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Abstract: In this paper, we enlarge the class of C∗-algebra valued partial metric spaces as well as
the class of C∗-algebra valued b-metric spaces by introducing the class of C∗-algebra valued partial
b-metric spaces and utilize the same to prove our fixed point results. We furnish an example to
highlight the utility of our main result. Finally, we apply our result in order to examine the existence
and uniqueness of a solution for the system of Fredholm integral equations.
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1. Introduction

The theory of fixed point is a very active area of research despite having a history of more than
hundred years. The strength of fixed point theory lies in its application, which is spread throughout
the existing literature fixed point theory. In the field of metric fixed point theory, the first important
and significant result was proved by Banach [1] in 1922. The celebrated Banach contraction principle
has been extended and generalized in numerous different directions (see [2–11]). To enhance the
domain of applicability, I.A. Bakhtin [2], S. Czerwik [5], introduced the concept of b-metric space
as a noted improvement of metric spaces and proved fixed point results as an analogue of Banach
contraction principle. In the recent past, several research articles dealing with the fixed point theory
for single-valued and multivalued mappings in b-metric spaces and by now there exists a considerable
literature in such spaces (see [12–14]). On the other hand, with a similar quest, Matthews [3] employed
another way to enlarge the class of metric spaces by introducing the notion of partial metric spaces and
established an analogue of Banach contraction principle in such spaces. Thereafter, several metrical
fixed point results were extended to partial metric spaces that were essentially inspired by Matthews
(see [15–17]). Motivated by these two ideas of b-metric spaces and partial metric spaces, Shukla [18]
introduced the notion of partial b-metric spaces that is a genuinely sharper version of both b-metric
spaces and partial metric spaces and utilize the same to prove fixed point results in such spaces.
Later on, many researchers proved some existence and uniqueness results on a fixed point in partial
b-metric spaces (see [19–21]).

In 2014, Ma et al. [22] established the notion of C∗-algebra valued metric spaces (in short C∗-avMS)
by replacing the range set R with an unital C∗-algebra, which is more general class than the class
of metric spaces and utilized the same to prove some fixed point results is such spaces. In 2015,
Ma et al. [23] introduce the notion of C∗-algebra valued b-metric spaces as a generalization of C∗-avMS
and proved some fixed point results also used their results as an application for an integral type
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operator. Very soon, Chandok [24], generalized the class of C∗-avMS by introducing the class of
C∗-algebra valued partial metric spaces and utilize the same to prove some fixed point theorems.

Inspired by foregoing observations, we enlarge the class of C∗-avbMS and C∗-avPMS by
introducing the class of C∗-avPbMS and utilize the same to prove fixed point result. We also furnish
some examples which demonstrate the utility of our results. Moreover, we apply our main result to
examine the existence and uniqueness of a solution for the system of integral type operators.

This paper consists of five sections, wherein Section 1 begins with an introduction. In Section 2,
we first recall some related definitions and remarks thereafter we introduce the notion of C∗-algebra
valued partial b-metric space and discuss its related properties. In Section 3, we define the contraction
condition in the setting of C∗-algebra valued partial b-metric space thereafter we prove fixed point
result besides giving an example in support of our main result and give two corollaries. In Section 4,
we apply our main result to examine the existence and uniqueness of a solution for the system of
Fredholm integral equation and in the last section, we accomplish the conclusion part.

2. Preliminaries

Throughout the paper, we denote A by an unital (i.e., unity element I) C∗-algebra with
linear involution ∗, such that, for all a, b ∈ A, (ab)∗ = b∗a∗, and a∗∗ = a. A positive
element a ∈ A is denoted by 0A 4 a, where 0A is a zero element in A. If a = a∗ and
σ(a) = {λ ∈ R : λI − a is non-invertible } ⊆ [0, ∞). The partial ordering on A can be defined as
follows: a 4 b if and only if 0A 4 b− a. The pair (A, ∗) is said to be an unital ∗-algebra, if it contains
the unity element I. A unital ∗-algebra (A, ∗) is called a Banach ∗-algebra, if it satisfies ‖a∗‖ = ‖a‖
along with a complete sub-multiplicative norm. A Banach ∗-algebra satisfying ‖a∗a‖ = ‖a‖2, for all
a ∈ A is called a C∗-algebra.

The following definition was introduced by Ma et al. [22]:

Definition 1. Let A 6= ∅. A mapping d : A × A → A is called a C∗-av metric on A, if it satisfies the
following for all a, b, c ∈ A:

(i) d(a, b) < 0A and d(a, b) = 0A iff a = b;
(ii) d(a, b) = d(b, a);
(iii) d(a, b) 4 d(a, c) + d(c, b).

The triplet (A,A, d) is called a C∗-avMS.

In 2015, again Ma et al. [23] introduced the notion of C∗-av b-metric space, as follows:

Definition 2. Let A 6= ∅ and s ∈ A such that s < I. A mapping d : A× A→ A is called a C∗-av b-metric
on A, if it satisfies the following for all a, b, c ∈ A:

(i) d(a, b) < 0A and d(a, b) = 0A iff a = b;
(ii) d(a, b) = d(b, a); and,
(iii) d(a, b) 4 s[d(a, c) + d(c, b)].

The triplet (A,A, d) is called a C∗-avbMS.

Remark 1. Clearly, if s = 1, then a C∗-avbMS reduces to a C∗-avMS.

Now, we recall the definition of C∗-algebra valued partial metric space introduced by
Chandok et al. [24].

Definition 3. Let A 6= ∅. A mapping d : A× A→ A is called a C∗-av partial metric on A, if it satisfies the
following for all a, b, c ∈ A:
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(i) d(a, b) < 0A and a = b ⇔ d(a, a) = d(b, b) = d(a, b);
(ii) d(a, a) 4 d(b, a);
(iii) d(a, b) = d(b, a); and,
(iv) d(a, b) 4 d(a, c) + d(c, b)− d(c, c).

The triplet (A,A, d) is called a C∗-avPMS.

Remark 2. Obviously, if d(a, a) = 0A for all a ∈ A, then (A,A, d) is a C∗-avMS.

Now, we define C∗-algebra valued partial b-metric space (in short C∗-avPbMS), as follows:

Definition 4. Let A 6= ∅ and s ∈ A such that s < I. A mapping d : A× A → A is called a C∗-av partial
b-metric on A, if it satisfies the following for all a, b, c ∈ A:

(i) d(a, b) < 0A and a = b ⇔ d(a, a) = d(b, b) = d(a, b);
(ii) d(a, a) 4 d(b, a);
(iii) d(a, b) = d(b, a);
(iv) d(a, b) 4 s[d(a, c) + d(c, b)]− d(c, c).

The triplet (A,A, d) is called a C∗-avPbMS.

Observe that, a C∗-avPbMS (A,P) is a generalization of both C∗-avbMS as well as C∗-avPMS.
Obviously, every C∗-avbMS is a C∗-avPbMS with zero self distance and every C∗-avPMS is a
C∗-avPbMS with s = 1, but converse is not true in general.

MS bMS

PMS PbMS

C∗ − avMS C∗ − avbMS

C∗ − avPMS C∗ − avPbMS

Example 1. Let A = [0, 1] and A = M2(C), the class of bounded and linear operators on a Hilbert space C2.
Define d : A× A→ A by (for all a, b ∈ A):

d(a, b) =

[
|a− b|p 0

0 k|a− b|p

]
+

[
max{a, b}p 0

0 k max{a, b}p

]

where k ≥ 0 and p > 1. Then, (A,A, d) is a C∗-avPbMS with coefficient s = 2p−1 I. However, it is easy to
see that (A,A, d) is neither a C∗-avbMS nor C∗-avPMS. To substantiate the claim, for any non-zero element
a ∈ A, we have

d(a, a) =

[
ap 0
0 kap

]
6=
[

0 0
0 0

]
= 0A.

Therefore, (A,A, d) is not a C∗-avbMS. Furthermore, for a = 0, b = 1 and c = 0.5, we obtain

d(a, b) =

[
|0− 1|p 0

0 k|0− 1|p

]
+

[
max{0, 1}p 0

0 k max{0, 1}p

]
=

[
2 0
0 2k

]
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and

d(a, c) + d(c, b)− d(c, c) =

[
2

2p + 1 0
0 k( 2

2p + 1)

]
.

Thus,
d(a, b) � d(a, c) + d(c, b)− d(c, c), for all p > 1.

Therefore, d is not C∗-avPMS on A.

Example 2. Let A = R and A = M3(C). Define d : A× A→ A by (for all a, b ∈ A and p ≥ 1):

d(a, b) =

|a− b|p 0 0
0 |a− b|p 0
0 0 k|a− b|p

+ α

1 0 0
0 1 0
0 0 k


where, k ≥ 0 and α > 0. Observe that, d is C∗-avPbM and (A,A, d) is a C∗-avPbMS with coefficient
s = 2p−1 I.

Example 3. Let (A,A, dp) be a C∗-avPMS and (A,A, db) a C∗-avbMS with coefficient s ≥ 1 on A. Define a
mapping d : A× A→ A by (for all a, b ∈ A):

d(a, b) = dp(a, b) + db(a, b).

Subsequently, d is a C∗-avPbM and (A,A, d) is a C∗-avPbMS.

Proof. It is easy to verify that the conditions (i)− (iii) of Definition 4 are satisfied. To verify condition
(iv) of Definition 4, we have (for all a, b, c ∈ A)

d(a, b) = dp(a, b) + db(a, b)

4 dp(a, c) + dp(c, b)− dp(c, c) + s[db(a, c) + db(c, b)]

4 s[dp(a, c) + dp(c, b)]− d(c, c) + s[db(a, c) + db(c, b)]

= s[dp(a, c) + db(a, c) + dp(c, b) + db(c, b)]− d(c, c)

= s[d(a, c) + d(c, b)]− d(c, c).

Therefore, d satisfies all the conditions of Definition 4. Hence, (A,A, d) is a C∗-avPbMS.

Let (A,A, d) be a C∗-avPbMS. Afterwards, open ball of center a ∈ A and radius 0A ≺ ε ∈ A is
defined by:

Bd(a, ε) = {b ∈ A : d(a, b) ≺ d(a, a) + ε}.

Similarly, the closed ball with center a ∈ A and radius ε > 0 is defined by:

Bd[a, ε] = {b ∈ A : d(a, b) 4 d(a, a) + ε}.

The family of open balls (for all a ∈ A and ε � 0A)

Ud = {Bd(a, ε) : a ∈ A, ε � 0A},

forms a basis of some topology τd on A.

Lemma 1. Let (A, τd) be a topological space and f : A→ A. If f is continuous, then every sequence {an} ⊆ A,
such that an → a implies f an → f a. The converse holds if A is metrizable.



Mathematics 2020, 8, 1381 5 of 11

Definition 5. A sequence {an} in (A,A, d) is called convergent (with respect to A) to a point a ∈ A, if for
given ε > 0, there exists k ∈ N such that ‖d(an, a)− d(a, a)‖ < ε, for all n > k. We denote it by

lim
n→∞

d(an, a) = d(a, a).

Definition 6. A sequence {an} in (A,A, d) is called Cauchy (with respect to A), if lim
n→∞

d(an, am) exists and
it is finite.

Definition 7. The triplet (A,A, d) is called complete C∗-avPbMS if every Cauchy sequence in A is convergent
to some point a in A such that

lim
n→∞

d(an, am) = lim
n→∞

d(an, a) = d(a, a).

The following example shows that the limit of convergence in C∗-avPbMS may or may
not be unique.

Example 4. Let A = R+ and A = M3(R). Define d : A× A→ A by (for all a, b ∈ A and p ≥ 1):

d(a, b) =

[
max{a, b}p 0

0 k max{a, b}p

]
+ α

[
1 0
0 k

]

where, k ≥ 0 and α > 0. Then d is C∗-avPbM and (A,A, d) is a C∗-avPbMS with coefficient s = 2p−1 I. Now,
we construct a constant sequence {an} in A by an = k. Choose, b ∈ A, such that b ≥ k. Subsequently, we have

d(an, b) =

[
max{an, b}p 0

0 k max{an, b}p

]
+ α

[
1 0
0 k

]

=

[
bp 0
0 kbp

]
+ α

[
1 0
0 k

]
= d(b, b).

Therefore, lim
n→∞

d(an, b) = d(b, b), for all b ≥ k. Hence, the limit of convergence in C∗-avPbMS may
not be unique.

3. Fixed Point Results

The following definition is utilized in our results:

Definition 8. Let (A,A, d) be a C∗-avPbMS. A mapping f : A → A is said to be C∗b -contraction if there
exists ρ ∈ A with ‖sρ‖ < 1 such that

d( f a, f b) 4 ρ∗d(a, b)ρ, ∀ a, b ∈ A. (1)

Our main result runs, as follows:

Theorem 1. Let (A,A, d) be a complete C∗-avPbMS and f : A→ A be a C∗b -contraction. Then f has a unique
fixed point a ∈ A such that d(a, a) = 0A.

Proof. Choose a0 ∈ A for constructing an iterative sequence {an} by:

a1 = f a0, a2 = f a1 = f 2a0, a3 = f a2 = f 3a0, ..., an = f an−1 = f na0, · · · .
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We denote ∆0 = d(a0, a1). Now, we assert that lim
n,m→∞

d(an, an+1) = 0A. On setting a = an and

b = an+1 in (1), we get

d(an, an+1) = d( f an−1, f an) = ρ∗d(an−1, an)ρ

4 (ρ∗)2d(an−2, an−1)ρ
2

4 . . .

4 (ρ∗)nd(a0, a1)ρ
n

4 (ρ∗)n∆0ρn.

Because d(an, an) 4 d(an, an+1), we have

lim
n→∞

d(an, an) = 0A. (2)

For any n, p ∈ N, we have

d(an, an+p) 4 s[d(an, an+1) + d(an+1, an+p)]− d(an+1, an+1)

4 sd(an, an+1) + s2[d(an+1, an+2) + d(an+2, an+p)]

−d(an+1, an+1)− d(an+2, an+2)

4 sd(an, an+1) + s2d(an+1, an+2) + ... +

sn+p−1[d(an+p−2, an+p−1) + d(an+p−1, an+p)]

−d(an+1, an+1)− ...− d(an+p−1, an+p−1)

4 s(ρ∗)n∆0ρn + s2(ρ∗)n+1∆0ρn+1 + ... +

sn+p−1(ρ∗)n+p−2∆0ρn+p−2 + sn+p−1(ρ∗)n+p−1∆0ρn+p−1

−(ρ∗)n+1d(a0, a0)ρ
n+1 − ...− (ρ∗)n+p−1d(a0, a0)ρ

n+p−1

=
p−1

∑
k=1

sk(ρ∗)n+k−1∆0ρn+k−1 + sn+p−1(ρ∗)n+p−1∆0ρn+p−1

−(ρ∗)n+1d(a0, a0)ρ
n+1 − ...− (ρ∗)n+p−1d(a0, a0)ρ

n+p−1

=
p−1

∑
k=1

(
(ρ∗)n+k−1s

k
2 ∆

1
2
0

)(
∆

1
2
0 s

k
2 ρn+k−1

)
+
(
(ρ∗)n+p−1s

n+p−1
2 ∆

1
2
0

)(
∆

1
2
0 s

n+p−1
2 ρn+p−1

)
−
(
(ρ∗)n+1d(a0, a0)

1
2

)(
d(a0, a0)

1
2 ρn+1

)
− ...−(

(ρ∗)n+p−1d(a0, a0)
1
2

)(
d(a0, a0)

1
2 ρn+p−1

)
=

p−1

∑
k=1

(
∆

1
2
0 s

k
2 ρn+k−1

)∗(
∆

1
2
0 s

k
2 ρn+k−1

)
+
(

∆
1
2
0 s

n+p−1
2 ρn+p−1

)∗(
∆

1
2
0 s

n+p−1
2 ρn+p−1

)
−
(

d(a0, a0)
1
2 ρn+1

)∗(
d(a0, a0)

1
2 ρn+1

)
− ...−(

d(a0, a0)
1
2 ρn+p−1

)∗(
d(a0, a0)

1
2 ρn+p−1

)
=

p−1

∑
k=1
|∆

1
2
0 s

k
2 ρn+k−1|2 + |∆

1
2
0 s

n+p−1
2 ρn+p−1|2

−|d(a0, a0)
1
2 ρn+1|2 − ...− |d(a0, a0)

1
2 ρn+p−1|2
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4
p−1

∑
k=1
‖∆

1
2
0 s

k
2 ρn+k−1‖2 I + ‖∆

1
2
0 s

n+p−1
2 ρn+p−1‖2 I

−‖d(a0, a0)
1
2 ρn+1‖2 I − ...− ‖d(a0, a0)

1
2 ρn+p−1‖2 I

4 ‖∆0‖
p−1

∑
k=1
‖sk‖‖ρ2(n+k−1)‖I + ‖∆0‖‖sn+p−1‖‖ρn+p−1‖2 I

−‖d(a0, a0)‖‖ρ2(n+1)‖I − ...− ‖d(a0, a0)‖ρ2(n+p−1)‖I

4 ‖∆0‖‖s‖‖ρ2n‖
(
1− (‖s‖‖ρ‖2)p−1)

1− ‖s‖‖ρ‖2 I + ‖∆0‖‖sn+p−1‖‖ρn+p−1‖2 I

−‖d(a0, a0)‖‖ρ2(n+1)‖I − ...− ‖d(a0, a0)‖ρ2(n+p−1)‖I

4 ‖∆0‖‖s‖‖ρ2n‖I + ‖∆0‖‖sn+p−1‖‖ρn+p−1‖2 I

−‖d(a0, a0)‖‖ρ2(n+1)‖I − ...− ‖d(a0, a0)‖ρ2(n+p−1)‖I

→ 0A (as n→ ∞). (3)

Thus, {an} is a Cauchy sequence in A. Now, by the completeness of A, there exists a ∈ A such that

lim
n→∞

d(an, am) = lim
n→∞

d(an, a) = d(a, a).

By employing (3), we have
lim

n→∞
d(an, a) = d(a, a) = 0A.

Now, we will show that a is a fixed point f . For any n ∈ N, we have

d( f a, a) 4 s[d( f a, an+1) + d(an+1, a)]− d(an+1, an+1)

= s[d( f a, f an) + d(an+1, a)]− d(an+1, an+1)

4 s[ρ∗d(a, an)ρ + d(an+1, a)]− d(an+1, an+1)

→ 0A as n→ ∞.

Therefore, a is a fixed point of f . To show the uniqueness of the fixed point, suppose a, b ∈ A,
such that f a = a & f b = b. Then, by the definition of C∗b -contraction, we have

d(a, b) = d( f a, f b) 4 ρ∗d(a, b)ρ,

so that

‖d(a, b)‖ = ‖d( f a, f b)‖ ≤ ‖ρ∗d(a, b)ρ‖ ≤ ‖ρ∗‖‖d(a, b)‖‖ρ‖ = ‖ρ‖2‖d(a, b)‖

a contradiction. Hence, a = b, that is, f has a unique fixed point. Now, to show that d(a, a) = 0A.
Suppose on contrary that d(a, a) 6= 0A. Subsequently, we have

‖d(a, a)‖ = ‖d( f a, f a)‖ ≤ ‖ρ∗d(a, a)ρ‖ ≤ ‖ρ∗‖‖d(a, a)‖‖ρ‖ = ‖ρ‖2‖d(a, a)‖

a contradiction. Therefore, d(a, a) = 0A. This completes the proof.

To exhibit the utility of Theorem 1, we give the following example.

Example 5. Let A = [0, 1], and A = M2(C). Define d : A× A→ A by:

d(a, b) =

[
|a− b|2 0

0 k|a− b|2

]
+

[
max{a, b}2 0

0 k max{a, b}2

]

where k ≥ 0. Then, (A,A, d) is a complete C∗-avPbMS.
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Define a map f : A→ A by:
f a =

a
3

, for all a ∈ A.

Observe that, d( f a, f b) 4 ρ∗d(a, b)ρ, (for all a, b ∈ A) satisfies

ρ =

[√
3

3 0

0
√

3
3

]
∈ A and ‖ρ‖ =

√
3

3
=

1√
3
< 1.

Thus, all of the hypothesis of Theorem 1 are satisfied and a = 0 is unique fixed point of f .

In Theorem 1, by setting s = I with zero self distance, which is, d(a, a) = 0A for all a ∈ A,
we obtain the result due to Ma et al. [22].

Corollary 1. Let (A,A, d) be a complete C∗-avMS and f : A→ A be a C∗b -contraction. Afterwards, f has a
unique fixed point a ∈ A.

In Theorem 1, by setting d(a, a) = 0A for all a ∈ A, we obtain the result due to Ma et al. [23].

Corollary 2. Let (A,A, d) be a complete C∗-avPbMS and f : A→ A be a C∗b -contraction. Afterwards, f has
a unique fixed point a ∈ A, such that d(a, a) = 0A.

4. Application

As an application of Theorem 1, we find an existence and uniqueness result for a type of following
integral equation:

a(µ) =
∫

E
G(µ, ν, a(ν))dν + h(µ), µ, ν ∈ E, (4)

where E is a measurable set, G : E× E×R→ R and h ∈ L∞(E).
Let A = L∞(E), H = L2(E) and L(H) = A. Define d : A× A → A by (for all h, k, I ∈ A, p ≥ 1

and ‖ρ‖ = k < 1):
d(h, k) = π|h−k|p+I ,

where πu : H → H is the multiplicative operator, which is defined by:

πu(φ) = u.φ.

Now, we state and prove our result, as follows:

Theorem 2. Suppose that, (for all a, b ∈ A)

(1) there exist a continuous function ψ : E× E→ R and k ∈ (0, 1), such that

| G(µ, ν, a(ν))− G(µ, ν, b(ν)) |≤ k | ψ(µ, ν) | (| a(ν)− b(ν) | +I − k−1 I),

f or all µ, ν ∈ E.
(2) sup

µ∈E

∫
E | ψ(µ, ν) | dν ≤ 1.

Subsequently, the integral Equation (4) has a unique solution in A.

Proof. Define f : A→ A by:

f a(µ) =
∫

E
G(µ, ν, a(ν))dν + h(µ), ∀ µ, ν ∈ E.
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Set ρ = kI, then ρ ∈ A. For any u ∈ H and p ≥ 1, we have

‖d( f a, f b)‖ = sup
‖u‖=1

(π| f a− f b|p+Iu, u)

= sup
‖u‖=1

∫
E

[∣∣∣∣ ∫E
G(µ, ν, a(ν))− G(µ, ν, b(ν))dν

∣∣∣∣p]u(µ) ¯u(µ)dµ

+ sup
‖u‖=1

∫
E

u(µ) ¯u(µ)dµI

≤ sup
‖u‖=1

∫
E

[ ∫
E

∣∣G(µ, ν, a(ν))− G(µ, ν, b(ν))
∣∣dν

]p

|u(µ)|2dµ

+ sup
‖u‖=1

∫
E
|u(µ)|2dµI

≤ sup
‖u‖=1

∫
E

[ ∫
E

∣∣kψ(µ, ν)(a(ν)− b(ν) + I − k−1 I)
∣∣dν

]p

|u(µ)|2dµ + I

≤ kp sup
‖u‖=1

∫
E

[ ∫
E
|ψ(µ, ν)|dν

]p

|u(µ)|2dµ‖a− b‖p
∞

≤ k sup
µ∈E

∫
E
|ψ(µ, ν)|dν sup

‖u‖=1

∫
E
|u(µ)|2dµ‖a− b‖p

∞

≤ k‖a− b‖p
∞

= ‖ρ‖ ‖d(a, b)‖.

Hence, the mapping f is a C∗b -contraction with ‖ρ‖ < 1, so one can verify that all of the
requirements of Theorem 1 are satisfied. Thus, the Fredholm integral Equation (4) has a unique
solution, which is, f has a unique fixed point.

Now, we give the following example in support of Theorem 2:

Example 6. Let E = [0, 1], A = L∞(E), and H = L2(E). Define d : A× A→ L(H) by:

d(h, k) = π|h−k|2+I ,

where πu : H → H is the multiplicative operator, which is defined by:

πu(φ) = u.φ.

Subsequently, (A,A, d) is a complete C∗-avPbMS. Consider a function ψ : E × E → R defined by
ψ(µ, ν) = 1 for all µ, ν ∈ E. Hence, we obtain

sup
µ∈E

∫
E
| ψ(µ, ν) | dν ≤ 1.

Now, we define G : E× E×R→ R by G(µ, ν, a(ν)) = (µ− ν)a(ν). Let f be a self-mapping on A by:

f a(µ) =
∫

E
G(µ, ν, a(ν))dν, ∀ µ, ν ∈ E.

Observe that, ‖d( f a, f b)‖ ≤ ‖ρ‖‖d(a, b)‖, (for all a, b ∈ A) satisfies with ρ = kI for any k ∈
[
0, 1

2

]
.

Thus, all of the hypothesis of Theorem 2 are satisfied and we have a unique a(µ) with f a = a, which is required
unique solution of Equation (4).
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5. Conclusions

As the C∗-algebra valued metric space is a relatively new addition to the existing literature;
therefore, in this note, we endeavor to further enrich this notion by introducing the idea of C∗-algebra
valued partial b-metric space, wherein we generalized the notion of C∗-algebra valued partial metric
space as well as the notion of C∗-algebra valued b-metric space. Our main result (i.e., Theorem 1)
is an analogue of Banach contraction principle. An example is also included in order to highlight
the realized improvements in our newly proved result. Finally, we apply Theorem 1 to examine
the existence and uniqueness of a solution for the system of Fredholm integral equation. On the
other hand, our main result remains possible for many generalized contractions, namely, weak
contraction, Geraghty contraction, Suzuki contraction, and F-contraction etc.
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