e t ( p1 , ' FaceColor ' , ' g ' , ' EdgeColor ' , ' none ' ) ; daspect ( [ 1 1 1 ] )
camlight ; l i g h t i n g phong ; box on ; a x i s image ;
view ( 4 5 , 4 5 ) ;
pause ( 0 . 0 1 )
end
end

Appendix A.5. The SH Equation in 2D

c l e a r ;
Nx=100; Ny=100; Lx =120; Ly=120; hx=Lx/Nx ; hy=Ly/Ny;
x= l i n s p a c e (− 0 . 5 * Lx+hx , 0 . 5 * Lx , Nx) ;
y= l i n s p a c e (− 0 . 5 * Ly+hy , 0 . 5 * Ly ,Ny) ;
eps i lon = 0 . 2 5 ;
u = 0 . 2 * ( 2 * rand (Nx,Ny) - 1 ) ;
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p=2* pi/Lx * [ 0 : Nx/2 -Nx/2+1:− 1 ] ;
q=2* pi/Ly * [ 0 :Ny/2 -Ny/2+1:− 1 ] ;
p2=p . ^ 2 ; q2=q . ^ 2 ; [ pp2 , qq2 ]= ndgrid ( p2 , q2 ) ;
dt = 0 . 0 1 ; T = 0 . 5 ; Nt=round ( T/dt ) ; ns=Nt/50;
f i g u r e ( 1 ) ; c l f ;
s u r f ( x , y , r e a l ( u ' ) ) ; shading i n t e r p ; view ( 0 , 9 0 ) ; a x i s image ;
pause ( 0 . 0 1 )
f o r i t e r =1:Nt
u= r e a l ( u ) ;
s_hat= f f t 2 ( u/dt ) - f f t 2 ( u . ^ 3 ) +2*( pp2+qq2 ) . * f f t 2 ( u ) ;
v_hat=s_hat . / ( 1 . 0 / dt +(1 - eps i lon ) +(pp2+qq2 ) . ^ 2 ) ;
u= i f f t 2 ( v_hat ) ;
i f (mod( i t e r , ns ) ==0)
s u r f ( x , y , r e a l ( u ' ) ) ; shading i n t e r p ; view ( 0 , 9 0 ) ;
a x i s image ;
pause ( 0 . 0 1 )
end
end

Appendix A.6. The SH Equation in 3D

c l e a r ;
Nx=80; Ny=80; Nz=80; Lx =90; Ly=90; Lz =90; hx=Lx/Nx ; hy=Ly/Ny; hz=Lz/Nz ;
x= l i n s p a c e (− 0 . 5 * Lx+hx , 0 . 5 * Lx , Nx) ;
y= l i n s p a c e (− 0 . 5 * Ly+hy , 0 . 5 * Ly ,Ny) ;
z= l i n s p a c e (− 0 . 5 * Lz+hz , 0 . 5 * Lz , Nz) ;
[ xx , yy , zz ]= ndgrid ( x , y , z ) ; eps i lon = 0 . 1 5 ;
u=rand (Nx, Ny, Nz)− 0 . 5 ;
kx=2* pi/Lx * [ 0 : Nx/2 -Nx/2+1:− 1 ] ;
ky=2* pi/Ly * [ 0 :Ny/2 -Ny/2+1:− 1 ] ;
kz=2* pi/Lz * [ 0 : Nz/2 -Nz/2+1:− 1 ] ;
k2x = kx . ^ 2 ; k2y = ky . ^ 2 ; k2z = kz . ^ 2 ;
[ kxx , kyy , kzz ]= ndgrid ( k2x , k2y , k2z ) ;
dt = 0 . 0 1 ; T = 0 . 5 ; Nt=round ( T/dt ) ; ns=Nt/10; t =0 ;
f o r i t e r =1:Nt
u= r e a l ( u ) ;
s_hat= f f t n ( u/dt ) - f f t n ( u . ^ 3 ) +2*( kxx+kyy+kzz ) . * f f t n ( u ) ;
v_hat=s_hat . / ( 1 . 0 / dt +(1 - eps i lon ) +( kxx+kyy+kzz ) . ^ 2 ) ;
u= i f f t n ( v_hat ) ;
t = t +dt ;
end

Appendix A.7. The PFC Equation in 2D

c l e a r ;
Nx=120; Ny=120; Lx =120; Ly=120; hx=Lx/Nx ; hy=Ly/Ny;
x= l i n s p a c e (− 0 . 5 * Lx+hx , 0 . 5 * Lx , Nx) ;
y= l i n s p a c e (− 0 . 5 * Ly+hy , 0 . 5 * Ly ,Ny) ;
eps i lon = 0 . 0 2 5 ;
u = 0 . 2 * ( 2 * rand (Nx,Ny) - 1 ) ;
p=2* pi/Lx * [ 0 : Nx/2 -Nx/2+1:− 1 ] ;
q=2* pi/Ly * [ 0 :Ny/2 -Ny/2+1:− 1 ] ;
p2=p . ^ 2 ; q2=q . ^ 2 ; [ pp2 , qq2 ]= ndgrid ( p2 , q2 ) ;
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dt = 0 . 0 1 ; T=150; Nt=round ( T/dt ) ; ns=Nt/50;
f i g u r e ( 1 ) ; c l f ;
s u r f ( x , y , r e a l ( u ' ) ) ; shading i n t e r p ; a x i s image ; view ( 0 , 9 0 ) ;
pause ( 0 . 0 1 )
f o r i t e r =1:Nt
u= r e a l ( u ) ;
s_hat= f f t 2 ( u/dt ) - ( pp2+qq2 ) . * f f t 2 ( u . ^ 3 ) +2*( pp2+qq2 ) . ^ 2 . * f f t 2 ( u ) ;
v_hat=s_hat . / ( 1 . 0 / dt +(1 - eps i lon ) * ( pp2+qq2 ) +(pp2+qq2 ) . ^ 3 ) ;
u= i f f t 2 ( v_hat ) ;
i f (mod( i t e r , ns ) ==0)
s u r f ( x , y , r e a l ( u ' ) ) ; shading i n t e r p ; view ( 0 , 9 0 ) ;
a x i s image ;
pause ( 0 . 0 1 )
end
end

Appendix A.8. The PFC Equation in 3D

c l e a r ;
Nx=100; Ny=100; Nz=100; Lx =100; Ly=100; Lz =100; hx=Lx/Nx ; hy=Ly/Ny; hz=Lz/Nz ;
x= l i n s p a c e (− 0 . 5 * Lx+hx , 0 . 5 * Lx , Nx) ;
y= l i n s p a c e (− 0 . 5 * Ly+hy , 0 . 5 * Ly ,Ny) ;
z= l i n s p a c e (− 0 . 5 * Lz+hz , 0 . 5 * Lz , Nz) ;
[ xx , yy , zz ]= ndgrid ( x , y , z ) ; eps i lon = 0 . 0 2 5 ;
u=rand (Nx, Ny, Nz)− 0 . 5 ;
kx=2* pi/Lx * [ 0 : Nx/2 -Nx/2+1:− 1 ] ;
ky=2* pi/Ly * [ 0 :Ny/2 -Ny/2+1:− 1 ] ;
kz=2* pi/Lz * [ 0 : Nz/2 -Nz/2+1:− 1 ] ;
k2x = kx . ^ 2 ; k2y = ky . ^ 2 ; k2z = kz . ^ 2 ;
[ kxx , kyy , kzz ]= ndgrid ( k2x , k2y , k2z ) ;
dt = 0 . 0 1 ; T = 0 . 5 ; Nt=round ( T/dt ) ; ns=Nt/10; t =0 ;
f o r i t e r =1:Nt
u= r e a l ( u ) ;
s_hat= f f t n ( u/dt ) - ( kxx+kyy+kzz ) . * f f t n ( u . ^ 3 ) +2*( kxx+kyy+kzz ) . ^ 2 . * f f t n ( u ) ;
v_hat=s_hat . / ( 1 . 0 / dt +(1 - eps i lon ) * ( kxx+kyy+kzz ) +( kxx+kyy+kzz ) . ^ 3 ) ;
u= i f f t n ( v_hat ) ;
t = t +dt ;
end

Appendix A.9. The MBE Growth Model in 2D

c l e a r ;
Nx=128; Ny=128; Lx=2* pi ; Ly=2* pi ; hx=Lx/Nx ; hy=Ly/Ny;
x= l i n s p a c e (− 0 . 5 * Lx+hx , 0 . 5 * Lx , Nx) ;
y= l i n s p a c e (− 0 . 5 * Ly+hy , 0 . 5 * Ly ,Ny) ;
eps i lon = 0 . 1 ;
[ xx , yy]= ndgrid ( x , y ) ;
u = 0 . 1 * ( s i n ( 3 * xx ) . * s in ( 2 * yy ) +s i n ( 5 * xx ) . * s i n ( 5 * yy ) ) ;
p=1 i * 2 * pi/Lx * [ 0 : Nx/2 -1 0 -Nx/2+1:− 1 ] ;
q=1 i * 2 * pi/Ly * [ 0 :Ny/2 -1 0 -Ny/2+1:− 1 ] ; [ pp , qq]= ndgrid ( p , q ) ;
p2 =(2* pi/Lx * [ 0 : Nx/2 -Nx/ 2 + 1 : - 1 ] ) . ^ 2 ;
q2 =(2* pi/Ly * [ 0 :Ny/2 -Ny/ 2 + 1 : - 1 ] ) . ^ 2 ; [ pp2 , qq2 ]= ndgrid ( p2 , q2 ) ;
dt = 0 . 0 0 1 ; T=15; Nt=round ( T/dt ) ; ns=Nt/50;



Mathematics 2020, 8, 1385 34 of 36

f i g u r e ( 1 ) ; c l f ; colormap j e t ;
s u r f ( x , y , r e a l ( u ' ) ) ; a x i s image ; view ( 0 , 9 0 ) ; shading i n t e r p ;
c o l or ba r ; c a x i s ( [ - 1 1 ] ) ; pause ( 0 . 0 1 ) ;
f o r i t e r =1:Nt
u= r e a l ( u ) ; tu= f f t 2 ( u ) ;
fx= r e a l ( i f f t 2 ( pp . * tu ) ) ; fy= r e a l ( i f f t 2 ( qq . * tu ) ) ;
f1 =( fx .^2+ fy . ^ 2 ) . * fx ; f2 =( fx .^2+ fy . ^ 2 ) . * fy ;
s_hat= f f t 2 ( u/dt ) +(pp . * f f t 2 ( f1 ) +qq . * f f t 2 ( f2 ) ) ;
v_hat=s_hat ./(1/ dt - ( pp2+qq2 ) +eps i lon * ( pp2+qq2 ) . ^ 2 ) ;
u= i f f t 2 ( v_hat ) ;
i f (mod( i t e r , ns ) ==0)
c l f ;
s u r f ( x , y , r e a l ( u ' ) ) ; view ( 0 , 9 0 ) ; shading i n t e r p ;
a x i s image ; co l or ba r ; c a x i s ( [ - 1 1 ] ) ;
pause ( 0 . 0 1 )
end
end

There is a cautious step in the MATLAB for usage of generated grid which is used for the Fourier
space. The indices are not sorted in ascending order as described in Section 2 above, one must start
with 0 and replace the largest absolute value to be centered, i.e., Nx/2 and Ny/2, then sort the others
with ascending order from −Nx/2 + 1, −Ny/2 + 1 to −1. Therefore, one must use the following grids
[0 1 · · · (Nx − 1)/2 Nx/2 − Nx/2 + 1 − Nx/2 + 2 · · · − 2 − 1] and [0 1 · · · (Ny − 1)/2 Ny/2 −
Ny/2 + 1 − Ny/2 + 2 · · · − 2 − 1]. Extending to the three-dimensional case is straightforward.
Furthermore, it is important to make the highest frequency N/2 to zero in odd derivatives due to
the symmetry [1,2].
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