
mathematics

Article

Optimal Auxiliary Functions Method for a Pendulum
Wrapping on Two Cylinders

Vasile Marinca 1 and Nicolae Herisanu 1,2,*
1 Center for Fundamental Technical Research, Romanian Academy, 300222 Timisoara, Romania;

vmarinca@mec.upt.ro
2 Faculty of Mechanics, University Politehnica Timisoara, 300222 Timisoara, Romania
* Correspondence: nicolae.herisanu@upt.ro

Received: 21 July 2020; Accepted: 11 August 2020; Published: 14 August 2020
����������
�������

Abstract: In the present work, the nonlinear oscillations of a pendulum wrapping on two cylinders is
studied by means of a new analytical technique, namely the Optimal Auxiliary Functions Method
(OAFM). The equation of motion is derived from the Lagrange’s equation. Analytical solutions and
natural frequency of the system are calculated. Our results obtained through this new procedure are
compared with numerical ones and a very good agreement was found, which proves the accuracy of
the method. The presented numerical examples show that the proposed approach is simple, easy to
implement and very accurate.
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1. Introduction

The study of the simple pendulum has a long history. During the Renaissance, Leonardo da
Vinci made some drawings related to the motion of pendulum, without realizing at that time its great
importance for timekeeping. Beginning around 1602, Galileo Galilei studied for the first time the
properties of pendulum, isochronisms, and found that the period of this system is approximately
independent of the amplitude or with the swing. Additionally, he demonstrated that the period
is proportional to the square root of the length of the pendulum, but independent on the mass.
Forty years later he conceived and dictated to his son a design for a pendulum clock. The pendulum
was the first harmonic oscillator used by human being [1]. In 1673, Huygens discovered that the
period of the pendulum is identical, no matter if it hung from its centre of oscillation or from its
pivot [2]. In 1818 Henry Kater invented the so-named reversible Kater’s pendulum, making very
accurate measurements of gravity possible. In 1851 Foucault made his investigations known, and
a “pendulum mania” broke out [3]. Around 1900, the need for higher precision clocks led to the use of
low-thermal-expansion materials for pendulum rods. In 1921, the quartz crystal oscillator was invented,
and in 1927 quartz clocks replaced pendulum clocks [4]. Pendulum gravimeters were replaced by
“free fall” gravimeters in the 1950s [5], but pendulum instruments continued to be considered into
the 1970s. In 1721, G. Graham [6] invented the mercury pendulum, whose weight is represented
by a container of mercury, in which case the pendulum rod gets longer with rising temperature.
In 1726, J. Harrison invented the gridiron pendulum, consisting of alternating rods made of different
metals, with totally different thermal expansion properties (steel and zinc or brass, respectively).
In 1896, C.E. Guillaume invented the nickel-steel alloy [4]. The invar pendulum was used for the
first time in the Riefler regulator clock, achieving an excellent accuracy. In 1826 G. Airy proved
the smallest disturbing effect of the drive force on the period if given as a short type of pendulum,
such as the Repsold-Bessel pendulum [7], Van Sterneck and Mendelhall gravimeters, double pendulum
gravimeters, Gulf gravimeter [8], and so on.
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Dynamic mechanical systems possessing the pendulum arise in many domains of activity and many
scientists paid attention to obtaining a governing equation of pendulums. The above-mentioned studies
were later extended to other types of pendulum with different conditions along their dynamic behavior.

Hamouda and Pierce [9] analyzed the blades of a helicopter rotor (similar to a simple pendulum) to
suppress the root reactions. The general nonlinear equations of motion are linearized. They consider the
hingeless rotor blade excited by a harmonic variation of span wise air load distribution. Simple flap and
lead-lag pendulum are treated individually. The pendulum mass effectiveness was also investigated.

A comprehensive discussion of the corrections needed to accurately measure the acceleration of
gravity using a plane pendulum is provided by Nelson and Olson [10]. A simple laboratory experiment
was described, in which g was determined to four significant figures of accuracy. The effect of the
Coriolis force acting on the bob during station is evaluated, adapting a spring-pendulum system
analysis to the nearly stiff limit. In their study, the linear and quadratic damped were used and
perturbation expansion of the small dimensionless parameter was developed.

Ge and Ku [11] extended the Melnikov approach (which is traditionally restricted to study ingweak
non-linear phenomena including sufficient small harmonic excitation) to a pendulum suspended on
a rotating arm described by two-dimensional differential equations. These equations possess strongly
odd nonlinear function of the displacement and are subjected to large harmonic excitation.

Nester et al. [12] presented an experimental investigation into the dynamic response of rotor
systems fitted with centrifugal pendulum vibration absorbers. Two types of absorbers are considered,
which exhibit different types of nonlinear behavior.

The spatial double pendulum, comprising two pendulums that swing in different planes is
analyzed in [13] by Bendersky and Sandler. Some Mathlab codes were proposed to solve the nonlinear
differential equations. The frequency spectra were obtained using Fourier transformation. Solutions of
free vibrations and frequency spectra were employed in dynamic investigations for different initial
conditions of motion.

A small ellipticity of the driving, perturbing the classical parametric pendulum, was studied by
Horton et al. [14]. Warminski and Kecik analyzed the motion of a nonlinear oscillator with attached
pendulum, excited by the moment of its suspension point, the oscillator, and the pendulum being
strongly coupled by inertial terms [15]. In [16], Kecik and Warminski proposed a new suspension
composed of a semiactive magnetorheological damper and a nonlinear spring in order to control
motions. In this way, unstable areas and the chaotic or rotating motion of the pendulum are reduced.

A variation of the simple pendulum involving square plates was investigated by Rafat et al. [17].
The equilibrium configurations and normal modes of oscillations are obtained. The equations of motion
were solved numerically to produce Poincare sections. The accurate analytic solution of the nonlinear
pendulum differential equation is obtained using homotopy analysis technique by Turkyilmazoglu [18].
The obtained explicit analytical expressions for the frequency, period and displacement are compared
with numerical ones.

Awrejcewicz [19] studied the mathematical pendulum motion oscillating in a plane rotating
with angular velocity. The three-dimensional double pendulum, which is coupled by two universal
joints, is investigated in [20].The multiple scales method was used in [21] for recognizing resonances
occurring in a parametrically and externally excited nonlinear spring pendulum. Energy balance
method was employed in [22] to obtain approximations for achieving the nonlinear frequency for
pendulum attached to rolling wheels that is restrained by a spring. The nonlinear oscillations of
pendulum wrapping on two cylindrical bases were investigated by Mazaheri et al. [23]. To obtain an
analytical solution, the multiple scale method is used and there are analyzed effects of amplitude and
radius of cylinder.

Boubaker presented in [24] a survey on the inverted pendulum in nonlinear control theory offering
an overall picture of historical, current and trend developments. Synchronization of two pendulums
mounted on a mutual base is investigated by Alevras et al. [25] and the response of pendulum was
obtained when the base was excited by a random sinusoidal force. The influence of an external
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harmonic excitation on a chain of nonlinear pendulum was explored by Jallouli et al. in [26] in case of
simultaneous external and parametric excitations.

In this paper we propose a novel procedure, the Optimal Auxiliary Functions Method (OAFM),
to investigate the nonlinear oscillations of a simple pendulum bounded by two cylinders at the point of
suspension. The length of this pendulum varies due to wrapping around the cylinders. Such systems of
pendulum with such additional conditions along with their dynamic behavior could find applications
in aerospace engineering and shipping engineering.

Unlike other solution procedures applied to find approximate analytical solutions to nonlinear
dynamical systems, the proposed approach is based upon original construction of the solution using
a moderate number of convergence-control parameters, which are basic components of the original
auxiliary functions introduced in the present developments. These parameters lead to a high precision,
comparing our approximate solutions with exact or numerical ones.

The accuracy of the obtained results is proved by numerical developments, which validate the
analytical results.

2. The Optimal Auxiliary Functions Method

The basics of OAFM can be found in [27,28], where OAFM is applied to solve different problems. In
order to develop an application of the OAFM, let us consider the nonlinear differential equation [27–29]:

L[u(x)] + g(x) + N[u(x)] = 0, (1)

where L is the linear operator, N is the nonlinear operator, and g is a known function, x being an
independent variable and u(x) an unknown function at this stage. The initial or boundary conditions are:

B
(
u(x),

du(x)
dx

)
= 0. (2)

It is well-known that it is often very hard to find an exact solution for strongly nonlinear equations
of type (1) and (2) [30]. In order to find the approximate solution ũ(x), we suppose this can be
expressed as

ũ(x, Ci) = u0(x) + u1(x, Ci), i = 1, 2, . . . , s, (3)

where the initial and the first approximation will be obtained, as described below. After the substitution
of Equation (3) into Equation (1), one obtains

L[u0(x)] + L[u1(x, Ci)] + g(x) + N[u0(x) + u1(x, Ci)] = 0, (4)

where Ci, i = 1,2,...,s are the convergence-control parameters, which will be rigorously determined.
The initial approximation u0(x) may be determined from the linear equation

L[u0(x)] + g(x) = 0, B
(
u0(x),

du0(x)
dx

)
= 0. (5)

while the first approximation is obtained from Equations (4) and (5):

L[u1(x, Ci)] + N[u0(x) + u1(x, Ci)] = 0 B
(
u1(x, Ci),

du1(x, Ci)

dx

)
= 0. (6)

The nonlinear term from Equation (6) is expanded as

N[u0(x) + u1(x, Ci)] = N[u0(x)] +
n∑

k=1

uk
1(x, Ci)

k!
N(k)[u0(x)], . . . (7)
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In order to avoid the difficulties appearing in solving Equation (6) and also to accelerate the
convergence of the solution ũ(x, Ci), instead of the last term, one can suggest another expression,
so that this equation may be rewritten as

L[u1(x, Ci)] + A1
(
u0(x), C j

)
F(N[u0(x)]) + A2(u0(x), Ck) = 0

B
(
u1(x, Ci),

du1(x,Ci)
dx

)
= 0 , i = 1, 2, . . . , s

, (8)

where A1 and A2 are auxiliary functions which depend on initial approximation u0(x) and some
convergence-control parameters Cj, and Ck, j = 1,2,...,p, k = p + 1, p + 2,...,s, and F(N[u0(x)]) are
functions which depend on the expressions which appear within the nonlinear term N[u0(x)]. It
should be emphasized that the auxiliary functions A1 and A2 (namely optimal auxiliary functions)
and F(N[u0(x)]) are not unique, but these auxiliary functions are of the same form, similar to u0(x).
More precisely, if u0(x) is a polynomial function, then A1 and A2 are sums of polynomial functions.
If u0(x) is an exponential function, then A1 and A2 are sums of exponential functions. In the case of
u0(x), which is a trigonometric function, it follows that A1 and A2 are sums of trigonometric functions,
and so on.

In the case when N[u0(x)] = 0, then u0(x) is the exact solution of the original equation.
The initially unknown convergence-control parameters Cj and Ck may be rigorously and optimally

determined via various methods, among them being the least square method, Galerkin method,
collocation method, Ritz method, but the preferred one should be minimizing the square residual error:

J(C1, C2, . . . , Cs) =

∫
(D)

R2(x, C j, Ck)dτ, j = 1, 2, . . . p, k = p + 1, p + 2, . . . , s, (9)

where

R(x, C j, Ck) = L[ũ(x, Ci)] + g(x) + N[ũ(x, Ci)], j = 1, 2, . . . p, k = p + 1, p + 2, . . . , s, i = 1, 2, . . . , s, (10)

in which the approximate solution ũ(x, Ci) is given by Equation (3). The unknown parameters C1,
C2,..., Cs can be identified from the conditions

∂J
∂C1

=
∂J
∂C2

= . . . =
∂J
∂Cs

= 0. (11)

Similar results could be obtained by imposing the conditions

R(x1, Cj) = R(x2, Cj) = . . . = R(xi, Cj) = 0, xi ∈ D, i = 1, 2, . . . , s

By using this above presented approach, the approximate solution is completed after the
determination of the optimal values of convergence-control parameters Ci, i = 1,2,...,s. Hence,
our procedure involves the auxiliary functions A1 and A2 which provide an effective way to adjust
and control the convergence of the final solutions ũ(x, Ci). It is necessary to remark the importance of
carefully choosing the functions A1 and A2 involved in the construction of the first-order approximation
u1(x, Ci). It was already proved that our method is easily applicable to solve nonlinear problems
without small or large parameters, including systems with more degrees of freedom [27].

3. Equation of Motion

In what follows, we present the governing equation of the simple pendulum wrapping around
two cylinders at the point of suspension [23]. The length of the pendulum is L while the radius of
cylinders is r (Figure 1).
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Figure 1. Simple pendulum wrapping around the cylinders.

The motion of the system is described by the generalized coordinate θ, but the string length is
changing. The kinetic energy can be expressed in the form

T =
1
2

m(L− r|θ|)2 .
θ

2
, (12)

where m is the mass of pendulum and the dot denotes differentiation with respect to time.
The potential energy becomes

U = mg[L− (L− r|θ|) cos θ− r sin θ]. (13)

From the Lagrange’s equation one can put

m(L− r|θ|)2 ..
θ− 2mr(L− r|θ|)(sgnθ)

.
θ

2
+ mr(L− r|θ|)

.
θ(sgnθ)

+mg(L− r|θ|) sin θ−mgr cos θ(sgnθ) + mgr cos θ(sgnθ) = 0
(14)

After some manipulation, one obtains:

(L− r|θ|)
..
θ+ g sin θ− r

.
θ

2
(sgnθ) = 0, (15)

..
θ− a

..
θ|θ|+

g
L

sin θ− a
.
θ

2
(sgnθ) = 0, (16)

where a = r/L. The initial conditions for Equation (16) are

θ(0) = A,
.
θ(0) = 0. (17)

4. Application of OAFM to a Pendulum Wrapping on Two Cylinders

If one inserts the independent variable τ = Ωt and the dependent variable ϕ = θA−1, then the
governing Equations (16) and (17) become

ϕ′′ − aAϕ′′ |ϕ|+
g

ALΩ2 sin Aϕ− aAϕ′2(sgnϕ) = 0, (18)

ϕ(0) = 1, ϕ′(0) = 0, (19)

where Ω is the frequency of the system and prime denotes differentiation with respect to τ.
For Equation (18), the linear operator can be identified in the form

L[ϕ(τ)] = (ϕ′′ +ϕ), (20)

with g(τ) = 0, while the corresponding nonlinear operator is

N[ϕ(τ, Ω)] = −ϕ− aAϕ′′ |ϕ|+
g

ALΩ2 sin Aϕ− aAϕ′2(sgnϕ). (21)
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The Equation (5) becomes

ϕ′′ 0 +ϕ0 = 0, ϕ0(0) = 1,ϕ′0(0) = 0, (22)

and has the solution
ϕ0(τ) = cos τ. (23)

Substituting Equation (23) into Equation (21), we obtain

N[ϕ0(τ, Ω)] = − cos τ+ aA cos τ|cos τ|+
g

ALΩ2 sin(A cos τ) − aA sin2 τ(sgn(cos τ)). (24)

Having in view that
cos τ|cos τ| = cos2 τ(sgn(cos τ), (25)

cos2 τ(sgn(cos τ)) − sin2 τ(sgn(cos τ)) = cos 2τ(sgn(cos τ)), (26)

(sgn(cos τ)) =
4
π

(
cos τ−

1
2

cos 3τ+
1
5

cos 5τ−
1
7

cos 7τ+
1
9

cos 9τ+ . . .
)
, (27)

sin(A cos τ) =
(
A− A3

8 + A5

192 −
A7

9216 + A9

737280 + . . .
)

cos τ

+
(
−

A3

24 + A5

384 −
A7

15360 + A9

1105920 − . . .
)

cos 3τ+
(

A5

1920 −
A7

46080

+ A9

2580480 + . . .
)

cos 5τ+
(
−

A7

322560 + A9

10321920 + . . .
)

cos 7τ+
(

A9

92897280 + . . .
)

cos 9τ

, (28)

and substituting Equations (25)–(28) into Equation (24), one can get

N[ϕ0(τ, Ω)] =
[
(4aA−3π)

3π +
gA

LΩ2

(
1− A2

8 + A4

192 −
A6

9216 + A8

737280 + . . .
)]

cos τ

+
[

12aA
5π −

gA
LΩ2

(
A2

4 −
A4

640 + A6

15360−
A8

1105920 + . . .
)]

cos 3τ

+
[
−

20aA
21π +

gA
LΩ2

(
A4

1920 −
A6

46080+
A8

2580480 + . . .
)]

cos 5τ

+
[

28aA
45π −

gA
LΩ2

(
A6

322560−
A8

10321920 + . . .
)]

cos 7τ+
[
−

36aA
77π +

gA
LΩ2

A8

92897280 + . . .
]

cos 9τ+ . . .

. (29)

Taking into account Equations (8) and (29), we can choose the auxiliary functions in the form

A1(ϕ0(τ), Ci) = −(C1 + 2C2 cos 2τ+ 2C3 cos 4τ+ 2C4 cos 6τ)
A2(ϕ0(τ), Ci) = 0
F(N[ϕ0(τ)]) = α cos τ+ β cos 3τ+ γ cos 5τ

, (30)

where C1, C2, C3, and C4 are unknown parameters and α, β, γ are obtained from Equation (29):

α =
(4aA−3π)

3π +
gA

LΩ2

(
1− A2

8 + A4

192 −
A6

9216 + A8

737280

)
β = 12aA

5π −
gA

LΩ2

(
A2

32 −
A4

384 + A6

15360−
A8

1105920

)
γ = − 20aA

21π +
gA

LΩ2

(
A4

1920 −
A6

46080 + A8

2580480

) . (31)

We also may choose the auxiliary functions A1 and A2, and the function F as follows

A1(ϕ0(τ), Ci) = −(C1 + 2C2 cos 3τ+ 2C3 cos 4τ)
A2(ϕ0(τ), Ci) = C4 cos 5τ
F(N[ϕ0(τ)]) = α cos τ+ β cos 3τ

, (32)

or
A1(ϕ0(τ), Ci) = −(C1 + 2C2 cos 4τ)
A2(ϕ0(τ), Ci) = C3 cos 3τ+ C4 cos 7τ
F(N[ϕ0(τ)]) = α cos τ+ γ cos 5τ

, (33)
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and so on.
Substituting Equation (30) into Equation (8), the result is

ϕ′′ 1 +ϕ1 =
α(C1+C2)+β(C2+C3)+γ(C3+C4)

Ω2 cos τ

+
α(C2+C3)+β(C1+C4)+γC2

Ω2 cos 3τ+ α(C3+C4)+βC2+γC1
Ω2 cos 5τ

+αC4+βC3+γC2
Ω2 cos 9τ+ γC4

Ω2 cos 11τ

. (34)

In order to avoid secular terms, the following condition should be imposed

α(C1 + C2) + β(C2 + C3) + γ(C3 + C4) = 0. (35)

From Equations (31) and (35) one retrieves

Ω2
app =

M
3π−4aA

3 (C1 + C2) −
12aA(C2+C3)

5 +
20aA(C3+C4)

21

, (36)

where
M =

πgA
L

[
(C1 + C2)

(
1− A2

8 + A4

192 −
A6

9216 + A8

737280

)
−(C2 + C3)

(
A2

32 −
A4

384 + A6

15360−
A8

1105920

)
+ (C3 + C4)

(
A4

1920 −
A6

46080 + A8

2580480

) .

The solution (34) is given by

ϕ1(τ) =
α(C2+C3)+β(C1+C4)+γC2

8Ω2 (cos τ− cos 3τ) + α(C3+C4)+βC2+γC1
24Ω2 (cos τ− cos 5τ)

+αC4+βC3+γC2
48Ω2 (cos τ− cos 7τ) + βC1+γC3

80Ω2 (cos τ− cos 9τ) + γC4
120Ω2 (cos τ− cos 11τ)

(37)

From Equations (3), (23) and (37), and from the transformations τ = Ωt andϕ = θA−1, one obtains
the first-order approximate solution of Equation (16) as

θ̃(t) = A cos Ωt + A[α(C2+C3)+β(C1+C4)+γC2]

8Ω2 (cos Ωt− cos 3Ωt)

+
A[α(C3+C4)+βC2+γC1]

24Ω2 (cos Ωt− cos 5Ωt) + A[αC4+βC3+γC2]

48Ω2 (cos Ωt− cos 7Ωt)

+
A(βC4+γC3]

80Ω2 (cos Ωt− cos 9Ωt) + AγC4]

120Ω2 (cos Ωt− cos 11Ωt)

, (38)

where the coefficients α, β and γ are given in Equation (31) and Ω in Equation (36).

5. Results and Discussion

In order to emphasize the accuracy of our approach, we consider various sets of values for the
parameters a, A, and L. We analyze the solution θ̃ in 10 different cases and we develop comparisons
between analytical and numerical integration results. Additionally, we represent a graphical comparison
of the phase plane and a comparison between the frequencies Ω given by analytical developments (36)
and numerical integration results, respectively. The calculation parameters were chosen as to reflect
real cases, which could be encountered in practice.

5.1. Case 1

First, we consider A = 0.1, a = 0.2, L = 0.6, and g = 9.8. Using the proposed procedure,
by minimizing the residual function, the optimal values of the convergence-control parameters Ci and
the frequency (36) are

C1 = −0.02612929050874707; C2 = 0.026479977489142312;
C3 = −0.008435730447475517; C4 = 0.0022006784301049727;
Ωapp = 4.056213309077129
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The solution given by (38) can be written as follows:

θ̃(t) = 0.0998307842607 cos Ωt + 0.000186028849 cos 3Ωt− 0.000018350481 cos 5Ωt
+1.058064902746 · 10−6 cos 7Ωt + 5.890466227595 · 10−7 cos 9Ωt− 1.097402505723 · 10−7 cos 11Ωt

(39)

In Figures 2 and 3 is plotted the comparison between approximate solution (39) and numerical
integration results, and the phase plane in this case, respectively.
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5.2. Case 2

For A = 0.1, a = 0.4, L = 0.6 we obtain

C1 = −0.06468511377430505; C2 = 0.0663565183850488;
C3 = −0.024463908434927746; C4 = 0.007981996714313724;
Ωapp = 4.0735339712576275

The solution given by (38) in this case can be written as follows:

θ̃(t) = 0.099649003276 cos Ωt + 0.000385656055 cos 3Ωt− 0.000036941545 cos 5Ωt
−2.769256927293 · 10−7 cos 7Ωt + 3.355209133644 · 10−6 cos 9Ωt− 7.960693115042 · 10−7 cos 11Ωt

(40)

The comparison between analytical solution (40) and numerical integration results is presented in
Figures 4 and 5.
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approximate solution (40).

5.3. Case 3

For A = 0.1, a = 0.6, L = 0.6 one can get

C1 = −0.1261219305 903601; C2 = 0.1307654396 4819184;
C3 = −0.0555663627 7721333; C4 = 0.0210265079 04137733;
Ωapp = 4.0917815705 13826

θ̃(t) = 0.099462706082 cos Ωt + 0.000591204026 cos 3Ωt− 0.00005847843 cos 5Ωt
−5.181840137296 · 10−6 cos 7Ωt + 0.000011265133 cos 9Ωt− 3.145558315768 · 10−6 cos 11Ωt

(41)

Graphical comparisons between analytical and numerical results in this case are presented in
Figures 6 and 7.
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approximate solution (41).

5.4. Case 4

For A = 0.2, a = 0.2, L = 0.6, it holds that

C1 = −0.0848611053 1011988; C2 = 0.0871934689 9295516;
C3 = −0.0365715419 8248718; C4 = 0.0118502052 90770313;
Ωapp = 4.0659463540 564085

θ̃(t) = 0.1993020640806 cos Ωt + 0.000789686896 cos 3Ωt− 0.000099399722 cos 5Ωt
−3.173485847984 · 10−8 cos 7Ωt + 0.000010044198 cos 9Ωt− 2.363718668036 · 10−6 cos 11Ωt

(42)

Figures 8 and 9 emphasize the comparison of the analytical solution (42) with numerical
integration results.
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5.5. Case 5

For A = 0.2, a = 0.4, L = 0.6, it holds that

C1 = −0.0547821344 6823842; C2 = 0.0585371711 5551574;
C3 = −0.0046271807 32353522; C4 = 0.0202923559 3370952;
Ωapp = 4.1008614227 769575

θ̃(t) = 0.199076124329 cos Ωt + 0.000743701792 cos 3Ωt + 0.000180456966 cos 5Ωt
+8.131462054754 · 10−6 cos 7Ωt− 3.192663647494 · 10−7 cos 9Ωt− 8.095283729049 · 10−6 cos 11Ωt

(43)

A comparison between the analytical solution (43) and corresponding numerical integration
results is presented in Figures 10 and 11.
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5.6. Case 6

For A = 0.2, a = 0.6, L = 0.6, we obtain

C1 = 0.0300850261 10128053; C2 = −0.0355036855 83418404;
C3 = 0.0256650140 4190474; C4 = 0.0626909162 6063286;
Ωapp = 4.1374508035 06345

θ̃(t) = 0.199417 cos Ωt− 0.000080132 cos 3Ωt + 0.000496034 cos 5Ωt
+0.000241647 cos 7Ωt− 0.0000373673 cos 9Ωt− 0.0000375142 cos 11Ωt

(44)

In Figures 12 and 13 is plotted the comparison between approximate solution (44) and numerical
integration results in this case.
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5.7. Case 7

In this case, for A = 0.3, a = 0.2, L = 0.6, yields

C1 = −0.1259868920 4928884; C2 = 0.1319048242 7905972;
C3 = −0.0532252516 8176718; C4 = −0.0259636918 39690852;
Ωapp = 4.0711925506 53585

θ̃(t) = 0.298733 cos Ωt + 0.00129371 cos 3Ωt− 0.0000239776 cos 5Ωt
−0.0000223193 cos 7Ωt− 0.0000314489 cos 9Ωt− 0.0000116526 cos 11Ωt

(45)

Graphical comparisons between analytical and numerical results are presented for this case in
Figures 14 and 15.
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5.8. Case 8

Considering A = 0.3, a = 0.4, L = 0.6, it follows that

C1 = 0.4719373259 762131; C2 = −0.5063076905 748477;
C3 = 0.3475612052 9541146; C4 = −0.1153943661 8220579;
Ωapp = 4.1252549407 44536

θ̃(t) = 0.29784 cos Ωt + 0.001650441 cos 3Ωt + 0.000376774 cos 5Ωt
+0.000455463 cos 7Ωt− 0.000428294 cos 9Ωt + 0.000104476 cos 11Ωt

(46)

Figures 16 and 17 emphasize the comparison of the analytical solution (46) with numerical
integration results.
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5.9. Case 9

In this case, we consider A = 0.3, a = 0.6, L = 0.6, such that

C1 = 0.4150420146 527756; C2 = −0.4611401944 978064;
C3 = 0.3242095773 6633876; C4 = −0.1212244132 9678995;
Ωapp = 4.1807774631 05995

θ̃(t) = 0.295522 cos Ωt + 0.00448745 cos 3Ωt− 0.000365785 cos 5Ωt
+0.000785393 cos 7Ωt− 0.000592619 cos 9Ωt + 0.000163216 cos 11Ωt

(47)

Graphical comparisons between analytical and numerical results in this case are presented in
Figures 18 and 19. Moreover Table 1 presents a comparison between the values of the frequency
obtained in the above considered cases.
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Table 1. Comparison between the numerical solution of the frequency and the approximate
frequency (36).

Case No. Ωnum Ωapp

5.1 4.056165704763733 4.056213309077129
5.2 4.0735936668241015 4.0735339712576275
5.3 4.091213341156173 4.091781570513826
5.4 4.065980106247986 4.0659463540564085
5.5 4.10137202740024 4.1008614227769575
5.6 4.137539732217073 4.137450803506345
5.7 4.070864763571452 4.071192550653585
5.8 4.124733651749398 4.125254940744536
5.9 4.180380645932648 4.180777463105995
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5.10. Case 10

The classical simple pendulum is obtained from Equation (16) in the case when no cylinder exists.
Therefore, for a = r/L = 0 we obtain from (36) the approximate frequency

Ω2
app =

gA
L

[
1− A2

8 + A4

192 −
A6

9216 + A8

737280 −
C2+C3
C1+C2

(
A2

32 −
A4

384

+ A6

15360 −
A8

1105920

)
+ C3+C4

C1+C2

(
A4

1920 −
A6

46080 + A8

2580480

) . (48)

The approximate solution for the simple pendulum is obtained from Equation (38) with the
following coefficients given by Equation (31) for this particular case:

α = −Ω2 +
gA
L

(
1− A2

8 + A4

192 −
A6

9216 + A8

737280

)
β = −

gA
L

(
A2

32 −
A4

384 + A6

15360−
A8

1105920

)
γ =

gA
L

(
A4

1920 −
A6

46080 + A8

2580480

) . (49)

The optimal values of the control parameters and the approximate frequency in this case
are, respectively

C1 = −0.0065766763 02841165; C2 = 0.0065798727 04687396;
C3 = −0.0075433679 39537256; C4 = 0.0013865133 762133064;
Ωapp = 3.9941012459 580407

θ̃(t) = 0.4000837624301 cos Ωt− 0.000029363344 cos 3Ωt− 0.000061202307 cos 5Ωt
+6.789035888081 · 10−6 cos 7Ωt + 1.421189152905 · 10−8 cos 9Ωt− 2.506926263728 · 10−11 cos 11Ωt

(50)

In Figure 20, we compared the results obtained through OAFM with numerical integration results
for the particular care of simple pendulum for A = 0.4, L = 0.6, while in Figure 21 a comparison between
the phase planes in this case is presented.Mathematics 2020, 8, x FOR PEER REVIEW 28 of 32 
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Analyzing the comparison between the approximate and numerical integration results presented
in Figures 2–21 for the cases 5.1–5.10, it can be observed that the results obtained by means of
our procedure are almost identical with the results obtained using a numerical integration approach.
Moreover, from Table 1 one can be observe that the accuracy of the approximate frequency is remarkably
good when compared to numerical results.

From Figures 2–19, it can be seen that the errors of the approximate solutions increase with respect
to increasing values of the parameters a and A. Additionally, for the particular case of classical simple
pendulum, the results obtained through our procedure are in very good agreement with numerical
integration results. From the cases 5.4–5.6, and 5.7–5.8 respectively, we deduce that the frequency of
the system is increased by increasing the radius of cylinders (parameter a). Additionally, from the cases
5.1, 5.4 and 5.7 it can be seen that the frequency of the system is increased by increasing the amplitude
A. The same conclusion is obtained from the cases 5.2, 5.5 and 5.8 or 5.3, 5.6 and 5.9, respectively.
The sources of nonlinear oscillations of the pendulum wrapping on two cylinders are given by the
radius of cylinders (parameters a), the amplitude A and the length of pendulum.

6. Conclusions

In this paper we present an analytical and numerical solution for a pendulum wrapping on two
cylinders, and also the corresponding frequencies using both a new analytical approach, namely the
Optimal Auxiliary Functions Method (OAFM), and a numerical integration approach. To validate the
approximate solutions obtained by means of OAFM it is necessary to present the time response for
different cases.

The proposed analytical approach, OAFM, accelerates the convergence of the approximate
solutions of nonlinear pendulum wrapping on two cylinders and lead to very accurate values of
frequencies. The construction of the first iteration is totally different from any other known approach,
mainly concerning the presence of the optimal auxiliary functions dependent on the convergence-control
parameters. It should be emphasized that in the construction given by Equation (8), especially for very
complicated equations of type (1), it is not needed for the presence of the entire nonlinear function
N[u0(x)] and as a consequence, a considerable simplification is observed for the treatment of the first
approximation u1(x,Ci). On the other hand, within Equation (8), the auxiliary functions A1 and A2

compensate the presence of nonlinear function N[u0(x)].
The initially unknown parameters Ci whose optimal values are determined using rigorous

criterion, ensure a rapid convergence of the approximate analytical solutions since accurate results are
obtained after the first iteration.

The great advantage of the OAFM is the possibility to optimally control and adjust the convergence
of the solutions with the help of the auxiliary functions A1 and A2.

The resulting analytical solutions proved to be in very good agreement with numerical integration
ones and this proves the validity of the proposed method, emphasizing that this procedure is very
efficient in practice.

The OAFM could be easily extended to faulted rotary systems, such as cracked or rubbing
rotors [31,32], which will be the authors’ future research direction. Moreover, in order to test the
capabilities of the proposed approach, another future research will be directed to provide a comparison
between OAFM and harmonic balance method [33] in solving nonlinear dynamic problems.
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