

  mathematics-08-01360




mathematics-08-01360







Mathematics 2020, 8(8), 1360; doi:10.3390/math8081360




Article



Lucas Numbers Which Are Concatenations of Two Repdigits



Yunyun Qu 1,2,* and Jiwen Zeng 1





1



School of Mathematical Sciences, Xiamen University, Xiamen 361005, China






2



School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, China









*



Correspondence: qucloud@163.com







Received: 21 July 2020 / Accepted: 10 August 2020 / Published: 13 August 2020



Abstract

:

In this paper, we find all Lucas numbers written in the form    c ⋯ c d ⋯ d  ¯  , where    c ⋯ c d ⋯ d  ¯   is the concatenation of two repdigits in base 10 with   c , d ∈ { 0 , 1 , ⋯ , 9 }  ,   c ≠ d   and   c > 0  .
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1. Introduction


Linear form in logarithms has many important applications in solving Diophantine equations [1,2,3,4]. In 2002, by applying linear form in logarithms, A. Dujella and B. Jadrijević [1] showed that the solutions to quartic Thue equations    x 4  − 4 c  x 3  y +  ( 6 c + 2 )   x 2   y 2  + 4 c x  y 3  +  y 4  = 1   are only   ( x , y ) = ( ± 1 , 0 )   and   ( 0 , ± 1 )   for an integer   c ≥ 3  . Suppose that    {  F n  }   n ≥ 0    is the Fibonacci sequence given by    F  n + 2   =  F  n + 1   +  F n   , with initial values    F 0  = 0   and    F 1  = 1   and let    {  L n  }   n ≥ 0    be the Lucas sequence defined by    L  n + 2   =  L  n + 1   +  L n   , where    L 0  = 2   and    L 1  = 1  . In 2011, F. Luca and R. Oyono [2] concluded that there is no solution   ( m , n , s )   to the Diophantine equation    F m s  +  F  m + 1  s  =  F n    for integers   m ≥ 2 , n ≥ 1 , s ≥ 3   by applying linear form in logarithms. There are many papers in the literature which solve Diophantine equations related to Fibonacci numbers and Lucas numbers [3,4,5,6,7,8,9,10,11,12,13,14]. In 2013, D. Marques and A. Togbé [3] found all solutions   ( n , a , b , c )   to the Diophantine equation    F n  =  2 a  +  3 b  +  5 c    and    L n  =  2 a  +  3 b  +  5 c    for integers   n , a , b , c   with   0 ≤ max { a , b } ≤ c  . In 2019, B. D. Bitim [4] investigated the solutions   ( n , m , a )   to the Diophantine equation    L n  −  L m  = 2 ·  3 a    for nonnegative integers   n , m , a   with   n > m  . Let p be a prime number and   max { a , b } ≥ 2  , in 2009, F. Luca and P. Stǎnicǎ [5] concluded that there are only finitely many positive integer solutions   ( n , p , a , b )   to the Diophantine equation    F n  =  p a  ±  p b   .



Assume that   q ≥ 2   is an integer. A positive number   n ∈ N   is called a base   q −   repdigit if   n = c    q t  − 1   q − 1    , for some   t ≥ 1   and   c ∈ { 1 , 2 , … , q − 1 }  . When   q = 10  , n is simply called a repdigit. We use      B 1  ⋯  B t   ¯   ( q )    to express an integer’s base   − q   representation which is the concatenation of the base   − q   representations of positive integers    B 1  , … ,  B t   . We ignore writing q if   q = 10  . Then we can denote the repdigit n by   n =     c ⋯ c  ︸   t  t i m e s   ¯    and the concatenation of two repdigits in base 10 is        c ⋯ c  ︸   s  t i m e s      d ⋯ d  ︸   t  t i m e s    ¯  ,   where   c , d ∈ { 0 , 1 , ⋯ , 9 }  ,   c ≠ d , c > 0 , s ≥ 1   and   t ≥ 1  . There are many papers in the literature on investigating Diophantine equations related to repdigits [8,9,11,12,13,14,15,16,17,18,19,20,21]. In 2000, Luca [15] proved that if    F n  = a    10 m  − 1  9    and    L n  = a    10 m  − 1  9    for some   a ∈ { 0 , 1 , ⋯ , 9 }   and   m ≥ 1  , then   n = 0 , 1 , 2 , 3 , 4 , 5 , 6 , 10   and   n = 0 , 1 , 2 , 3 , 4 , 5   respectively. In 2012, all repdigits in base 10 expressible as sums of three Fibonacci numbers were found in [16]. In 2018, all repdigits in base 10 which are sums of four Fibonacci or Lucas numbers were determined in [17]. In 2019, all solutions to the Diophantine equation    F n  =      a ⋯ a  ︸   m  t i m e s      b ⋯ b  ︸   l  t i m e s    ¯    were found in [18], where   a , b ∈ { 0 , 1 , ⋯ , 9 }   and   a > 0  . For the research of concatenations of two repdigits in balancing numbers, Padovan numbers and Tribonacci numbers, please refer to the literature [19,20,21] respectively.



In this paper, we find all Lucas numbers which are concatenations of two repdigits. More precisely, we have the following result.



Theorem 1.

If


    L n  =      c ⋯ c  ︸   s  t i m e s      d ⋯ d  ︸   t  t i m e s    ¯  ,   



(1)




with   c , d ∈ { 0 , 1 , ⋯ , 9 }  ,   c ≠ d , c > 0 , s ≥ 1   and   t ≥ 1  , then


    ( n ,  L n  )  ∈  {  ( 6 , 18 )  ,  ( 7 , 29 )  ,  ( 8 , 47 )  ,  ( 9 , 76 )  ,  ( 11 , 199 )  ,  ( 12 , 322 )  }  .   














2. Preliminaries


Firstly, the Binet’s formula for Lucas sequence is


   L n  =  α n  +  β n  , n ≥ 0 ,  








where   α =   1 +  5   2    and   β =   1 −  5   2   . For all positive integers n, we have the following inequality


   α  n − 1   ≤  L n  ≤  α  n + 1   .  



(2)







Secondly, we recall the definition and properties for logarithmic height of an algebraic number. Let  η  be an algebraic number of degree m and suppose that the minimal primitive polynomial of  η  is   f  ( X )  : =  a 0   ∏  i = 1  m   ( X −  η  ( i )   )  ∈ Z  [ X ]    with    a 0  > 0  . We give the logarithmic height of  η  by


  h  ( η )  : =   1 m    log  a 0  +  ∑  i = 1  m   log max { |   η  ( i )    | , 1 }   .  











In this paper, for any two integers a and b, we denote the greatest common divisor of a and b by   gcd ( a , b )  . Specifically,   h ( η ) = log max { | p | , q }   when   η =  p q  ∈ Q   with   gcd ( p , q ) = 1   and   q > 0  . We have the following properties of the logarithmic height   h ( · )  :


  h ( η ± γ ) ≤ h ( η ) + h ( γ ) + log 2 ,  










  h  ( η  γ  ± 1   )  ≤ h  ( η )  + h  ( γ )  ,  










  h  (  η k  )  =  | k |  h  ( η )     ( k ∈ Z )  .  











We need the following lemma to prove our theorem.



Lemma 1.

(see [22]) Let   d L   be the degree of an algebraic number field  L  over  Q  and   L ⊆ R  . Let    γ 1  ,  γ 2  , ⋯ ,  γ l  ∈ L   be non-zero elements and let    b 1  , ⋯ ,  b l    be rational integers. If   Γ : =  γ 1  b 1   ⋯  γ l  b l   − 1 ≠ 0  , then


   | Γ | ≥ exp ( − 1.4 ·  30  l + 3    l  4.5    d L 2   ( 1 + log  d L  )   ( 1 + log B )   A 1  ⋯  A l  ) ,   








where   A j   are real numbers such that


    A j   ≥ max {   d L  h  (  γ j  )   , | log   γ j   | , 0.16 }    








for   j = 1 , ⋯ , l   and   B ≥ max { |  b 1  | , ⋯ , |  b l  | , 3 }  .





Thirdly, we need the following Lemma 2 and Lemma 3 to reduce some large upper bounds on the variables in the course of our calculations.



Lemma 2.

(see [23]) Let M be a positive integer and let   p q   be a convergent of the continued fraction of the irrational number α such that   q > 6 M  , and let   A , B , τ   be some real numbers with   A > 0   and   B > 1  . Let   ϵ : = ∥ τ q ∥ − M ∥ α q ∥  , where   ∥ · ∥   denotes the distance from the nearest integer. If   ϵ > 0  , then there exists no solution to the inequality


    0 < | u α − v + τ | < A   B  − ω     








in positive integers   u , v  , and ω with   u ≤ M   and   w ≥   log ( A q / ϵ )   log B    .





Lemma 3.

(see [24]) Let τ be an irrational number, M be a positive integer and     p k   q k    ( k = 0 , 1 , 2 , … )    be all the convergents of the continued fraction   [  a 0  ,  a 1  , … ]   of τ. Let N be such that    q N  > M  . Then putting    a M  : = max  {  a i  : i = 0 , 1 , … , N }   , the inequality


    | m τ − n | >   1  (  a M  + 2 ) m     








holds for all pairs   ( n , m )   of integers with   0 < m < M  .






3. Proof of Theorem 1


3.1. Bounding n


According to (1), we get


     L n     =      c ⋯ c  ︸   s  t i m e s      d ⋯ d  ︸   t  t i m e s    ¯           =     c ⋯ c  ︸   s  t i m e s   ¯  ·  10 t  +     d ⋯ d  ︸   t  t i m e s   ¯           =  1 9   ( c  10  s + t   −  ( c − d )   10 t  − d )  .     



(3)







Suppose that   n > 1000  . From inequality (2), we can get    α  n − 1   ≤  L n  <  10  s + t     and    10  s + t − 1   ≤  L n  ≤  α  n + 1    , which implies that


  ( s + t ) log 10 − log 10 − log α ≤ n log α < ( s + t ) log 10 + log α .  



(4)







Thus, we can get


  4.78 ( s + t ) − 5.8 < n < 4.79 ( s + t ) + 1 .  



(5)







From (5), we get   s + t >   n − 1   4.79   > 208   and   n > s + t  . According to (3) and Binet’s formulae for Lucas sequences, we get


   | 9   α n  − c  10  s + t    | = | − 9   β n  −  (  ( c − d )   10 t  + d )   | ≤ 9   α  − n   + 9 ·  10 t  + 9 < 27 ·  10 t  ,  



(6)




which implies that


    9 c   α n   10  − s − t   − 1  <  27  10 s   .  



(7)







Let   Γ 1  :  =  9 c   α n   10  − s − t   − 1  , then    Γ 1  ≠ 0  . If    Γ 1  = 0  , then    α n  =    10  s + t   c  9  ∈ Q  , thus we have      10  s + t   c  9  =    ( 1 +  5  )  n   2 n   =   f + g  5    2 n    , where   f , g ∈ Z , f > 0 , g > 0  , this implies that    5  =      10  s + t   c  2 n   9  − f  g  ∈ Q  , which is impossible. According to Lemma 1, we take   l = 3  ,    γ 1  =  9 c  ,  γ 2  = α ,  γ 3  = 10   and    b 1  = 1 ,  b 2  = n ,  b 3  = − s − t .   Thus, we have   L = Q  ( α )  ,  d L  =  [ L : Q ]  = 2 .   Note that   h  (  γ 1  )  = h  (  9 c  )  ≤ log 9 , h  (  γ 2  )  =  1 2  log α , h  (  γ 3  )  = log 10  . Thus, we can take    A 1  = 2 log 9 ,     A 2  = 0.5 ,     A 3  = 4.8  . Note that   B = max { |  b 1  | , |  b 2  | , |  b 3  | , 3 } = max  { 1 , n , s + t , 3 }  = n  . Hence, we get


  ∣  Γ 1  ∣ > exp  ( −  C 1   ( 1 + log n )  )  ,  



(8)




where    C 1  = 1.025 ×  10 13   . Thus from (7) and (8), we can get


  s log 10 <  C 1   ( 1 + log n )  + log 27 .  



(9)







We rewrite Equation (3), then we get


    α n  −   c  10 s  −  ( c − d )   9  ·  10 t   =   β n  +  d 9   ≤  α  − n   + 1 < 2 .  



(10)







It follows that


       c  10 s  −  ( c − d )   9  ·  α  − n   ·  10 t  − 1     <  2  α n   .     



(11)







Let    Γ 2  : =   c  10 s  −  ( c − d )   9  ·  α  − n   ·  10 t  − 1  , then    Γ 2  ≠ 0  . If    Γ 2  = 0  , then    α n  =   c  10 s  −  ( c − d )   9  ·  10 t  ∈ Q  , which is false. According to Lemma 1, we take   l = 3  ,   γ 1  =   c  10 s  −  ( c − d )   9  ,  γ 2  = α ,  γ 3  = 10   and    b 1  = 1 ,  b 2  = − n ,  b 3  = t .   Thus, we have   L = Q  ( α )  ,  d L  =  [ L : Q ]  = 2 .   From (9), we can get


     h (  γ 1  )     ≤ h ( c  10 s  −  ( c − d )  ) + h  ( 9 )           ≤ 3 log 9 + s log 10 + log 2          ≤  C 1   ( 1 + log n )  + log 27 + 3 log 9 + log 2          ≤ 1.03 ·  10 13  ·  ( 1 + log n )  ,     



(12)




and we have   h  (  γ 2  )  =  1 2  log α , h  (  γ 3  )  = log 10  . Thus, we can take    A 1  = 2.06 ·  10 13  ·  ( 1 + log n )  ,     A 2  = 0.5 ,     A 3  = 4.8  . Note that   B = max { |  b 1  | , |  b 2  | , |  b 3  | , 3 } = max  { 1 , n , t , 3 }  = n  . Hence, we get


  ∣  Γ 2  ∣ > exp  ( −  C 2    ( 1 + log n )  2  )  ,  



(13)




where    C 2  = 4.8 ×  10 25   . Thus from (11) and (13), we can get


  n log α <  C 2    ( 1 + log n )  2  + log 2 ,  



(14)




this implies that   n < 4.8 ×  10 29   . Hence we can conclude that


  s + t <   n + 5.8   4.78   < 1.01 ·  10 29  .  











To sum up, we have the lemma as follows.



Lemma 4.

If   ( n , c , d , s , t )   is a solution in non-negative integers of Equation (1), with   c , d ∈ { 0 , 1 , ⋯ , 9 }  ,   c ≠ d   and   c > 0  , then


   s + t < n < 4.8 ·  10 29  , s + t < 1.01 ·  10 29  .   














3.2. Reducing the Bound on n


We use the Lemmas 2 and 3 to reduce the bound for n. Let


   Λ 1  : =  ( s + t )  log 10 − n log α − log  9 c  .  











From (7), we conclude that


    e  −  Λ 1    − 1  <  27  10 s   .  



(15)







If   s ≥ 2  , then    |   e  −  Λ 1     − 1 | <   27  10 s   <  1 2   , which implies that    1 2  <  e  −  Λ 1    <  3 2   . If    Λ 1  > 0  , then   0 <  Λ 1  <  e  Λ 1   − 1 =  e  Λ 1    ( 1 −  e  −  Λ 1    )  <  54  10 s    . If    Λ 1  < 0  , then    0 < |   Λ 1   | <   e   |   Λ 1   |    − 1 =  e  −  Λ 1    − 1 <  27  10 s    . In any case, it is always holds true    0 < |   Λ 1   | <   54  10 s    , which implies


  0 <   ( s + t )    log 10   log α   − n −   log  9 c    log α    <   54  log α    10 s   .  



(16)







The continued fraction of    log 10   log α    is    [  a 0  ,  a 1  ,  a 2  ,  a 3  ,  a 4  , ⋯ ]  =  [ 4 , 1 , 3 , 1 , 1 , 1 , 6 , ⋯ ]   , and let    p k   q k    be its kth convergent. Note that   s + t < 1.01 ·  10 29    by Lemma 4. It is easy to see that    log 10   log α    is irrational. In fact, if     log 10   log α   =  p q   ( p , q ∈ Z    and   p > 0 , q > 0 , gcd ( p , q ) = 1 )  , then    α p  =  10 q  ∈ Q  , which is an absurdity. For all   c ∈ { 1 , ⋯ , 8 }  , according to (16) and Lemma 2, we take   M = 1.01 ·  10 29    and    q 60  > 6 M  , hence we get the minimum value of  ϵ  is   0.061483 …   and   s < 34  . If   c = 9  , from (16), we get


  0 <   ( s + t )    log 10   log α   − n  <   54  log α    10 s   .  



(17)







According to Lemma 3, we take   M = 1.01 ·  10 29    and    q 60  > M  , hence we get    a M  : = max  {  a i  : i = 0 , 1 , … , 60 }  = 106   and we have


    ( s + t )    log 10   log α   − n  >  1   (  a M  + 2 )   ( s + t )    >  1  108 · 1.01 ·  10 29    .  



(18)







Thus, from (17) and (18), we get


   1  108 · 1.01 ·  10 29    <   54  log α    10 s   ,  








this leads to   s < 34  . So we always have   s < 34  .



Let


   Λ 2  : = t log 10 − n log α + log   c  10 s  −  ( c − d )   9  .  











From (11) and   n > 1000  , we conclude that


    e  Λ 2   − 1  <  2  α n   <  1 2  ,  



(19)




which implies that    1 2  <  e  Λ 2   <  3 2   . If    Λ 2  > 0  , then   0 <  Λ 2  <  e  Λ 2   − 1 <  2  α n    . If    Λ 2  < 0  , then    0 < |   Λ 2   | <   e  −  Λ 2    − 1 =  e  −  Λ 2     ( 1 −  e  Λ 2   )  <  4  α n    . In any case, since    0 < |   Λ 2   | <   4  α n    , thus we have


  0 <  t   log 10   log α   − n +   log   c  10 s  −  ( c − d )   9    log α    <   4  log α    α n   ,  



(20)




where   s ≤ 33 , c ∈ { 1 , ⋯ , 9 }   and   d ∈ { 0 , 1 , ⋯ , 9 }  . For inequality (20), we consider the following two cases: if   ( s , c , d ) ≠ ( 1 , 1 , 0 )  , according to (20) and Lemma 2, we take   M = 1.01 ×  10 29    and    q 60  > 6 M  , hence we obtain 25 negative values of  ϵ , the minimum value in the values of positive  ϵ  is   0.00004477 …   and   n < 171  . For the values of   ( s , c , d )   corresponding to the 25 negative values of  ϵ , we take    q 63  > 6 M  , according to (20) and Lemma 2, we get the minimum value in the values of  ϵ  is   0.005613 …   and   n < 168  . If   ( s , c , d ) = ( 1 , 1 , 0 )  , from (20), we get


  0 <  t   log 10   log α   − n  <   4  log α    α n   .  



(21)







According to Lemma 3, we take   M = 1.01 ·  10 29    and    q 60  > M  , hence we get    a M  : = max  {  a i  : i = 0 , 1 , … , 60 }  = 106   and we have


   t   log 10   log α   − n  >  1  (  a M  + 2 ) t   >  1  108 · 1.01 ·  10 29    .  



(22)







Thus, from (21) and (22), we get


   1  108 · 1.01 ·  10 29    <   4  log α    α n   ,  








which leads to   n < 153  . In summary, we have   n < 171  . This contradicts the assumption   n > 1000  . Finally, we search for the solutions to (1) in the range   n ≤ 1000   by applying a program written in Mathematica and we obtain the solutions    ( n ,  L n  )  ∈  {  ( 6 , 18 )  ,  ( 7 , 29 )  ,  ( 8 , 47 )  ,  ( 9 , 76 )  ,  ( 11 , 199 )  ,  ( 12 , 322 )  }   . We complete the proof.





4. Conclusions and Future Research


For a fixed integer   k ≥ 2  , let    {  F n  ( k )   }   n ≥ 2 − k    be the   k −   generalized Fibonacci sequence defined by    F n  ( k )   =  F  n − 1   ( k )   +  F  n − 2   ( k )   + ⋯ +  F  n − k   ( k )     with the initial values    F  − ( k − 2 )   ( k )   =  F  − ( k − 3 )   ( k )   = ⋯ =  F  0   ( k )   = 0  ,    F  1   ( k )   = 1   and    {  L n  ( k )   }   n ≥ 2 − k    be the   k −   generalized Lucas sequence given by    L n  ( k )   =  L  n − 1   ( k )   +  L  n − 2   ( k )   + ⋯ +  L  n − k   ( k )     with the initial values    L  − ( k − 2 )   ( k )   =  L  − ( k − 3 )   ( k )   = ⋯ =  L  − 1   ( k )   = 0  ,    L  0   ( k )   = 2 ,  L  1   ( k )   = 1  . Suppose that   c , d ∈ { 0 , 1 , ⋯ , 9 }  ,   c ≠ d , c > 0 , s ≥ 1   and   t ≥ 1 ,   our aim is to solve the two Diophantine equations


   F n  ( k )   =      c ⋯ c  ︸   s  t i m e s      d ⋯ d  ︸   t  t i m e s    ¯   



(23)




and


   L n  ( k )   =      c ⋯ c  ︸   s  t i m e s      d ⋯ d  ︸   t  t i m e s    ¯  .  



(24)







For   k = 2   and   k = 3  , the Diophantine Equation (23) has been solved in [18] and [21], respectively. In this paper, we solve the Diophantine Equation (24) for the case of   k = 2  . Our future research work is to solve the Diophantine Equations (23) and (24) completely for the case of   k ≥ 3  . In addition, for the main Mathematica programs used in this paper, readers can refer to Appendix A.
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Appendix A. Mathematica Programs


We give the main Mathematica programs used in this paper as follows:




	
  α =   1 +  5   2  ; γ =   log [ 10 ]   log [ α ]   ;  



	
Generates a list of the first n terms in    γ ′  s   continued fraction representation:


  C o n t i n u e d F r a c t i o n [ γ , n ]  











	
The denominator of the nth  ( n = 0 , 1 , 2 , … )   convergent of    γ ′  s   continued fraction:


  q  [ n       ̲  ]  : = M o d u l e  [  { γ =   log [ 10 ]   log [   1 +  5   2  ]   }  , L a s t  [ D e n o m i n a t o r  [ C o n v e r g e n t s  [ γ , n + 1 ]  ]  ]  ]  ;  











	
The function   ∥ x ∥   which denotes the distance from x to the nearest integer:


  c l d i s t  [ x      ̲  , j d      ̲  ]  : = M o d u l e  [  { }  , A b s  [ N  [ R o u n d  [ x ]  − x , j d ]  ]  ]  ;  











	
The number   ϵ : = ∥ τ q ∥ − M ∥ α q ∥   in Lemma 2:


  e p s i l o n  [ τ      ̲  , q      ̲  , M      ̲  , α      ̲  , j d      ̲  ]  : = M o d u l e  [  { }  , c l d i s t  [ τ ∗ q , j d ]  − M ∗ c l d i s t  [ α ∗ q , j d ]  ]  ;  











	
The number   τ : = −   log  9 c    log α     in (16):   τ  [ c      ̲  ]  : = −   log [  9 c  ]   log [ α ]   ;  



	
The number   τ : =   log   c  10 s  −  ( c − d )   9    log α     in (20):   τ  [ s      ̲  , c      ̲  , d      ̲  ]  : =   log [   c  10 s  −  ( c − d )   9  ]   log [ α ]   ;  



	
The nth term of Lucas sequence   L n  :


  L u c a s  [ n      ̲  ]  : = M o d u l e  [  { α =   1 +  5   2  , β =   1 −  5   2  }  , S i m p l i f y  [ E x p a n d  [  α n  +  β n  ]  ]  ]  ;  
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