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Abstract: Fractional order calculus has been used to generalize various types of controllers,
including internal model controllers (IMC). The focus of this manuscript is towards fractional
order IMCs for first order plus dead-time (FOPDT) processes, including delay and lag dominant
ones. The design is novel at it is based on a new approximation approach, the non-rational transfer
function method. This allows for a more accurate approximation of the process dead-time and
ensures an improved closed loop response. The main problem with fractional order controllers is
concerned with their implementation as higher order transfer functions. In cases where central
processing unit CPU, bandwidth allocation, and energy usage are limited, resources need to be
efficiently managed. This can be achieved using an event-based implementation. The novelty of
this paper resides in such an event-based algorithm for fractional order IMC (FO-IMC) controllers.
Numerical results are provided for lag and delay dominant FOPDT processes. For comparison
purposes, an integer order PI controller, tuned according to the same performance specifications as
the FO-IMC, is also implemented as an event-based control strategy. The numerical results show that
the proposed event-based implementation for the FO-IMC controller is suitable and provides for a
smaller computational effort, thus being more suitable in various industrial applications.

Keywords: fractional order IMC; first order plus dead-time processes; event-based implementation;
numerical simulations; comparative closed loop results

1. Introduction

Fractional calculus has been reaching a larger part of the research community due to the numerous
advantages it has. The increasing interest is mainly due to the ability to capture essential dynamics
in physical phenomena. This is seconded by the demonstrated ability of fractional order controllers
to meet more design specifications and provide for overall increased robustness and performance.
Several researchers have used fractional order tools to model more accurately viscoelastic phenomena [1],
aerodynamics [2], structural engineering [3], non-Newtonian characteristics in blood [4,5], type 1
diabetes [6], diffusion phenomena in magnetic resonance imaging [7], post-exposure prophylaxis
model in HIV [8], epidemic models for infectious diseases [9], biochemical phenomena [10], etc.

In terms of fractional order control, the starting point is the generalization to arbitrary orders of
the proportional-integral-derivative (PID) controller, as proposed in [11]. Ever since then, a manifold
of papers have been published, presenting various modifications of the original fractional order
PID (FO-PID) controller, various tuning methods and improvements. The key idea is that the
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generalization of the PID to a fractional order provides more flexibility in improving the system control
performance [12,13]. Several enhancements for FO-PID controllers were proposed. An optimal FO-PID
controller was proposed and tuned based on particle swarm optimization [14]. Designs based on
phase and gain margin specifications are quite abundant [12,15,16], and quite frequently the design is
based on ensuring the iso-damping property [12,16–18]. Tuning is usually performed in the frequency
domain, but time domain approaches were also considered [19,20]. Autotuning methods for fractional
order PID controllers were also proposed [21–23]. Some rather recent review papers on fractional order
controllers can be found in [24–26] and provide an insight into fractional order control of different
types. An excellent review paper on fractional order controllers, including their most widely used
continuous and discrete approximation methods, as well as their digital and analogue implementation
methods. The paper also presents the Matlab toolboxes that facilitate the use of fractional order calculus
in modeling and control. At the same time, it clearly pinpoints the advantages and disadvantages of
using fractional order calculus in control engineering [27].

For time delay systems, including first order plus dead time (FOPDT) processes, several approaches
have been introduced and developed over the years. A recent review paper regarding the approaches
for these types of system is given in [28]. Alternative control strategies based on fractional order
calculus for variable time delay systems are proposed in [29]. For significant delays, a Smith predictor
(SP) scheme can be useful. The fractional order controller design in this SP control scheme is based on
several approaches. One method proposes a modified SP structure, where the tuning procedure is
based on Bode’s ideal transfer function and the internal model control (IMC) principle. The resulting
control system is robust to changes in the process parameters [30]. A similar design for a fractional
order PI controller in a SP control structure, also based on Bode’s ideal transfer function, is presented
in [31]. The analytical tuning rules are derived in the frequency domain and applied to various types of
processes. The advantages of the method rely on a simple design scheme and a straightforward method,
which can be easily implemented in the process industry. The SP control structure is also used as a
means for comparing various fractional order controllers for a heat diffusion system in [32]. The research
offers valuable insight into the performance of the proposed fractional order control algorithms. In [33],
a time domain approach is considered for the design of fractional order controllers in a SP structure.
Only two parameters need to be tuned, which simplifies considerably the design procedure. The tuning
rules are derived based on an ideal closed-loop transfer function, with performance specifications
imposed as overshoot and settling time.

One of the simplest tuning rules for integer order PID controllers, as well as for FO-PID controllers,
highly suitable for time delay systems, is the IMC methodology. This consists in the simple inversion
of the invertible part of the process model and in the addition of a properly selected filter. This method
has also been tackled by researchers. For the design of a fractional order IMC controller (FO-IMC),
the most widely used approach is based on using a modified fractional order filter [34]. Some tuning
methods are based on the Ziegler–Nichols approach [35], Taylor series [36], dominant pole placement
method [37]. Other approaches are based on frequency domain specifications, such as phase and gain
margins [38–42]. Such an approach is also preferred in this research.

The FO-IMC control strategy proposed in this paper is based on specifying a certain gain crossover
frequency, to ensure a specific closed loop settling time, as well as phase margin criteria to ensure a
certain closed loop overshoot. The tuning rules are exemplified for first order plus dead-time processes.
To implement the resulting fractional order controllers, an efficient method is used, namely the
non-rational transfer function (NRTF) approximation method [43]. This allows for a more accurate
approximation of the process dead-time and ensures an improved closed loop response [38]. The design
is suitable for all types of FOPDT processes, but can be easily extended to higher order processes or
even fractional order transfer functions [44]. The research is focused on controlling processes where
CPU, bandwidth allocation, and energy usage are limited [45]. In this context, the idea of event-based
control is a natural solution for controller implementation [46,47]. Such an approach has been only
recently introduced to fractional order PID controllers [46,47]. The novelty of this paper resides in
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introducing an event-based methodology for FO-IMC controllers. The method is entirely original
compared to [46,47], where a standard fractional order PID type controller is tuned according to
some frequency domain specifications. The IMC methodology presented in the current manuscript
is not used in the actual tuning. Then, the event-based implementation of the fractional order PID
controller in [46] is based on direct discretization methods that use direct fractional order mappers
of the fractional integrator and differentiator of the fractional order PID controller. The event-based
algorithm relies then on a generalization of the standard direct discretization methods for fractional
order elements, where the sampling period is considered as a variable parameter (it depends on an
event being triggered). The study implements the proposed strategy entirely in the control signal
generator, using a single function to compute the fractional order control value. The novelty of the
current manuscript, apart from a different tuning procedure and a different fractional order controller
type, is based on a two-step implementation of the event-based fractional order controller. Firstly,
the fractional order controller determined based on the FO-IMC methodology is decomposed into
an integer order PI and a fractional order filter. Then, the NRTF approach is used to determine a
standard discrete-time approximation for the fractional order filter. The remaining PI controller is
implemented in an event-based approach. Numerical results are provided for lag and delay dominant
FOPDT processes. For comparison purposes, an integer order PI controller, tuned according to the
same performance specifications as the FO-IMC, is also implemented as an event-based control strategy.
The numerical results show that the proposed event-based implementation for the FO-IMC controller
is suitable and provides for a reduction in the resources used for computing the control signal.

The paper is structured as follows. In Section 2, the proposed tuning procedure for the FO-IMC
controllers is detailed. This is a novel approach, being based on the NRTF approximation method.
Then, the event-based algorithm for the FO-IMC controller is described and the NRTF approach is
briefly presented. Section 3 presents the results obtained for lag and delay dominant FOPDT processes,
in terms of reference tracking, disturbance rejection, and robustness. Comparative results are also
given. Section 4 includes a brief discussion of the previously presented results, while the last section
concludes the research.

2. Materials and Methods

2.1. Tuning the FO-IMC Controller

The following mathematical representation of the processes is considered:

Hp(s) =
k

Ts + 1
e−τs, (1)

where k is the process gain, T is the time constant, τ is the time delay, and s is the Laplace variable.
The transfer function in (1) is generally used to model various types of processes, such as thermal,
chemical, biomedicine systems. For these types of processes, a FO-IMC control strategy is proposed,
as indicated in Figure 1, where Hc(s) is the equivalent controller in a standard feedback structure,
Hm(s) is the process model, d—is the disturbance signal, y—the output signal, r—the reference signal.

The design of the FO-IMC controller is based on the inversion of the process model. For time
delay processes, the time delay cannot be inverted and needs to be approximated, using either first
Taylor series or Padé approximations [39]. Current research has shown that using these widely used
approximation methods leads to poorer closed loop results [38], compared to a new approach based
on the non-rational transfer function (NRTF) approximation method [43]. The new approach to tuning
FO-IMC controllers for FOPDT processes in (1) is detailed next.
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Figure 1. FO-IMC closed loop control scheme.

The proposed fractional order IMC (FO-IMC) controller is given by:

HFO−IMC(s) =
Ts + 1

k
1

λsα + 1
, (2)

where α ∈ (0, 2) is the fractional order and λ is the FO-IMC filter time constant. For α = 1, the classical
IMC controller is obtained. The limiting interval of the fractional order α is chosen such that the
fractional order operation has a physical relevance from the control action point of view, as presented
in [11].

Simple computations based on the diagram in Figure 1 lead to the following transfer function for
the equivalent controller:

Hc(s) =
Ts + 1

k(λsα + 1− e−τs)
. (3)

Notice the direct occurrence of the time delay in the denominator of (3). This can be further written as
an integer order PI controller in series with a fractional order filter:

H f (s) =
s

λsα + 1− e−τs . (4)

To tune the parameters of the FO-IMC controller, simple tuning methods can be used. In this particular
approach, the phase margin and gain crossover frequency specifications are employed. These two
performance specifications refer to the loop transfer function:

Hl(s) = Hp(s)·Hc(s) =
1

λsα + 1− e−τs e−τs. (5)

To meet the phase margin constraint, the phase equation is used:

∠Hl( jωc) = −π+ PM, (6)

where ωc is the desired gain crossover frequency and PM is the desired phase margin. The phase
margin is a direct measure for the stability and robustness of a system. The larger the PM is, the more
robust the overall closed loop system becomes. The selection of the gain crossover frequency is based
on the maximization of the delay margin associated to the closed loop system, according to:

ωc =
PM
τm − τ

, (7)

where τm is the maximum time delay that would make the process in (1) unstable. To meet the gain
crossover frequency constraint, the modulus equation is used:∣∣∣Hl( jωc)

∣∣∣ = 1. (8)
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Then, replacing (1) and (3) in (6) and (8), leads to the following system of equations: λ
tan(π−PM−τωc)−tan(π−PM−τωc) cos(τωc)−sin(τωc)

ωαc sin( απ2 )−ω
α
c tan(π−PM−τωc) cos( απ2 )

,

λ2ω2α
c + 2λωαc

[
cos

(
απ
2

)
− cos

(
απ
2 + τωc

)]
− 2 cos(τωc) + 1 = 0.

(9)

The tuning of the FO-IMC controller is completed when the system of nonlinear equations in (9)
is solved [12,17]. To implement the equivalent controller, an event-based algorithm is preferred.
Such an approach leads to a smaller computational effort [46] and is more suitable in various industrial
applications [46].

2.2. Event-Based Algorithm for FO-IMC Controllers

The equivalent controller for a standard feedback loop, as usually encountered in industrial
applications, obtained based on the IMC methodology is given in (3). To implement this controller,
an alternative form is preferred, as mentioned previously, with an integer order PI controller in series
with the fractional order filter in (4). The new mathematical model for this fractional order equivalent
controller is given as:

Hc(s) = C(s)H f (s) =
Ts + 1

ks
H f (s) =

T
k

(
1 +

1
Ts

)
H f (s), (10)

where C(s) is the PI controller and Hf(s) is the fractional order filter in (4).
Figure 2 presents the event-based paradigm, consisting of three components: process data

measurement (data acquisition), event detector, and control input generator.

Figure 2. Basic paradigm of an event-based controller implementation [46].

The process output is measured at each sampling period hnom, chosen according to standard
discretization rules. The measured output data is transferred into the event detector. The main task of
the detector is to decide whether an event has occurred, and in this case to trigger the control input
generator. The event detector implements a function that optimizes the control process [47–49]. One of
the most widely used event detection rules is based on computing the error signal and verifying
whether it lies within a predefined range [−∆e, ∆e]:∣∣∣e(t) − e(t− hact)

∣∣∣ ≥ ∆e, (11)

where hact denotes the elapsed time since the triggering of the previous event, e(t) is the current error
signal, and e(t − hact) is the error at the previous event. Apart from the event triggering condition in
(11), a safety condition is also used such that:

hact ≥ hmax, (12)

where hmax is the maximum time between two consecutive events [50].
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Once an event has been triggered, either when (11) or (12) occurs, the control input generator
computes a new value for the control signal, according to a predefined algorithm. Since the computation
of the control signal value occurs at variable sampling instants, the control law is represented by
a discrete-time control algorithm where the sampling time parameter is considered as a variable
parameter. The algorithm proposed in this paper is detailed below.

The overall Simulink implementation of such an event-based algorithm is given in Figure 3,
where the blocks stand for: nrtf_fo_filter implements the NRTF approximation of the fractional order
filter in (4), event-detector implements both the event detection part, as well as the control input
generator for the integer order PI controller. The fractional order filter in (4) is used to filter the
error signal. This occurs at every sampling period hnom. The filtered error signal is then fed to the
event-detector which implements the function that triggers of the control input generator. The latter is
based on the standard PI controller, C(s) in (10). Thus, in the proposed approach, the PI controller is
implemented in an event-based manner.

Figure 3. Simulink implementation of an event-based fractional order control algorithm.

Once the tuning of the FO-IMC has been performed and the two parameters, λ and α, determined,
the fractional order filter in (4) is implemented in a discrete-time approximation based on the NRTF
method, while the PI controller is implemented as an event-based algorithm. The control signal U(s) of
the PI controller C(s) in (10) is computed based on:

U(s) = kp

(
1 +

1
Tis

)
+ E f , (13)

where kp and Ti are the proportional gain and integral time constant and E f (s) is the Laplace transform
of the filtered error signal, at the output of the fractional order filter in (4):

H f (s) =
E f (s)

E(s)
, (14)

where E(s) is the Laplace transform of the error signal e(t) defined as E(s) = Ysp(s) − Y(s), Ysp(s) is the
Laplace transform of the reference signal, Y(s) is the Laplace transform of the measured output signal.
For the particular case of FOPDT processes, the PI controller parameters are given as: kp = T

k and
Ti = T, as resulting from (10) and (13). The event-based implementation of the PI controller can be
achieved based on (13).

2.3. Comparisons with an Event-Based PI Controller

To compare the results, a classical integer order PI controller is designed for the same process
in (1). The choice of the PI controller is based on the same number of parameters, as in the case of
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the FO-IMC controller, which allows for a similar tuning approach based on ensuring a certain gain
crossover frequency and phase margin. The PI controller transfer function is given as:

CPI(s) = kp

(
1 +

1
Tis

)
, (15)

where kp and ki are the proportional and integral gains. The same performance specifications are used,
as in the design of the FO-IMC controller. In this case, the loop transfer function is given by:

Hl(s) = Hp(s)·CPI(s) = kp

(
1 +

1
Tis

)
k

Ts + 1
e−τs. (16)

To meet the phase margin constraint, the phase Equation in (6) is used, leading to:

Ti =
tan

(
−
π
2 + PM− ∠Hp( jωc)

)
ωc

, (17)

where ωc is the desired gain crossover frequency and PM is the desired phase margin. To meet the
gain crossover frequency constraint, the modulus equation in (8) is used, leading to:

kp =
Tiωc∣∣∣Hp( jωc)
∣∣∣ √T2

i ω
2
c + 1

. (18)

Thus, the tuning of the PI controller is complete, with the kp and ki parameters uniquely determined
based on (17) and (18). To implement the PI controller, the event-based algorithm as proposed in [46]
will be used. For a fain comparison, the parameters of the event-based algorithm will be similar to
those used in the event-based implementation of the FO-IMC controller.

2.4. A Brief Overview of the NRTF Approximation Approach

Various discrete-time approximation methods for fractional order systems have been proposed
over the years, including direct and indirect approaches [51]. One of the advantages of direct methods
lies in the expedite approximation of fractional order systems as discrete-time higher order transfer
functions. Most of the existing methods deal with the direct approximation of simple fractional order
elements, such as the fractional order integrator or first order filter [52]. The NRTF method has been
proposed as a means to offer a discrete-time approximation of low order for any type of non-rational
transfer function, including complex fractional order elements and time delays [43]. The method
consists of four steps, as detailed briefly below. A more detailed analysis and comparisons of the NRTF
approach with other methods can be found in [43].

Step 1: The following generating function is used to replace the Laplace variable s in the fractional
order system:

w
(
z−1

)
=

1 + δ
TS

1− z−1

1 + δz−1
, (19)

where δ ε [0, 1] is a shaping knob and Ts is the sampling period. To decrease the phase error between
the approximation and the actual fractional order system, the parameter δ should be selected to be
large, while a smaller value of δ decreases the magnitude error [43]. As fractional order systems
have unlimited memory, the approximation is only possible within a certain limited frequency range.
During this step, the maximum frequency boundary ωh has to be specified, according to the Nyquist
sampling theorem, with ωh = π

Ts
. The approximation of the fractional order system will then be valid

in an interval defined as (0, ωh).
Step 2: The frequency response of the discrete-time fractional order system obtained in

Step 1 is computed. To achieve this, the discrete-time operator z is replaced with e jωTs ,
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where ω = 2π
TSNS

[
0 1 2 . . . NS

2

]
is a vector of equally spaced frequencies and Ns is also

a tuning knob. For a good approximation in the low frequency range, Ns should be large. The result of
this second step consists in a vector of frequency response values of the fractional order discrete time
transfer function.
Step 3: The inverse fast Fourier transform (FFT) algorithm is used to calculate the impulse response of
the discrete-time fractional order system:

g[n] =
1

NS

∑NS−1

k=0
G[k]e

+ j 2π
NSnk , n = 0, 1, 2, . . . , NS − 1 , (20)

with G[k] denoting the frequency response of the original fractional order system. The result of this
step is a vector (20) containing Ns impulse response values.
Step 4: The Steiglitz–McBride approach [53] is used to determine a rational discrete-time transfer
function with a similar impulse response as obtained from the inverse FFT in Step 3. The order N of
the approximation has to be specified. The larger N is, the better the approximation. This also results
in a higher order discrete-time transfer function. A compromise should be considered. The result of
this step is the final discrete-time integer order transfer function of the form:

G
(
z−1

)
=

c0 + c1z−1 + . . .+ cNz−N

d0 + d1z−1 + . . .+ dNz−N , (21)

where c0, c1 . . . cN and d0, d1 . . . dN are coefficients computed according to the SteiglitzMcBride
approach.

The step-by-step design procedure for a FO-IMC controller, as proposed in this paper, is detailed
below, along with the event-based implementation.

Step 1: Select the desired PM and τm. Compute ωc based on (7).
Step 2: Solve (9) to determine the FO-IMC controller parameters, λ and α.

Step 3: Compute the PI controller parameters according to kp = T
k and Ti = T and the fractional order

filter as indicated in (4), for the equivalent fractional order controller as described in (3).
Step 4: Select the parameters of the NRTF approximation method for the discrete-time approximation
of the fractional order filter in (4): N, ωh, and δ. The sampling period Ts is indirectly obtained as
ωh = π

Ts
.

Step 5: Select the parameters for the event-based implementation of the PI controller: h_nom = T_s,
∆_e, and h_max. The event-based algorithm is implemented based on two functions: an event detector
(Figure 4) and a control signal generator (Figure 5), as follows.
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Figure 4. Event detector function.

Figure 5. Control input generator function.

3. Results

This section presents the main results obtained. The design is specific for FOPDT processes.
Two different types will be discussed, the lag dominant and the delay dominant process. In both
cases, reference tracking, disturbance rejection, and robustness to gain variations are considered as
simulation tests. Reference tracking tests have been included in order to show the efficiency of the
event-based controller in terms of setpoint trailing, while disturbance rejection results are considered
in order to demonstrate the ability of the event-based controller to cope with external disturbances.
Only step disturbance signals have been considered. As the results show, the event-based FO-IMC
controller ensures better closed loop results compared to the event-based integer order PI controller,
despite both controller being tuned and implemented in a similar fashion. Robustness tests are included
to demonstrate that a fractional order IMC controller is intrinsically more robust to gain uncertainties,
compared to a traditional integer order PI controller, even though robustness is not directly tackled in
the design.

3.1. The Lag Dominant FOPDT Process

The following process model is considered for the first case study:

Hp(s) =
1

4s + 1
e−s. (22)
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To design the FO-IMC controller based on the tuning method described in Section 2.1, a phase
margin PM = 85◦ and a gain crossover frequency ωc = 0.3 rad/s are imposed. The solution of (9) yields
λ = 1.95 and α = 0.85, with the FO-IMC controller given as:

HFO−IMC−NRTF(s) =
4s + 1

1
1

1.95s0.85 + 1
, (23)

while the equivalent controller is computed as:

Hc(s) =
4s + 1

1.95s0.85 + 1− e−s . (24)

In this case, the parameters of the PI controller are kp = 4 and Ti = 4. The fractional order filter:

H f (s) =
s

1.95s0.8475 + 1− e−s =
E f (s)

E(s)
, (25)

is implemented as a discrete-time transfer function based on the NRTF approach with the order
N = 7, δ = 1 and sampling period Ts = 0.1 s. For the event-based PI control algorithm, the following
parameters are used: hnom = Ts = 0.1 s, hmax = 0.5, and ∆e = 0.1.

For comparison purposes, a PI controller is also designed for the same performance specifications.
The parameters are obtained according to (17) and (18), leading to:

CPI(s) = 1.3841
(
1 +

1
6.3715s

)
. (26)

The controller in (26) is then implemented in an event-based algorithm with the same parameters as in
the case of the FO-IMC controller.

The reference tracking, disturbance rejection and robustness results are given in Figures 6–9.

Figure 6. Comparison between the closed loop systems with the event-based FO-IMC and the classical
proportional integral PI controllers for reference tracking (output signal in the upper plot, input signal
in the lower plot).
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Figure 7. Comparison between the closed loop systems with the event-based FO-IMC and the PI controllers
for a 0.2 disturbance rejection (output signal in the upper plot, input signal in the lower plot).

Figure 8. Robustness validation of the event-based FO-IMC controller (output signal in the upper plot,
input signal in the lower plot).
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Figure 9. Robustness validation of the event-based PI controller (output signal in the upper plot,
input signal in the lower plot).

3.2. The Delay Dominant FOPDT Process

The following process model is considered for the second case study:

Hp(s) =
2

s + 1
e−2s. (27)

To design the FO-IMC controller based on the tuning method described in Section 2.1, a phase
margin PM = 80◦ and a gain crossover frequency ωc = 0.3 rad/s are imposed. The solution of (9) yields
λ = 0.88 and α = 0.62, with the FO-IMC controller given as:

HFO−IMC−NRTF(s) =
s + 1

2
1

0.88s0.62 + 1
, (28)

while the equivalent controller is computed as:

Hc(s) =
s + 1

2(0.88s0.62 + 1− e−2s)
. (29)

In this case, the parameters of the PI controller are kp = 0.5 and Ti = 1. The fractional order filter:

H f (s) =
s

0.88s0.62 + 1− e−2s =
E f (s)

E(s)
, (30)

is implemented as a discrete-time transfer function based on the NRTF approach with the order N = 5,
δ = 0.5 and sampling period Ts = 0.1 s. For the event-based PI control algorithm, the following
parameters are used: hnom = Ts = 0.1 s, hmax = 0.5 and ∆e = 0.1.
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For comparison purposes, a PI controller is also designed for the same performance specifications.
The parameters are obtained according to (17) and (18), leading to:

CPI(s) = 0.3430
(
1 +

1
2.9055s

)
. (31)

The controller in (31) is then implemented in an event-based algorithm with the same parameters as in
the case of the FO-IMC controller.

The reference tracking, disturbance rejection, and robustness results are given in Figures 10–13.

Figure 10. Comparison between the closed loop systems with the event-based FO-IMC and the PI
controllers for reference tracking (output signal in the upper plot, input signal in the lower plot).

Figure 11. Comparison between the closed loop systems with the event-based FO-IMC and the PI
controllers for a 0.2 disturbance rejection (output signal in the upper plot, input signal in the lower plot).
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Figure 12. Robustness validation of the event-based FO-IMC controller (output signal in the upper
plot, input signal in the lower plot).

Figure 13. Robustness validation of the event-based PI controller (output signal in the upper plot,
input signal in the lower plot).

4. Discussion

A performance comparison regarding the two different event-based controllers is presented in
Table 1, for the lag dominant process. Figure 6 depicts a comparison regarding reference tracking with
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the event-based FO-IMC controller and the event-based PI controller. As indicated here, the FO-IMC
achieves a faster settling time, compared to the PI: 13 s, compared to nearly 25 s. The drawback is that
the FO-IMC control signal is twice as large, but solely during one event. Both controllers manage to
achieve this without any overshooting. Over the 40 s seconds simulation time, the event-based FO-IMC
controller requires 82 control signal computations; similarly for the event-based PI controller. In a
classical discrete-time approximation, both type of controllers would have needed 400 computations.
This leads to an overall reduction of the resources used of 79.5%. Improved disturbance rejection
results are also visible in the case of the FO-IMC controller, compared to the PI controller, as indicated
in Figure 7. The settling time for the FO-IMC is approximately 8 s, compared to 16 s for the PI. In terms
of control signal computations, there are 61 for the event-based FO-IMC implementation, compared to
60 for the event-based PI implementation and 300 for the standard discrete-time implementation.
This leads to 79–80% reduction in the resources used. The robustness validation of the event-based
FO-IMC controller is given in Figure 8, whereas the robustness tests for the event-based PI controller
are indicated in Figure 9. Although none of the control strategies were designed specifically to ensure
the robustness to gain variations, the simulation results in Figures 8 and 9 show that for ±50% gain
variations, the event-based controllers manage to maintain 0 overshoot. A comparison between the
two shows that the event-based PI controller has better chances of turning the closed loop into an
underdamped response for larger positive gain variations.

Table 1. Performance comparison between the event-based FO-IMC and event-based PI controller for
the lag dominant FOPDT process.

Test Scenario FO-IMC Control PI Control

Overshoot (%) Settling
Time (s)

Control
Computations

Overshoot
(%)

Settling
Time (s)

Control
Computations

Reference tracking 0 13 82 0 25 82
Disturbance rejection 8 61 16 60

Robustness assessment
50% gain variation 0 7 0 15
−50% gain variation 0 23 0 40

A performance comparison regarding the two different event-based controllers is presented in
Table 2, for the delay dominant process. In this case, Figure 10 depicts a comparison regarding reference
tracking with the event-based FO-IMC controller and the event-based PI controller. The event-based
FO-IMC controller, proposed in this manuscript, achieves zero overshoot and a 7 s settling time.
The event-based PI controller achieves no overshoot, but with an oscillatory response, as well as a
larger settling time of 18 s. In terms of control effort, this is larger for the FO-IMC, compared to the
PI. A comparison regarding resources used over 40 s simulation shows that the event-based FO-IMC
requires 103 computations of the control signal, whereas the event-based PI controller needs solely 83.
This accounts for 74% reduction in the resources used for the event-based FO-IMC and a slightly better
79% for the event-based PI controller, compared to the standard discrete-time implementation (with
400 computations over the 40 s simulation period). In terms of disturbance rejection, the comparative
simulation results given in Figure 11 demonstrate the efficiency of the FO-IMC compared to the PI,
with a settling time of 7 s, compared to 12 s. In this case also, the event-based FO-IMC requires 87
computations of the control signal, higher than the 61 for the event-based PI controller. The simulation
period considered was 30 s, with a standard discrete-time implementation requiring 300 control
signal computations overall. In this case, 71% improvement in the resources used is achieved with
the event-based FO-IMC implementation and 80% with the event-based PI controller, compared to
the standard discrete-time implementation. The robustness validation of the event-based FO-IMC
controller is given in Figure 12, whereas the robustness tests for the event-based PI controller are
indicated in Figure 13. Although none of the control strategies were designed specifically to ensure
the robustness to gain variations, the simulation results in Figure 12 show that better robustness can
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be achieved by using the event-based FO-IMC controller, compared to the event-based PI controller.
The latter has oscillatory response and higher overshoot and nearly twice settling time.

The results obtained for the event-based FO-IMC controller show that this can be considered as a
viable option for controlling processes where resources, bandwidth allocation, energy usage are limited.
Furthermore, as the simulation results show, the event-based FO-IMC control strategy offers better
results in terms of reference tracking, disturbance rejection, and robustness for both lag and delay
dominant systems. The robustness of the event-based FO-IMC controller is significantly improved
compared to the event-based PI controller, for delay dominant systems. This is an aspect intrinsic to
the IMC methodology. The sole disadvantage of the event-based FO-IMC controller is that there is an
increase in the control effort and in the number of events that require the computation of the control
signal, compared to the event-based PI controller.

Table 2. Performance comparison between the event-based FO-IMC and event-based PI controller for
the delay dominant FOPDT process.

Test Scenario FO-IMC Control PI Control

Overshoot (%) Settling
Time (s)

Control
Computations

Overshoot
(%)

Settling
Time (s)

Control
Computations

Reference tracking 0 7 103 0 18 83
Disturbance

rejection 7 87 12 61

Robustness
assessment

25% gain variation 10 9 15 20
−25% gain variation 0 12 0 20

Further research includes the modification of the FO-IMC tuning procedure to an optimization
routine where the control effort is also directly tackled, as well as the robustness property. Additionally,
an experimental validation is to be considered.

5. Conclusions

Fractional order calculus has been used to provide for a generalization of the IMC. Such an
approach is usually considered for the control of dead time processes. In this paper, FOPDT processes
are considered, including delay and lag dominant ones. The design is based on a new approximation
approach, the NRTF method, for the equivalent controller in an IMC loop and on two performance
specifications, the gain crossover frequency and the phase margin. As it has been previously
demonstrated by the authors, the NRTF method allows for a more accurate approximation of the
process dead-time and ensures an improved closed loop response.

The implementation of the final fractional order controller is usually a challenging task, since higher
order transfer functions are used to approximate the dynamics of the original controller. In situations
where CPU, bandwidth allocation, and energy usage are limited, resources need to be efficiently
managed. In this paper, a solution for this is proposed, in terms of an event-based implementation
of the FO-IMC controller. Such an approach, has only been recently proposed for fractional order
PID-type controllers, but not for other types/structure of fractional order controllers. The originality
of the approach consists in a two-step implementation. The equivalent fractional order controller,
as obtained according to the proposed FO-IMC approach, is divided into an integer order PI controller
and a fractional order filter. Then, the NRTF approach is used to determine a standard discrete-time
approximation for the fractional order filter. The remaining PI controller is implemented in an
event-based approach. Numerical results are provided for lag and delay dominant FOPDT processes.
For comparison purposes, an integer order PI controller, tuned according to the same performance
specifications as the FO-IMC, is also implemented as an event-based control strategy. The numerical
results show that the proposed event-based implementation for FO-IMC controller is suitable and
provides for better reference tracking, disturbance rejection, and robustness, compared to the integer
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order event-based PI controller, as well as a smaller computational effort compared to a standard
discrete-time implementation, thus being more suitable in various industrial applications where
resources need to be drastically limited.
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