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Abstract: In this work, an efficient algorithm is proposed for solving the system of Volterra integral
equations based on wavelet Galerkin method. This problem is reduced to a set of algebraic
equations using the operational matrix of integration and wavelet transform matrix. For linear type,
the computational effort decreases by thresholding. The convergence analysis of the proposed
scheme has been investigated and it is shown that its convergence is of order O(2−Jr), where J is the
refinement level and r is the multiplicity of multi-wavelets. Several numerical tests are provided to
illustrate the ability and efficiency of the method.
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1. Introduction

In this paper, we study and construct a novel numerical algorithm for the system of Volterra
integral equations of the second kind

u(x) = f(x) +
∫ x

0
g(x, t, u(t))dt, x ∈ Ω := [0, 1], (1)

where f : Ω → Rn (n ∈ N) is a given real-valued continuous function, u : Ω → Rn is the unknown
function that will be determined and the function g : S → Rn with S = {(x, t) : x, t ∈ Ω} is a given
linear or nonlinear function of u which satisfies the following Lipschitz condition with respect to the
third variable: for all x, t ∈ [0, 1] and for all u1, u2 ∈ Rn,

|g(x, t, u1(t))− g(x, t, u2(t))| ≤ A|u1 − u2|. (2)

Therefore, the functions f and g are considered so that the Equation (1) has a unique solution.
Equation (1) is the general form of second-order Volterra integral equation and appears in scientific

applications in chemistry, engineering, mathematics, and physics [1–4]. Numerical and analytical
solutions of linear and nonlinear Volterra integral equations have been investigated in many papers.
A useful method to solve such equations is the Adomian decomposition method. This method was
used to investigate the existence and uniqueness of solutions of this type of equation [5,6]. One of the
best paper which utilizes the multi-wavelets for solving integro-differential equations was presented
by Saray [7]. In [7], an efficient algorithm was proposed for solving the Volterra integro-differential
equation. This method outperforming former approaches. Golbabai et al. [8] developed a general
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method based on radial basis function networks to solve the system of Volterra integral equations.
The modified homotopy perturbation method for solving this type of equation has been proposed by
Aminikhah et al. [5,9]. Kılıçman et al. [10] used Simpson’s 3/8 rule to solve this equation. Aguilar and
Brunner used collocation techniques based on spline polynomials [11]. The umbral calculus and the
Laplace transform methods were used as solution approaches as well [12].

Wavelets and specially multi-wavelets Galerkin method represent an efficient way to solve
a variety of equations, including ordinary differential equations (ODEs), partial differential
equations (PDEs), and integral equations [7,13,14]. Due to the discrete-time characterization of wavelet
coefficient decay, the sparse form of the coefficients matrices arises. This property is very useful
to reduce the computational cost. In this work, we aim to solve the system of the Volterra integral
equation using Alpert’s multi-wavelets by exploiting the above-mentioned property. Some results are
formally proved and supported by numerical experiments.

The paper is structured as follows. A brief introduction of the Alpert’s multi-wavelets is provided
in Section 2. In Section 3, the wavelet Galerkin method is used to approximate the solution of
the problem, and the convergence analysis is investigated. Some numerical experiments are performed
to illustrate the efficiency and accuracy of the proposed method.

2. Alpert’s Multi-Wavelets and Multiresolution Analysis

Alpert et al. [13,15] introduced a class of multi-wavelets for L2, which are indexed by a parameter
r ≥ 0 and built via Lagrange polynomials of degree less than r. These multi-wavelets are piecewise
polynomials that are locally supported and orthonormal. The multiresolution analysis (MRA)
framework, introduced and developed by Mallat [16] and Meyer [17], is useful to construct these bases.

According to MRA, a set of primal scaling functions {φ0
0,0, . . . , φr−1

0,0 } is introduced for primal
subspace Vr

0 ∈ L2[0, 1]. By translation and dilation of primal scaling functions {φk}, k = 0, . . . , r− 1,
we determine a space Vr

j ,

Vr
j = Span{φk

j,b := D2jTbφk, b ∈ Bj, k = 0, 1, . . . , r− 1},

where Da and Tb are the dilation and translation operators, respectively such that for a given
function h, Dah(x) = a

1
2 h(ax) and Tbh(x) = h(x − b), also Bj := {0, 1, . . . , 2j − 1} for j ∈ Z+ ∪ {0}.

Therefore, φk
j,b is a polynomial of degree less than k which is restricted to Ij,b = [xj,b, xj,b+1] where

xj,b := 2−jb and Ω := [0, 1] =
⋃

b∈Bj
Ij,b.

For a fixed integer J ≥ 0, the orthogonal projection P r
J h of h ∈ L2[0, 1] onto Vr

J is determined by

h ≈ P r
J (h) = ∑

b∈BJ

r−1

∑
k=0
〈h, φk

J,b〉φ
k
J,b. (3)

The coefficients hk
J,b = 〈 f , φk

J,b〉 are determined by hk
J,b =

∫
IJ,b

h(x)φk
J,b(x)dx [18–20]. To avoid

computing integrals, the Gauss–Legendre Quadrature are applied as follows

hk
J,b ≈ 2−J/2

√
ωk
2

h
(

2−J(
τk + 1

2
+ b)

)
, k = 0, ..., r− 1, b ∈ BJ , (4)

where ωk and τk are the Gauss-Legendre Quadrature weights and the roots of Legendre polynomial of
order r, respectively which are introduced in [21–23]. The projection P r

J h converges to h if the function
h ∈ Cr(Ω) (r times continuously differentiable) [15]. P r

J h approximates h with mean error bounded
as follows

‖P r
J (h)− h‖ ≤ 2−Jr 2

4rr!
sup
x∈Ω
|h(r)(x)|. (5)
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Assume that Φr
J := [Φr,J,0, . . . , Φr,J,2J−1]

T , where Φr,J,b := [φ0
J,b, . . . , φr−1

J,b ]. Φr
J refers to the function

vector called a multi-scaling function. In fact, Φr
J is a function vector which includes the scaling function

in the space Vr
J . By this definition, one can rewrite (3) viz, P r

J (h) = HTΨr
J where H is a vector with

entries Hbr+k+1 := hk
J,b and has dimension N := r2J .

This construction of multi-wavelets for L2(Ω) can be extended to the two–dimensional space
including L2(Ω)2. Let us introduce the space Vr,2

J := Vr
J ×Vr

J which is spanned by orthonormal bases

{φk
J,bφk′

J,b′ : b, b′ ∈ BJ , k, k′ = 0, 1, . . . , r − 1}. Therefore, any function h ∈ L2(Ω)2 can be projected

onto the Vr,2
J by the projection P r

J via,

h ≈ P r
J h = ∑

b∈Bj

r−1

∑
k′=0

r−1

∑
k=0

∑
b′∈Bj

Hrb+(k+1),rb′+(k′+1)φ
k
J,b(x)φk′

J,b′(y) = Φr
J
T(x)HΦr

J(y), (6)

where H is an (N × N) matrix whose elements are obtained by

Hrb+(k+1),rb′+(k′+1) ≈ 2−J
√

ωk
2

√
ωk′

2
h
(

2−J(τ̂k + b), 2−J(τ̂k′ + b′)
)

, (7)

where τ̂k = (τk + 1)/2. By the following theorem, it is possible to bound the error for such projection,
if the function h is sufficiently smooth.

Theorem 1 ([15]). Suppose that the function h : [0, 1]2 → R2 has continuous partial derivatives of order r and
mixed partial derivative of order 2r. Then

‖P r
J h− h‖ ≤ Mmax

21−rJ

4rr!

(
2 +

21−Jr

4rr!

)
, (8)

where

Mmax = max

{
sup

ξ∈[0,1)
| ∂r

∂xr h(ξ, y)|, sup
η∈[0,1)

| ∂r

∂yr h(x, η)|, sup
ξ ′ ,η′∈[0,1)

| ∂2r

∂xr∂yr h(ξ ′, η′)|
}

.

As the subspaces Vr
j are nested, there exist complementary orthogonal subspaces Wr

j such that

Vr
j+1 = Vr

j
⊕

Wr
j , j ∈ Z∪ {0}, (9)

here and in the following
⊕

denotes orthogonal sums. There is a family of other bases such that the
dilations and translations of these bases span the complementary subspaces Wr

j , namely,

Wr
j = Span{ψk

j,b := D2jTbψk, b ∈ Bj, k = 0, 1, . . . , r− 1}.

The functions ψk
j,b are called multi-wavelets. Due to (9), the multi-scale decomposition can be

inductively found, Vr
J = Vr

0 ⊕ (⊕J−1
j=0 Wr

j ). This decomposition gives rise to the multi-scale projection

operatorMr
J that maps L2(Ω) onto Vr

J via

h ≈Mr
J(h) = (P r

0 +
J−1

∑
j=0
Qr

j )(h), (10)
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whereQr
j is the orthonormal projection operator that maps L2(Ω) onto Wr

j . In fact, by using multi-scale

projection operator, any function h ∈ L2(Ω) can be approximated by multi-wavelets of higher levels
Wr

j , j = 0, 1, . . . , J − 1 and the multi-scaling functions of the coarse space Vr
0 viz,

h ≈Mr
J(h) =

r−1

∑
k=0

hk
0,0φk

0,0 +
J−1

∑
j=0

∑
b∈Bj

r−1

∑
k=0

h̃k
j,bψk

j,b, (11)

where
hk

0,0 := 〈h, φk
0,0〉, h̃k

j,b := 〈h, ψk
j,b〉. (12)

Note that the single-scale coefficients hk
0,0 can be determined by (4). However, for evaluating the

multi-wavelets coefficients h̃k
j,b of higher levels, in many cases, they have to be calculated numerically.

To avoid such numerical computations, the wavelet transform matrix TJ can be applied, as introduced
in [14,24]. This matrix is useful to find the multi-wavelets by using the scaling functions

Ψr
J = TJΦr

J , (13)

where Ψr
J := [Φr,0,b, Ψr,0,b, Ψr,1,b, . . . , Ψr,J−1,b]

T and Ψr,j,b := [ψ0
j,b, . . . , ψr−1

j,b ], b ∈ Bj. Using the vector
function Ψr

J and (11), we can write
h ≈Mr

J(h) = H̃T
J Ψr

J , (14)

where H̃J is an N-dimensional vector with entries hk
0,0 and h̃k

j,b for b ∈ Bj, j = 0, . . . , J − 1 and

k = 0, . . . , r− 1. Besides, it is obvious that H̃J = T−1
J

T
HJ .

Thresholding

Alpert’s multi-wavelets provide vanishing moments of order Nk
ψ = k + r − 1 for

k = 0, 1, . . . , r− 1, i.e.,

N k
p =

∫ ∞

−∞
xpψk

0,0(x)dx, 0 ≤ p < Nk
ψ, and k = 0, 1, . . . , r− 1. (15)

Furthermore, Alpert’s multi-wavelets are uniformly bounded concerning to L∞ and L1, i.e.,

‖ψk
J,b‖L∞(Ω) . 1, ‖ψk

J,b‖L1(Ω) . 1. (16)

The vanishing moments and normalization (16) imply that the detail coefficients h̃k
J,b become

small when the underlying function is locally smooth. Therefore it is possible to obtain [25]

h̃k
J,b = |〈h, ψk

J,b〉| ≤ inf
P∈∏Nk

ψ

|〈h− P, ψk
J,b〉| . 2−JNk

ψ‖h‖
W

1,Nk
ψ (Ω)

. (17)

So the detail coefficients decay at the rate of 2−JNk
ψ and in the regions where the function is smooth,

most of the detail coefficients may be discarded when the refinement level J increases. This gives rise
to thresholding. The thresholding operator TDε is introduced by

TDε(H̃J) = HJ , (18)

where Dε := {(J, b, k) : |h̃k
J,b| > ε} and the elements ofHJ are defined by

h̄k
j,b :=

{
h̃k

j,b, (j, b, k) ∈ Dε,
0, else,

b ∈ Bj, j = 0, . . . , J − 1, k = 0, . . . , r− 1. (19)



Mathematics 2020, 8, 1369 5 of 14

Note that the thresholding affects only the detail coefficients while the coarse scale coefficients
remain unchanged.

The approximation error due to the thresholding can be estimated similarly to the classical
wavelets. Let ADε be the approximation operator ADε :=Mr

J
−1TDεMr

J . The approximation error due
to the thresholding can be bounded as stated by the following proposition [25].

Proposition 1. (Approximation error). Let Ω be bounded and ε j = āj−Jε with ā > 1. Then the approximation
error concerning to the set of significant details Dε is uniformly bounded concerning to Lq(Ω), q ∈ [1, ∞], i.e.,

‖P r
J h−P r

J,Dε
h‖Lq(Ω) ≤ Cthrε, (20)

for some constant Cthr > 0 independent of J, ε. Here P r
J h and P r

J,Dε
h are the projections according to (11)

corresponding to the coefficients H̃J and ADε H̃J .

3. Multi-Wavelets Galerkin Method

In this section, we use the wavelet Galerkin method to solve the system of the Volterra integral
Equation (1). To this end, we will apply the interpolation property of scaling functions to reach an
efficient algorithm. Assume that the solution u(x) of Equation (1) can be expanded using multi-scale
projection operatorMr

J based on multi-wavelets as follows

u(x) ≈Mr
J(u)(x) = (P r

0 +
J−1

∑
j=0
Qr

j )(u)(x) = ŨT ⊗Ψr
J(x), (21)

where ⊗ is the Kronecker product and Ũ = (ŨT
1 , . . . , ŨT

n )
T is a (1× nr2J) vector whose elements are n

unknown sub-vectors Ũi with a dimension of (r2J × 1) such that

ui(x) := ŨT
i Ψr

J(x), i = 1, 2, . . . , n.

One can imagine two types of equations, linear and nonlinear. For the linear type, the i-th
component of the vector function g(x, t, u(t)) has the form

gj(x, t, u(t)) :=
n

∑
i=1

aji(x, t)ui(t), j = 1, 2, . . . , n, (22)

and it can be approximated by multi-scale operator, i.e.,

n

∑
i=1

aji(x, t)ui(t) ≈
n

∑
i=1
P r

J (ajiui)(x, t) =
n

∑
i=1

Φr
J
T(x)AT

jiΦ
r
J(t)

n

∑
i=1

Ψr
J
T(x)TJ AT

ji T
−1
J Ψr

J(t), j = 1, 2, . . . , n,

where Aji (j, i = 1 : n) are (r2J × r2J) matrices. Integrating from 0 to x, we get

∫ x

0
gj(x, t, u(t))dt =

n

∑
i=1

Ψr
J
T(x)TJ AT

ji T
−1
J IψΨr

J(x)︸ ︷︷ ︸
pj(x)

=
n

∑
i=1

PT
i T−1

J Ψr
J(x) =

n

∑
i=1

ŨT
i AjiT−1

J Ψr
J(t),

(23)
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where Aji (j, i = 1 : n) are (r2J × r2J) matrices and the rest are (r2J × 1) vectors. But if the j-th
component of vector function g(x, t, u(t)) is nonlinear, one can consider the following expansion

∫ x

0
gj(x, t, u(t))dt ≈ P r

J

(∫ x

0
gj

(
x, t,Mr

J(u)(t)
)

dt
)

GT
j Φr

J(x) = GT
j T−1

J Ψr
J(x), j = 1, 2, . . . , n,

(24)

where Gj is a (r2J × 1) vector whose elements are nonlinear algebraic equations. In view of the
Equations (23) and (24), and using operational matrix Iψ of integration for multi-wavelets introduced
in [7,14,15], one can write

∫ x

0
g(x, t, u(t))dt ≈

{
ŨTΓT ⊗ T−1

J Ψr
J(x), linear,

GT ⊗ T−1
J Ψr

J(x), nonlinear,
(25)

with Γ := (A)ji, (j, i = 1 : n) and G := (GT
1 , GT

2 , . . . , GT
n )

T .
Such an approximation can be considered for the j-th element of f viz,

f j(x) ≈ P r
J ( f j)(x) = FT

j Φr
J(x) = FT

j T−1
J Ψr

J(x),

and thus by putting F := (FT
1 , FT

2 , . . . , FT
n )

T we have

f ≈ FT ⊗ T−1
J Ψr

J(x). (26)

Now, we introduce the residual as

rr
J(x) = ŨT ⊗Ψr

J(x)− FT ⊗ T−1
J Ψr

J(x)−
{

ŨTΓT ⊗ T−1
J Ψr

J(x), linear,
GT ⊗ T−1

J Ψr
J(x), nonlinear.

(27)

To apply the Galerkin method, it is necessary that 〈rr
J , Ψr

J〉 = 0. Thus we have

ŨT − FT ⊗ T−1
J −

{
ŨTΓT ⊗ T−1

J
GT ⊗ T−1

J
= 0,

linear,
nonlinear.

(28)

By solving this system of linear and nonlinear equations using restarted generalized minimal
residual method (GMRES) and Newton methods, respectively, we obtain the approximate solution of
the Equation (1). Note that because we use the Galerkin method with orthogonal bases, such a system
will have a unique solution [26].

Convergence Analysis

Theorem 2. Suppose that eJ = u−Mr
J(u) where u andMr

J(u) are the exact and approximate solutions of
nonlinear system (1), respectively. Let X be an open set in R and let g : Ω× X → R be a function such that
g(x, t, u(x)) ∈ Cr(Ω) for any u ∈ X and the condition (2) is satisfied. Furthermore, presume that f ∈ Cr(Ω).
Furthermore, assume that the residual e := r̃− (rr

J) where the residual r̃ is specified as

r̃(x) = u(x)− f (x)−
∫ x

0
g(x, t, u(t))dt, (29)

and rr
J is introduced in (27).
If u ∈ Cr(Ω), and the method used to solve system (28) is convergent then one has

‖e‖2
2 ≤

21−Jr

4rr!

(
|1 +
√

nr2Jκ| sup
x∈Ω
|u(x)|+ sup

x∈Ω
|f(x)|

)
,
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where κ is a positive constant. Consequently, e→ 0 when J → ∞.

Proof. Using (27), (29) and the hypotheses of the theorem, we can write

e(x) = eJ(x)−
(

f(x)−Mr
J(f)(x)

)
−
(∫ x

0
g(x, t, u(t))dt−Mr

J(
∫ x

0
g(x, t,Mr

J(u))(t)dt)
)

, (30)

where e := r̃ − (rr
J). Since the function g satisfies the Lipschitz condition (2), Equation (30) can be

reduced to
e(x) = eJ(x)−

(
f(x)−Mr

J(f)(x)
)
− A

∫ x

0
eJ(t)dt.

Now, suppose that
e ≈ E ⊗Ψr

J , eJ ≈ EJ ⊗Ψr
J ,

where E and EJ are the (1× nr2J) vectors and thus, one can write

E ⊗Ψr
J = EJ ⊗Ψr

J −
(

f(x)−Mr
J(f)(x)

)
− AEJ ⊗ IψΨr

J ,

Taking L2-norm from both sides and using the triangle inequality yields

‖E ⊗Ψr
J‖2

2 ≤ ‖EJ ⊗Ψr
J‖2

2 + ‖f(x)−Mr
J(f)(x)‖2

2 + A‖EJ ⊗ IψΨr
J‖2

2

= ‖EJ‖2
2‖Ψr

J‖2
2 + A‖EJ‖2

2‖IψΨr
J‖2

2 + ‖f(x)−Mr
J(f)(x)‖2

2

≤ ‖EJ‖2
2‖Ψr

J‖2
2 + A‖EJ‖2

2‖Iψ‖2
2‖Ψr

J‖2
2 + ‖f(x)−Mr

J(f)(x)‖2
2

where the second row comes from theorem 8 in [27]. Since Alpert multi-wavelets are orthonormal,
one can write

‖E‖2
2 ≤ ‖EJ‖2

2 + A‖EJ‖2
2‖Iψ‖2

2 + ‖f(x)−Mr
J(f)(x)‖2

2

= ‖EJ‖2
2

(
‖Inr2J‖2

2 + A‖Iψ‖2
2

)
+ ‖f(x)−Mr

J(f)(x)‖2
2.

According to the previous section, when Ψr
J has high vanishing moments and the function h is

smooth, 〈h, Ψr
J〉 decays fast in J → ∞. By means of vanishing moments of Alpert’s multi-wavelets and

the matrix norms inequalities, we get

‖E‖2
2 ≤ ‖EJ‖2

2|1 +
√

nr2Jκ|+ ‖f(x)−Mr
J(f)(x)‖2

2,

where κ = A‖Iψ‖2
∞. Now Equation (5) leads to the desired result

‖E‖2
2 ≤

21−Jr

4rr!

(
|1 +
√

nr2Jκ| sup
x∈Ω
|u(x)|+ sup

x∈Ω
|f(x)|

)
.

Theorem 3. Let the condition of Theorem 2 be valid. Suppose that uJ is the approximate solution obtained from
solving (28) using restarted GMRES or Newton methods. If these methods solve (28) with proper accuracy,
the error can be estimated from

‖u− uJ‖2
2 ≤ (1− A‖Iψ‖2

2)
−1 21−Jr

4rr!
sup
x∈Ω
|f(x)|+ η, (31)

where η is a small positive number that desire to zero.
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Proof. TakingMr
J(u) as the approximate solution of (1) and uJ as the approximate solution obtained

from solving (28) using restarted GMRES or Newton methods, the convergence can be concluded from

‖u− uJ‖ ≤ ‖u−Mr
J(u)‖+ ‖Mr

J(u)− uJ‖. (32)

The approximate solution of (1) satisfies

Mr
J(u)(x) =Mr

J(f)(x) +Mr
J

(∫ x

0
g(x, t,Mr

J(u)(t)dt
)

. (33)

Subtracting (33) from (1), and using the Lipschits condition (2), one can write

eJ ≤ f−Mr
J(f) + A

∫ x

0
eJdt. (34)

Let us consider eJ ≈ EJ ⊗Ψr
J where EJ is the (1× nr2J) vector and thus, we have

EJ ⊗Ψr
J =

(
f(x)−Mr

J(f)(x)
)
+ AEJ ⊗ IψΨr

J . (35)

Taking L2-norm from both sides of (35) and using Theorem 8 in [27] yields

‖EJ ⊗Ψr
J‖2

2 ≤ ‖f(x)−Mr
J(f)(x)‖2

2 + A‖EJ ⊗ IψΨr
J‖2

2

≤ ‖f(x)−Mr
J(f)(x)‖2

2 + A‖EJ‖2
2‖IψΨr

J‖2
2

Since Alpert multi-wavelets are orthonormal, one can write

‖EJ‖2
2 ≤ ‖f(x)−Mr

J(f)(x)‖2
2 + A‖EJ‖2

2‖Iψ‖2
2. (36)

Therefore one can bound the error of ‖u−Mr
J(u)‖ via

‖EJ‖2
2 ≤ (1− A‖Iψ‖2

2)
−1‖f(x)−Mr

J(f)(x)‖2
2. (37)

According to the theorem hypotheses, the methods used to solve the obtained system
are convergent. So η := ‖Mr

J(u) − uJ‖ will be very small. Inequality (31) is obtained
using (5) and (32), i.e.,

‖u− uJ‖2
2 ≤ (1− A‖Iψ‖2

2)
−1 21−Jr

4rr!
sup
x∈Ω
|f(x)|+ η.

4. Numerical Examples

In this section, some numerical experiments are considered to illustrate the convergence and
efficiency of the proposed method. To this end, we report the L2 errors of the solution which is
defined by

ξu := ‖u−Mr
J(u)‖2 =

(∫
Ω
|u(x)−Mr

J(u)(x)|2dx
)1/2

,

where u andMr
J(u) are the exact and approximate solution of systems (1), respectively. In order to get

the sparse coefficients matrix in the linear type, all the entries of this matrix that are less than a small
positive number ε are set to zero. Finally, one can find the rate of sparsity Sε which is defined by [28]

Sε =
N0 − Nε

N0
× 100%.



Mathematics 2020, 8, 1369 9 of 14

where N0 is the total number of elements and Nε the number of elements remaining after thresholding.

Example 1. Let us run the proposed method on the following linear Volterra integral equation [5,29]

u1(x) = −
∫ x

0
e−(s−x)u1(s)ds−

∫ x

0
cos(s− x)u2(s)ds + cosh(x) + x sin(x),

u2(x) = −
∫ x

0
es+xu1(s)ds−

∫ x

0
x cos(s)u2(s)ds + 2 sin(x) + x(sin2(x) + ex).

The exact solution is u(x) = (e−x, 2 sin(x)). The effect of thresholding on L2-errors and sparsity
percentage is reported in Table 1 for different values of r, J ad ε. To illustrate the effect of the refinement level
J and the multiplicity parameter r on L2 error, Figure 1 is plotted. Figure 2 shows sparse matrix when r = 5,
J = 3 and ε = 10−4, 10−2.

Table 1. Effects of parameters r, J and ε on sparsity and L2-error for Example 1.

Without Thresholding ε = 10−5 ε = 10−3

r J Sε L2-Error Sε L2-Error Sε L2-Error

3

2 6.25 ξu1 = 3.24× 10−5
24.48 ξu1 = 3.30× 10−5

49.83 ξu1 = 2.42× 10−4

ξu2 = 8.41× 10−5 ξu2 = 8.41× 10−5 ξu2 = 3.04× 10−4

3 17.19 ξu1 = 4.05× 10−6
53.30 ξu1 = 6.02× 10−6

74.13 ξu1 = 2.41× 10−4

ξu2 = 1.05× 10−5 ξu2 = 1.26× 10−5 ξu2 = 5.15× 10−4

5

2 6.25 ξu1 = 6.38× 10−9
45.69 ξu1 = 4.62× 10−6

70.69 ξu1 = 1.53× 10−4

ξu2 = 1.66× 10−8 ξu2 = 1.28× 10−6 ξu2 = 6.51× 10−4

3 17.19 ξu1 = 2.00× 10−10
71.42 ξu1 = 1.24× 10−5

86.75 ξu1 = 1.53× 10−4

ξu2 = 5.19× 10−10 ξu2 = 8.54× 10−6 ξu2 = 6.52× 10−4
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(
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Figure 1. Effects of the refinement level J (left) and the multiplicity parameter r (right) on L2 error
when r = 5 and J = 2 for Example 1.
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Figure 2. Plot of sparse matrix after thresholding with ε = 10−4 (left) and ε = 10−2 (right) for
Example 1.

Example 2. Let us consider the following system of Volterra integral equation as a further example

u1(x) = − x5

3
− x4

4
+

x3

3
+ x +

∫ x

0
(x2 − s)(u1(s) + u2(s))ds

u2(x) =
x3

2
− x4

3
+ x2 −

∫ x

0
x(u1(s)− u2(s))ds.

The solution is reported in [5,30] and is u = (x, x2). To illustrate the effect of thresholding on the
coefficients matrix obtained from proposed method, the graph in Figure 3 is provided. Figure 4 shows the effect of
parameters r and J.
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Figure 3. Effects of the refinement level J (left) and the multiplicity parameter r (right) on L2 error
when r = 4 and J = 3 for Example 2.
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Figure 4. Plot of sparse matrix after thresholding with ε = 10−5 (left) and ε = 10−3 (right) for
Example 2.

Example 3. Let us consider the following nonlinear system

u1(x) = sin(x)− x +
∫ x

0
(u2

1(s) + u2
2(s))ds

u2(x) = cos(x)− 1
2

sin2(x) +
∫ x

0
u1(s)u2(s)ds.

The exact solutions of this system are u1 = sin(x) and u2 = cos(x) [8].
Table 2 is reported to show the efficiency and accuracy of the proposed method. We observe when the

refinement level J and multiplicity parameter r increase, the L2-errors decrease. In Tables 3 and 4, results are
compared with other methods [10,31–33] in terms of the absolute errors. In this paper, J and r are the criteria
for the discretization and the degree of polynomials used as a basis, respectively. Taking r = 7 and J = 2,
the results of Tables 3 and 4 indicate that the proposed method solves this equation better than others [10,31–33].
Furthermore, we reported the exact and numerical solution by Figure 5.

Table 2. Effect of the refinement level J and multiplicity parameter r on L2-error for Example 3.

r J = 2 J = 3 J = 4 J = 5

u1

3 4.20× 10−5 5.25× 10−6 6.56× 10−7 8.20× 10−8

4 4.04× 10−7 2.53× 10−8 1.58× 10−9 9.86× 10−11

5 8.31× 10−9 2.60× 10−10 8.12× 10−12 2.54× 10−13

u2

3 2.50× 10−5 3.21× 10−6 4.01× 10−7 5.02× 10−8

4 6.62× 10−7 4.14× 10−8 2.59× 10−9 1.62× 10−10

5 5.06× 10−9 1.58× 10−10 4.94× 10−12 1.54× 10−13

Table 3. The comparison between absolute errors of Example 3 for u1.

HPM Method Based upon Simpson’s 3/8 Bernstein Collocation Present Method
[31] Discretization [32] Rule [10] Method [33] (r = 7, J = 2)

x (n = 5) (h = 200) (h = 0.025) (n = 10)

0.1 1.4× 10−07 2.4× 10−05 3.0× 10−10 5.5× 10−10 1.0× 10−12

0.2 3.5× 10−06 9.8× 10−05 1.1× 10−09 1.7× 10−10 1.1× 10−12

0.3 5.5× 10−05 2.3× 10−04 3.6× 10−09 2.6× 10−10 1.1× 10−12

0.4 3.8× 10−04 4.1× 10−04 6.0× 10−09 1.0× 10−10 9.6× 10−13

0.5 1.6× 10−03 6.6× 10−04 8.7× 10−09 1.1× 10−10 3.2× 10−12

0.6 9.7× 10−04 1.4× 10−08 2.5× 10−10 8.4× 10−13

0.7 1.4× 10−03 1.9× 10−08 5.8× 10−10 9.2× 10−13

0.8 1.8× 10−03 2.4× 10−08 1.0× 10−08 9.2× 10−13

0.9 2.5× 10−03 3.3× 10−08 1.0× 10−07 5.0× 10−12

1.0 3.2× 10−03 4.0× 10−08 8.2× 10−07 6.7× 10−11
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Table 4. The comparison between absolute errors of Example 3 for u2.

HPM Method Based upon Simpson’s 3/8 Bernstein Collocation Present Method
[31] Discretization [32] Rule [10] Method [33] (r = 7, J = 2)

x (n = 5) (h = 200) (h = 0.025) (n = 10)

0.1 3.2× 10−07 2.5× 10−04 5.3× 10−10 6.5× 10−11 1.2× 10−13

0.2 1.1× 10−05 5.0× 10−04 3.0× 10−10 1.3× 10−10 1.6× 10−13

0.3 1.2× 10−04 7.5× 10−04 6.0× 10−10 6.5× 10−12 4.0× 10−13

0.4 6.3× 10−04 1.0× 10−04 2.1× 10−09 6.5× 10−11 3.9× 10−13

0.5 2.2× 10−03 1.2× 10−03 3.1× 10−09 9.0× 10−11 1.3× 10−12

0.6 1.5× 10−03 5.3× 10−09 4.2× 10−11 6.0× 10−13

0.7 1.8× 10−03 9.4× 10−09 4.2× 10−11 6.8× 10−13

0.8 2.0× 10−03 1.4× 10−08 3.6× 10−09 8.1× 10−13

0.9 2.3× 10−03 2.0× 10−08 3.5× 10−08 4.8× 10−13

1.0 2.6× 10−03 2.9× 10−08 2.9× 10−07 4.2× 10−11
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Figure 5. Plot of the exact and numerical solution taking r = 6 and J = 2 for Example 3.

5. Conclusions

In this paper, we proposed the multi-wavelets Galerkin method to solve the linear and nonlinear
Volterra integral equation. The convergence analysis and numerical simulations indicate that the
proposed method gives a satisfactory approximation to the exact solution. Thresholding can be
used to increase sparsity for a lower computational cost, without affecting the error in L2. Using the
interpolation property of Alpert’s multi-wavelets, the proposed method turns out to be fast and very
competitive against state-of-the-art techniques. The main advantages of the proposed method are the
lower computational cost and lower complexity.
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