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Abstract: So called SIR epidemic model with distributed delay and stochastic perturbations
is considered. It is shown, that the known sufficient conditions of stability in probability of the
equilibria of this model, formulated immediately in the terms of the system parameters, can be
improved by virtue of the method of Lyapunov functionals construction and the method of
Linear Matrix Inequalities (LMIs). It is also shown, that stability can be investigated immediately
via numerical simulation of a solution of the considered model.
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1. Introduction

Investigation of different versions of the mathematical model of the spread of infections diseases,
so called, SIR epidemic models, has a long history, and until now these models are very actual and
are very popular in research (see, for instance, [1–30]). A big bibliography of SIR epidemic models
investigation one can find also in ([31], Ch-11). During its history of development, SIR epidemic
models were considered both with constant and distributed delay, both in a deterministic and in
a stochastic version. We will consider the SIR epidemic model in the form of the following system of
differential equations with distributed delay [2,31]

Ṡ(t) = b− βS(t)
∫ ∞

0
I(t− s)dK(s)− µ1S(t),

İ(t) = βS(t)
∫ ∞

0
I(t− s)dK(s)− (µ2 + λ)I(t),

Ṙ(t) = λI(t)− µ3R(t).

(1)

Here, S(t) is the number of members of a population susceptible to the disease at time t,
I(t) is the number of infective members at time t and R(t) is the number of members who have
been removed from the possibility of infection at time t, through full immunity, b is the recruitment
rate of the population, µ1, µ2 and µ3 are the natural death rates of the susceptible, infective and
recovered individuals, respectively, β is the transmission rate, and λ is the natural recovery rate of
the infective individuals. The parameters b, β, λ, µ1, µ2, µ3 of the system (1) are positive constants,
K(s) is a nondecreasing function, such that∫ ∞

0
dK(s) = 1, (2)
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the integrals are understanding in the Stieltjes sense. The equilibria of the system (1) are defined by
the conditions Ṡ(t) ≡ 0, İ(t) ≡ 0, Ṙ(t) ≡ 0, i.e., by the system of algebraic equations

b = βSI + µ1S, βSI = (µ2 + λ)I, λI = µ3R, (3)

which has two solutions: E0 = (bµ−1
1 , 0, 0) and E+ = (S∗, I∗, R∗), where

S∗ =
µ2 + λ

β
<

b
µ1

, I∗ =
b(S∗)−1 − µ1

β
, R∗ =

λI∗

µ3
. (4)

From (4) it follows that E+ is a positive equilibrium of the system (1) by the condition

bβ > µ1(µ2 + λ). (5)

Let us suppose that the system (1) is influenced by stochastic perturbations of the white noise
type that are directly proportional to the deviation of the system state from the equilibrium (S∗, I∗, R∗).
By that the SIR epidemic model (1) under stochastic perturbations is described by the system of Ito’s
stochastic differential equations [31,32]

dS(t) = (b− βS(t)J(It)− µ1S(t)) dt + σ1(S(t)− S∗)dw1(t),

dI(t) = (βS(t)J(It)− (µ2 + λ)I(t)) dt + σ2(I(t)− I∗)dw2(t),

dR(t) = (λI(t)− µ3R(t)) dt + σ3(R(t)− R∗)dw3(t),

(6)

where wi(t), i = 1, 2, 3, are mutually independent standard Wiener processes [31,32],

J(It) =
∫ ∞

0
I(t− s)dK(s). (7)

Note that the equilibrium (S∗, I∗, R∗) of the initial deterministic system (1) is the equilibrium of
the stochastic system (6) too.

In [31] the following simple sufficient conditions for stability in probability of the equilibria E0

and E+ are obtained that are formulated immediately in the terms of the system (6) parameters.

Put δi =
1
2

σ2
i , i = 1, 2, 3.

Lemma 1. If
δ1 < µ1, δ2 < µ2 + λ− βbµ−1

1 , δ3 < µ3, (8)

then the equilibrium E0 of the system (6) is stable in probability.

Remark 1. Note that the second condition (8) contradicts with (5). It means that by the conditions (8) the system
(6) does not have the positive equilibrium E+.

Lemma 2. Let be δ3 < µ3 and

δ1 < µ1, δ2 <
βS∗βI∗

b(S∗)−1 + βS∗
(9)

or

µ1 ≤ δ1 < µ1 + βI∗
√

4I∗(S∗)−1 + 1− 1√
4I∗(S∗)−1 + 1 + 1

,

δ2 <
βS∗βI∗

b(S∗)−1 + βS∗

(
1− βS∗(δ1 − µ1)

(b(S∗)−1 − δ1)2

)
.

(10)

Then the equilibrium E+ of the system (6) is stable in probability.
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Below new sufficient conditions for stability in probability of the equilibria E0 and E+ are obtained
by virtue of the method of Lyapunov functionals construction [31] in the terms of Linear Matrix
Inequalities (LMIs) [33] that are essentially less conservative than the conditions (8)–(10).

2. Some Auxiliary Definitions and Statements

Using the new variables x1(t) = S(t)− S∗, x2(t) = I(t)− I∗, x3(t) = R(t)− R∗, transform the
system (6) to the form

dx1(t) =(−b(S∗)−1x1(t)− βS∗ J(x2t)− βx1(t)J(x2t))dt + σ1x1(t)dw1(t),

dx2(t) =(βI∗x1(t)− (µ2 + λ)x2(t) + βS∗ J(x2t) + βx1(t)J(x2t))dt + σ2x2(t)dw2(t),

dx3(t) =(λx2(t)− µ3x3(t))dt + σ3x3(t)dw3(t).

(11)

It is clear that stability of the equilibrium (S∗, I∗, R∗) of the system (6) is equivalent to stability of
the zero solution of the system (11). It is known [31] that for getting sufficient conditions for stability
in probability of the zero solution of the nonlinear system (11) it is enough to get sufficient conditions
for asymptotic mean square stability of the zero solution of the linear part of this system

dy1(t) =(−b(S∗)−1y1(t)− βS∗ J(y2t))dt + σ1y1(t)dw1(t),

dy2(t) =(βI∗y1(t)− (µ2 + λ)y2(t) + βS∗ J(y2t))dt + σ2y2(t)dw2(t),

dy3(t) =(λy2(t)− µ3y3(t))dt + σ3y3(t)dw3(t).

(12)

Put x(t) = (x1(t), x2(t), x3(t))′, y(t) = (y1(t), y2(t), y3(t))′.

Definition 1. The zero solution of the system (11) with the initial condition x(s) = φ(s), s ≤ 0, is called
stable in probability if for any ε1 > 0 and ε2 > 0 there exists δ > 0 such that the solution x(t, φ) of
the system (11) satisfies the condition P{supt≥0 |x(t, φ)| > ε1} < ε2 for any initial function φ such that
P{sups≤0 |φ(s)| < δ} = 1.

Definition 2. The zero solution of the system (12) with the initial condition y(s) = φ(s), s ≤ 0, is called:

- mean square stable if for each ε > 0 there exists a δ > 0 such that E|y(t, φ)|2 < ε, t ≥ 0, provided that
‖φ‖2 = sups≤0 E|φ(s)|2 < δ;

- asymptotically mean square stable if it is mean square stable and for each initial function φ the solution
y(t, φ) of the system (12) satisfies the condition limt→∞ E|y(t, φ)|2 = 0;

- exponentially mean square stable if it is mean square stable and there exists λ > 0 such that for each initial
function φ there exists C > 0 (which may depend on φ) such that E|y(t, φ)|2 ≤ Ce−λt for t ≥ 0.

Remark 2. Understanding, that in the neighbourhood of the zero a nonlinear function with the order of
nonlinearity higher that one converges to the zero quicker than a linear function, explains why asymptotic mean
square stability of the zero solution of the linear part of a nonlinear system guarantees stability in probability of
the zero solution of the initial nonlinear system.

Represent the system (12) in the matrix form

dy(t) =
(

Ay(t) +
∫ ∞

0
By(t− s)dK(s)

)
dt +

3

∑
i=1

Ciy(t)dwi(t), (13)

where the matrix Ci has all zero elements besides of cii = σi, i = 1, 2, 3,

A =

−b(S∗)−1 0 0
βI∗ −(µ2 + λ) 0
0 λ −µ3

 , B =

0 −βS∗ 0
0 βS∗ 0
0 0 0

 . (14)
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Let y(t) be a value of the solution of the Equation (13) in the time moment t, yt = y(t + s), s < 0,
be a trajectory of the solution of the Equation (13) until the time moment t. Consider a functional
V(t, ϕ) : [0, ∞)× H2 → R+ that can be presented in the form V(t, ϕ) = V(t, ϕ(0), ϕ(s)), s < 0, and for
ϕ = yt put

Vϕ(t, y) = V(t, ϕ) = V(t, yt) = V(t, y, y(t + s)), y = ϕ(0) = y(t), s < 0. (15)

Denote by D the set of the functionals, for which the function Vϕ(t, y) defined in (15) has
a continuous derivative with respect to t and two continuous derivatives with respect to y. Let ′ be the
sign of transpose, ∇Vϕ(t, y) and ∇2Vϕ(t, y) be, respectively, the vector of the first and the matrix of
the second derivatives of the function Vϕ(t, y) with respect to y, i.e.,

∇Vϕ(t, y) =
(

∂Vϕ(t, y)
∂y1

,
∂Vϕ(t, y)

∂y2
,

∂Vϕ(t, y)
∂y3

)′
, ∇2Vϕ(t, y) =

{
∂2Vϕ(t, y)

∂yiyj

}
, i, j = 1, 2, 3.

For the functionals from D the generator L of the Equation (13) has the form [31,32]

LV(t, yt) =
∂Vϕ(t, y(t))

∂t
+∇V′ϕ(t, y(t))

Ay(t) +
∞∫

0

By(t− s)dK(s)


+

1
2

3

∑
j=1

y′(t)C′j∇2Vϕ(t, y(t))Cjy(t).

(16)

Theorem 1. [31] Let there exist a functional V(t, ϕ) ∈ D, positive constants c1, c2, c3, such that the following
conditions hold:

EV(t, yt) ≥ c1E|y(t)|2, EV(0, φ) ≤ c2‖φ‖2, ELV(t, yt) ≤ −c3E|y(t)|2. (17)

Then the zero solution of the Equation (13) is asymptotically mean square stable.

Lemma 3. [34] Let R ∈ Rn×n be a positive definite matrix, z =
∫

Q y(s)µ(ds), where z, y(s) ∈ Rn, µ(ds) is
some measure on Q such that µ(Q) < ∞ and the integral is defined in the Lebesgue sense. Then

z′Rz ≤ µ(Q)
∫

Q
y′(s)Ry(s)µ(ds). (18)

3. Stability of Equilibria

In this section we obtain sufficient conditions for asymptotic mean square stability of the zero
solution of the Equation (13). Via Remark 2 these conditions are also sufficient conditions for stability
in probability of the appropriate equilibrium of the system (6).

Below the sign ∗ in a matrix means the symmetric element of a matrix, the inequality A > 0
(A < 0) for a symmetric matrix A means that it is a positive (negative) definite matrix.

3.1. The First Stability Condition

Theorem 2. Let there exist positive definite 3× 3-matrices P and R satisfying the LMI

Ψ0 =

[
Φ0 PB
∗ −R

]
< 0, Φ0 = PA + A′P + R +

3
∑

i=1
C′i PCi. (19)

Then the equilibrium (S∗, I∗, R∗) of the system (6) is stable in probability.
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Proof. Let L be the generator of the Equation (13) and J(yt) as it defined in (7). Using the general
method of Lyapunov functionals construction [31] we will construct the Lyapunov functional for the
Equation (13) in the form V = V1 + V2, where V1(y(t)) = y′(t)Py(t), P > 0. Via (16) for V1(y(t))
we have

LV1(y(t)) =2y′(t)P(Ay(t) + BJ(yt)) +
3

∑
i=1

y′(t)C′i PCiy(t)

=y′(t)

(
PA + A′P +

3

∑
i=1

C′i PCi

)
y(t) + 2y′(t)PBJ(yt).

(20)

Let us choose the additional functional V2 in the form

V2(t, yt) =
∫ ∞

0

∫ t
t−s y′(τ)Rz(τ)dτdK(s), R > 0.

Using the inequality (18) and (2), (7), we obtain

J′(yt)RJ(yt) ≤
∫ ∞

0 y′(t− s)Ry(t− s)dK(s).

So, for the functional V2 we have

LV2(t, yt) =y′(t)Ry(t)−
∫ ∞

0
y′(t− s)Ry(t− s)dK(s)

≤y′(t)Ry(t)− J′(yt)RJ(yt).
(21)

From (20), (21) for the functional V = V1 + V2 it follows that

LV(t, zt) ≤z′(t)Φ0z(t) + 2y′(t)PBJ(yt)− J′(yt)RJ(yt)

=η(t)Ψ0η(t),
(22)

where η(t) = (y′(t), J′(yt))′ and the matrix Ψ0 < 0 is defined in (19). So, the constructed above
Lyapunov functional V satisfies the conditions (17) of Theorem 1. Therefore, the zero solution of the
Equation (13) is asymptotically mean square stable. The proof is completed.

3.2. The Second Stability Condition

To get the second stability condition note that, using the equality
d
dt

(
∞∫
0

t∫
t−s

z(τ)dτdK(s)

)
=

z(t)−
∞∫
0

z(t− s)dK(s), the Equation (13) can be represented in the form of a neutral type equation

dZ(t) = (A + B)z(t)dt +
3
∑

j=1
Cjz(t)dwj(t),

Z(t) = z(t) + G(t), G(t) =
∞∫
0

t∫
t−s

Bz(τ)dτdK(s).
(23)

Remark 3. For stability investigation of the neutral type Equation (23) it is necessary to ensure the exponential
stability of the integral equation Z(t) = 0 [35], i.e., via (23)

z(t) = −G(t). (24)

Similarly to [36,37], it can be shown that if there exists a positive definite matrix Q ∈ Rn×n such that the LMI

k1B′QB− k−1
1 Q < 0, k1 =

∫ ∞
0 sdK(s), (25)

holds then the integral Equation (24) is exponentially stable.
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A simpler, but, generally speaking, more rough than (25) sufficient condition for exponential stability
of the integral Equation (24) is the inequality k1‖B‖ < 1, where ‖B‖ is the matrix norm of a matrix B [31].
Note, however, that in the scalar case (n = 1) both these conditions coincide.

Theorem 3. Let for some positive definite matrices P, Q, R ∈ Rn×n the LMIs (25) and

Ψ1 =

[
Φ1 (A + B)′P
∗ −R

]
< 0, Φ1 = (A + B)′P + P(A + B) + k2

1B′RB +
3
∑

j=1
C′jPCj, (26)

hold. Then the equilibrium (S∗, I∗, R∗) of the system (6) is stable in probability.

Proof. Let L be the generator of the Equation (23). Via (16) and (23) for the functional V1(zt) =

Z′(t)PZ(t), P > 0, we have

LV1(zt) =2Z′(t)P(A + B)z(t) +
k

∑
j=1

z′(t)C′jPCjz(t)

=2z′(t)P(A + B)z(t) + 2G′(t)P(A + B)z(t) +
k

∑
j=1

z′(t)C′jPCjz(t).

(27)

From the definition of G(t) (23) and the inequality (18) it follows that

G′(t)RG(t) ≤ k1
∫ ∞

0

∫ t
t−s z′(τ)B′RBz(τ)dτdK(s), k1 =

∫ ∞
0 sdK(s).

So, for the additional functional

V2(t, zt) = k1
∫ ∞

0

∫ t
t−s(τ − t + s)z′(τ)B′RBz(τ)dτdK(s)

we obtain

LV2(t, zt) =k2
1z′(t)B′RBz(t)− k1

∫ ∞

0

∫ t

t−s
z′(τ)B′RBz(τ)dτdK(s)

≤k2
1z′(t)B′RBz(t)− G′(t)RG(t).

(28)

Via (27), (28) for the functional V = V1 + V2 we have

LV(t, zt) ≤ z′(t)Φ1z(t) + 2G′(t)P(A + B)z(t)− G′(t)RG(t) = η′(t)Ψ1η(t), (29)

where η(t) = (z′(t), G′(t))′ and the matrix Ψ1 < 0 is defined in (26). So, the constructed above
Lyapunov functional V satisfies the conditions (17) of Theorem 1. Therefore, the zero solution of the
Equation (13) is asymptotically mean square stable. The proof is completed.

3.3. The Third Stability Condition

Let us complement the Equation (23) by the following way

dZ(t) = (A + B)z(t)dt +
3
∑

j=1
Cjz(t)dwj(t),

dG(t) = (Bz(t)− G0(t))dt, G0(t) =
∫ ∞

0 Bz(t− s)dK(s),

Z(t) = z(t) + G(t), G(t) =
∞∫
0

t∫
t−s

Bz(τ)dτdK(s).

(30)

Note that for the LMI (19) the matrix A must be the Hurwitz matrix, for the LMI (26) the matrix
A+ B must be the Hurwitz matrix. Here we also assume that A+ B is the Hurwitz matrix. The standard



Mathematics 2020, 8, 1302 7 of 13

approach to stability analysis of the Equation (30) includes construction of a Lyapunov functional
V(xt) with the conditions

EV(zt) ≥ c1E|Z(t)|2, ELV(zt) ≤ −c2E|z(t)|2, t ≥ 0, (31)

that hold for some positive constants c1 and c2, provided the integral equation Z(t) = 0 is asymptotically
stable [36,37]. In the approach, proposed in this section, similarly to [33,38,39] so called augmented
Lyapunov functional V(zt) = V(zt, G(t)) is used, that satisfies to the conditions (17) of the Theorem 1,
which is a classical theorem of the type of Lyapunov-Krasovskii. In this case there is no need to verify the
stability of the integral equation Z(t) = 0.

Theorem 4. Let there exist 3 × 3-dimensional matrices P1, P2, P3, R > 0 and Q > 0 that satisfy the
following LMIs:

Φ =

[
P1 P1 + P2

∗ P1 + P2 + P′2 + P3 +
1
k1

Q

]
> 0 (32)

and

Ψ2 =

Φ11 Φ12 P2

∗ −R P2 + P3

∗ ∗ −Q

 < 0,

Φ11 = P1(A + B) + (A + B)′P1 + P2B + B′P′2 + B′(Q + k2
1R)B + ∑3

j=1 C′jP1Cj,
Φ12 = A′(P1 + P2) + B′(P1 + P2 + P′2 + P3).

(33)

Then the equilibrium (S∗, I∗, R∗) of the system (6) is stable in probability.

Proof. Let L be the generator of the Equation (30). Via (30) for the functional

V1(zt) =

[
Z(t)
G(t)

]′ [
P1 P2

P′2 P3

] [
Z(t)
G(t)

]
(34)

we have

LV1(zt) =2

[
Z(t)
G(t)

]′ [
P1 P2

P′2 P3

] [
(A + B)z(t)

Bz(t)− G0(t)

]
+

3

∑
j=1

z′(t)C′jP1Cjz(t)

=2(z(t) + G(t))′(P1(A + B)z(t) + P2(Bz(t)− G0(t))

+ 2G′(t)(P′2(A + B)z(t) + P3(Bz(t)− G0(t)) +
3

∑
j=1

z′(t)C′jP1Cjz(t)

=z′(t)

[
2P1(A + B) + 2P2B +

3

∑
j=1

C′jP1Cj

]
z(t)− 2z′(t)P2G0(t)

+ 2G′(t)[P1(A + B) + P2B + P′2(A + B) + P3B]z(t)− 2G′(t)(P2 + P3)G0(t)

=z′(t)

[
P1 A + A′P1 + (P1 + P2)B + B′(P1 + P′2) +

3

∑
j=1

C′jP1Cj

]
z(t)− 2z′(t)P2G0(t)

+ 2z′(t)[A′(P1 + P2) + B′(P1 + P2 + P′2 + P3)]G(t)− 2G′(t)(P2 + P3)G0(t).

(35)

Using the additional functional

V2(zt) =
∫ ∞

0

∫ t

t−s
z′(τ)B′QBz(τ)dτdK(s)

+ k1

∫ ∞

0

∫ t

t−s
(τ − t + s)z′(τ)B′RBz(τ)dτdK(s)

(36)
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with Q, R > 0, we have

LV2(zt) =z′(t)B′QBz(t)−
∫ ∞

0
z′(t− s)B′QBz(t− s)dK(s)

+ k2
1z′(t)B′RBz(t)− k1

∫ ∞

0

∫ t

t−s
z′(τ)B′RBz(τ)dτdK(s).

(37)

Via the inequality (18)

G′0(t)QG0(t) ≤
∫ ∞

0
z′(t− s)B′QBz(t− s)dK(s),

G′(t)RG(t) ≤ k1

∫ ∞

0

∫ t

t−s
z′(τ)B′RBz(τ)dτdK(s).

(38)

From (37), (38) it follows that

LV2(zt) ≤ z′(t)B′(Q + k2
1R)Bz(t)− G′0(t)QG0(t)− G′(t)RG(t). (39)

As a result for the functional V(zt) = V(zt, G(t)) = V1(zt) + V2(zt) from (35), (39) it follows that
LV(zt) ≤ η′(t)Φ2η(t), where η(t) = col{z(t), G(t),−G0(t)} and Φ2 < 0 is defined in (33).

Note also that via (34)

V1(zt) =(z(t) + G(t))′P1(z(t) + G(t)) + 2(z(t) + G(t))′P2G(t) + G′(t)P3G(t)

=z′(t)P1z(t) + 2z′(t)(P1 + P2)G(t) + G′(t)(P1 + P2 + P′2 + P3)G(t)

and via (36), (38)
V2(zt)≥

∫ ∞
0

∫ t
t−sz′(τ)B′QBz(τ)dτdK(s)≥ 1

k1
G′(t)QG(t).

From this and (32) it follows

V(zt) ≥
[

Z(t)
G(t)

]′
Φ

[
Z(t)
G(t)

]
≥ c1|z(t)|2

with c1 > 0 since Φ > 0. Therefore, the constructed functional V satisfies the conditions (17) of Theorem 1
and the zero solution of the system (30) is asymptotically mean square stable. The proof is completed.

Remark 4. If (26) holds for some P > 0, R > 0 then (33) holds for P1 = P, P2 = P3 = 0, the same R and any
Q > 0.

3.4. Numerical Simulations

Suppose that the system (1) has a discrete delay, i.e., dK(s) = δ(s− h)ds, h > 0, where δ(s) is the
Dirac function. So, via (25) k1 = h.

Example 1. Put b = 20, β = 0.2, λ = 1, µ1 = 0.4, µ2 = µ3 = 0.5. For these values of the parameters we
have via (4) E+ = (S∗, I∗, R∗) = (7.5, 11.33, 22.67). In Figure 1 the stability region of the equilibrium E+,
that is defined by the conditions (9), (10), is shown (solid line) in the space (δ1, δ2), δ3 < µ3.

Investigating via MATLAB the LMI (19) with the matrices A and B given in (14) it was shown that
the equilibrium E+ = (S∗, I∗, R∗) is stable in probability also in the points B(0.51, 0.8), C(1.01, 0.71),
D(1.39, 0.57), E(1.50, 0.49), F(1.60, 0.35), G(1.66, 0.22), H(1.71, 0.05), K(1.72, 0.01).

The LMI (26) more extends the stability region adding the points L(1.64, 0.26), M(1.79, 0.15), N(1.94, 0.01).
At last the LMI (33) makes the stability region much more bigger adding also the points B(0.51, 0.8),

C(1.01, 0.71), P(1.49, 0.57), Q(1.69, 0.49), R(1.96, 0.35), S(2.16, 0.22), T(2.36, 0.05), U(2.40, 0.01).
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Figure 1. Stability region for the equilibrium E+ = (S∗, I∗, R∗) of the system (6) defined by (9), (10)
(solid line) and stability points obtained via LMI (19) (B-K), LMI (26) (L-N) and LMI (33) (B-U).

In Figure 2 50 trajectories of the solution of the SIR epidemic model (6) are shown in the point
A(δ1, δ2) = A(1, 0.16) by δ3 = 0.45, that is placed inside of the stability region defined by (9), (10).
One can see that all trajectories with the initial conditions S(0) = 3, I(s) = 27 for s ∈ [−0.1, 0],
R(0) = 13.5 converge to the equilibrium E+ = (S∗, I∗, R∗) = (7.5, 11.33, 22.67).

Figure 2. 50 trajectories of the solution of the system (6): S(t) (blue), I(t) (green), R(t) (red) with the
initial values S(0) = 3, I(s) = 27, s ∈ [−h, 0], R(0) = 13.5 in the point A(δ1, δ2) = A(1, 0.16), δ3 = 0.45,
h = 0.1.

In Figure 3 one can see 50 trajectories of the solution of the SIR epidemic model (6) in the point
Q(δ1, δ2) = Q(1.69, 0.49) (see Figure 1) by δ3 = 0.45. All trajectories with the initial conditions
S(0) = 1, I(s) = 28 for s ∈ [−0.1, 0], R(0) = 14 converge to the equilibrium E+ = (S∗, I∗, R∗) =

(7.5, 11.33, 22.67).
In Figure 4 50 trajectories of the solution of the SIR epidemic model (6) are shown in the

point V(δ1, δ2) = V(2, 0.8) (see Figure 1) by δ3 = 0.7. All trajectories with the initial conditions
S(0) = 13, I(s) = 21 for s ∈ [−0.1, 0], R(0) = 17 converge to the equilibrium E+ = (S∗, I∗, R∗) =

(7.5, 11.33, 22.67). Figure 4 shows that the LMIs (19), (26), (33) give sufficient stability conditions only.



Mathematics 2020, 8, 1302 10 of 13

Figure 3. Fifty trajectories of the solution of the system (6) solution: S(t) (blue), I(t) (green), R(t) (red)
with the initial values S(0) = 1, I(s) = 28, s ∈ [−h, 0], R(0) = 14 in the point Q(δ1, δ2) = Q(1.69, 0.49),
δ3 = 0.45, h = 0.1.

Figure 4. Fifty trajectories of the solution of the system (6) solution: S(t) (blue), I(t) (green), R(t) (red)
with the initial values S(0) = 13, I(s) = 21, s ∈ [−h, 0], R(0) = 17 in the point V(δ1, δ2) = V(2, 0.8),
δ3 = 0.7, h = 0.1.

Example 2. Let all values of the parameters be the same as in the Example 1 besides of b = 2. In this case via (5)
the positive equilibrium does not exist and via (8) stability conditions for the equilibrium E0 = (bµ−1

1 , 0, 0) =
(5, 0, 0) are δ1 < 0.4, δ2 < 0.5, δ1 < 0.5. Investigating the LMIs (19), (26), (33) with

A =

−µ1 0 0
0 −(µ2 + λ) 0
0 λ −µ3

 , B =

0 −βbµ−1
1 0

0 βbµ−1
1 0

0 0 0

 ,

showed that the obtained stability condition (8) does not improve. For instance, for δ1 = 0.39, δ2 = 0.3 the
LMI (33) holds but for δ1 = 0.4, δ2 = 0.3 the LMI (33) does not hold. Similarly to the Example 1, this condition
is a sufficient one. In Figure 5 50 trajectories of the solution of the system (6) are shown with the values of the
parameters δ1 = 0.39, δ2 = 0.49, δ3 = 0.49, which belong to the obtained stability region. All trajectories
with the initial conditions S(0) = 7.5, I(s) = 4.5, s ∈ [−h, 0], R(0) = 6.5 converge to the equilibrium
E0 = (bµ−1

1 , 0, 0) = (5, 0, 0). In Figure 6 50 trajectories of the solution of the system (6) are shown with the
values of the parameters δ1 = 1.5, δ2 = 2, δ3 = 2, which do not belong to the obtained stability region. It is seen
that the effect of stochastic perturbations is stronger than in Figure 5, but all trajectories with the same initial
conditions converge to the equilibrium E0 = (bµ−1

1 , 0, 0) = (5, 0, 0) again.
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Figure 5. Fifty trajectories of the solution of the system (6) solution: S(t) (blue), I(t) (green), R(t) (red)
with the initial values S(0) = 7.5, I(s) = 4.5, s ∈ [−h, 0], R(0) = 6.5 and δ1 = 0.39, δ2 = 0.49, δ3 = 0.49,
h = 0.1.

Figure 6. Fifty trajectories of the solution of the system (6) solution: S(t) (blue), I(t) (green), R(t) (red)
with the initial values S(0) = 7.5, I(s) = 4.5, s ∈ [−h, 0], R(0) = 6.5 and δ1 = 1.5, δ2 = 2, δ3 = 2,
h = 0.1.

Remark 5. For numerical simulation of the solution of the SIR epidemic model (6) the algorithm of
numerical simulation of trajectories of the Wiener process was used described in [31] and the Euler-Maruyama
discretization [31,40,41].

4. Conclusions

On the example of the SIR epidemic model that is very popular in research it is shown how
a sequence of stability conditions for equilibria of this model can be obtained in the presence of
stochastic perturbations. The method of Lyapunov functionals construction and the method of Linear
Matrix Inequalities are used for getting of these stability conditions. Besides it is shown that stability
of equilibria can be investigated immediately via numerical simulation of a solution of the considered
system. The proposed research can be applied to many other nonlinear mathematical models in
different applications, for instance, for social epidemic models: model of alcohol consumption and
model of obesity epidemic [31]. From the other hand nobody can say that investigation of the SIR
epidemic model can be considered as a complete one. In connection with the current world pandemic
it could be interesting and important to establish improving stability conditions for a more realistic
SIR epidemic model, which takes into account the death rate and the contact rates where the contact
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rates depend on the total number of infections; and which under general assumptions, the recovery
and death rates then become functions of the total number of infections.
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