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Abstract: The aim of this paper is to classify all Hopf algebra structures on the quotient of Ore
extensions H4[z; σ] of automorphism type for the Sweedler′s 4-dimensional Hopf algebra H4. Firstly,
we calculate all equivalent classes of twisted homomorphisms (σ, J) for H4. Then we give the
classification of all bialgebra (Hopf algebra) structures on the quotients of H4[z; σ] up to isomorphism.
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1. Introduction

Ore extensions play a key role in classifying pointed Hopf algebras, see for example [1–5]. It also
can provide some neither pointed nor semisimple Hopf algebras, see for example ([6], Examples 3.1
and 3.3).

Panov [7] introduced the concept of Hopf-Ore extension R[x; σ, δ] of which the variable x is
restricted to a skew primitive element and gave some equivalent descriptions. Later the Hopf-Ore
extensions for some special Hopf algebras were obtained, such as quasitriangular Hopf algebras
and multiplier Hopf algebras, see for example [8–11]. The authors [12] gave the realization of
PBW-deformations of an quantum group via iterated Ore extensions. As is well-known, a Drinfeld’s
twist J for a Hopf algebra R gives rise to a new Hopf algebra RJ with the same underlying algebra
and the coalgebra structure, which is twisted from ∆ by J . Moreover, if (R, R) is a quasitriangular
Hopf algebra, so is (RJ , RJ ), where RJ = J21RJ −1 (see for example [13–17]). Now, let R be a
bialgebra or Hopf algebra and σ an automorphism of R. Recently, Yang and Zhang [6] described Hopf
algebra structures on the localization of skew polynomial ring R[z; σ] and the quotients of R[z; σ]/I,
for a certain Hopf ideal I of R[z; σ], where R[z; σ] is a Ore extension of automorphism type. Recall that
the Sweedler′s Hopf Algebra H4 is a noncommutative and noncocommutative quasitriangular Hopf
algebra of the smallest dimension. It is one of the few examples discovered in the early stage of the
exhibition, and now it still plays an important role in the theoretical development of Hopf algebra [18].
In this paper, we study Ore extensions of automorphism type for the Hopf algebra H4. Consequently,
Ore extensions of H4 that are of bialgebras are classified. Some new examples of Hopf algebras of
dimension 4n, consisting some neither pointed nor semisimple Hopf algebras are given.

The paper is organized as follows.
In Section 1, some basic notions of Ore extensions, Hopf algebras, Drinfeld′s twists and twisted

homomorphisms are reviewed. One fundamental result (Theorem 1) about the Ore extensions of
automorphism type for Hopf algebras is established. In Section 2, we firstly compute the equivalent
classes of twisted homomorphisms for H4. Equivalently, the isomorphism classes of Ore extensions of
automorphism type for H4 are described. In Section 3, up to bialgebra isomorphisms, the classes of
the Ore extensions of automorphism type for H4 are determined completely (Theorem 3). All Hopf
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algebras structures on the quotients of Ore extensions of automorphism type for H4 are also classified
(Theorem 4).

2. Preliminaries

Throughout the paper, we work over the fixed field k containing some primitive root ω of unity.
All algebras, modules, homomorphisms and tensor products are defined over the field k.

The group of automorphisms of an algebra R is denoted by Aut(R) and σ ∈ Aut(R) unless
otherwise stated.

Let us recall some basic notions and results about Ore extensions and Hopf algebras. For more
details, the readers can refer to [18,19].

Suppose that R is a ring, σ : R → R a ring homomorphism, and δ : R → R a σ-derivation of R,
which means that δ is a homomorphism of abelian groups satisfying

δ(r1r2) = σ(r1)δ(r2) + δ(r1)r2.

Then an Ore extension R[x; σ, δ], is defined by a noncommutative ring obtained by giving the ring
of polynomials R[x] a new multiplication, subject to the identity

xr = σ(r)x + δ(r).

If δ = 0, the Ore extension is denoted by R[x; σ], and it is called an Ore extension of automorphism
type for R.

A bialgebra over the the field k is a vector space which is both a unital associative algebra
and a coalgebra. The algebraic and coalgebraic structures are compatible with a few more axioms:
the comultiplication and the counit are both unital algebra homomorphisms, or equivalently, the
multiplication and the unit of the algebra both are coalgebra morphisms.

Let R be a bialgebra with the comultiplication ∆ : R→ R⊗ R, the counit ε : R→ k. If there exist
a k-map S : R→ R such that

∑
(h)

S(h1)h2 = ∑
(h)

h1S(h2) = ε(h)

for all h ∈ R, then R is called a Hopf algebra, where we use the sigma notations

∆(h) = ∑
(h)

h1 ⊗ h2.

Example 1. The Sweedler′s 4-dimensional Hopf algebra H4 is defined by

as an algebra: H4 = k
〈

1, g, x, gx|g2 = 1, x2 = 0, xg = −gx
〉

;

the coalgebra: ∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x,

ε(g) = 1, ε(x) = 0,

S(g) = g, S(x) = −gx.

H4 is a unique and non-commutative quasi-triangular Hopf algebra of dimension 4. It is one of
the few examples discovered in the early stage of the exhibition, and now it still plays an important
role in the theoretical development of Hopf algebra.

It is easy to see that the set of grouplikes of H4 is G(H4) = {1, g} and x ∈ P1,g(H4), where

Pg,h(H) = {a ∈ H|∆(a) = a⊗ g + h⊗ a}.

Let
e0 =

1 + g
2

, e1 =
1− g

2
.
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Then the {e0, e1, e0x, e1x} forms another basis of H4 and

e0e1 = e1e0 = 0, e2
0 = e2

1 = 1,

e0g = ge0 = e0, e1g = ge1 = −e1,

e0x = xe1, e1x = xe0.

It is straightforward to see that if σ ∈ Aut(H4), then

σ(x) = px + qgx = p(e0 + e1)x + q(e0 − e1)x = (p + q)e0x + (p− q)e1x

and
σ(g) = νg + mx + ngx = νg + (m + n)e0x + (m− n)e1x,

for some p, q, m, n ∈ k and ν = ±1 with some relations.
We denote a copy of the Sweedler’s Hopf algebra H4 by H′4, which generators are replaced by

g′, x′ satisfying the same relations. The analogous notations are allowed for twisted homomorphisms
for H′4.

Furthermore, if Φ : H4 → H′4 is the bialgebra isomorphism, then

Φ(g) = g′, Φ(x) = µx′, for some µ 6= 0

(see [20]).

Definition 1. ([21]) Let R be a bialgebra or Hopf algebra, the invertible element J ∈ R⊗ R, and σ ∈ Aut(R).
The pair (σ, J) is said to be a twisted homomorphism for R if

(∆⊗ id)(J)(J ⊗ 1) = (id⊗ ∆)(J)(1⊗ J), (1)

(id⊗ ε)(J) = (ε⊗ id)(J) = 1, (2)

J(σ⊗ σ)∆(h) = ∆(σ(h))J, (3)

ε ◦ σ = ε (4)

for all h ∈ R.

Assume that R is a Hopf algebra. By ([22], Theorem 2.4), R[z; σ] is a bialgebra with R ⊂ R[z; σ]

defined by
∆(z) = J(z⊗ z), ε(z) = 1k (5)

if and only if (σ, J) is a twisted homomorphism for R. In this case, R[z; σ] is called a bialgebra Ore
extension of automorphism type (simply, BOEA ) for Hopf algebra R.

Let R be a Hopf algebra with the antipode S, σ ∈ Aut(R), and (σ, J) a twisted homomorphism
for R. Let

ϑ =
n−1

∏
i=0

(σi ⊗ σi)(J) =
n−1

∏
i=0

(
∑

J
σi(J1)⊗ σi(J2)

)
= ∑

ϑ

ϑ1 ⊗ ϑ2.

We denote Sσ = σ ◦ S ◦ σ−1 and

θ := θl = ∑
J

S(J1)J2, θr = ∑
J

J1Sσ(J2),



Mathematics 2020, 8, 1293 4 of 24

and
$ := $l = ∑

ϑ

S(ϑ1)ϑ2, $r = ∑
ϑ

ϑ1S(ϑ2),

where J = ∑ J1 ⊗ J2 ∈ R⊗ R.

Theorem 1. ([6], Theorem 2.6) Let R be a Hopf algebra with the antipode S, (σ, J) a twisted homomorphism
for R, and R[z; σ] a BOEA for R. Suppose that there exists a nonzero t ∈ R, with

∆(t) =
n−1

∏
i=0

(σi ⊗ σi)(J)(t⊗ t), th = σn(h)t

for all h ∈ R. Then H = R[z; σ]/ 〈 zn − t〉 is a Hopf algebra with the antipode S such that S(z) = z−1θ−1 if
and only if

1. θr = θ and σn($r) = $;
2. Sσ(h) = θ−1S(h)θ for all h ∈ R;

3.
n−1
∏
i=0

σi(θ) = $.

The authors in [6] gave some nontrivial examples on Theorem 1. Here we give more example
as follows.

Example 2. For the Hopf algebra H4, ω ∈ k a primitive 2n-th root of unity. Let

σ(g) = g, σ(x) = ωx, t = g

J = 1⊗ 1 + dxg⊗ x.

for any d ∈ k. Then (σ, J) is a twisted homomorphism for H4 and satisfies the condtions of Theorem 1. Thus up
to isomorphism, we get a Hopf algebra H4n, generated by x, z with the relations

z2n = 1, x2 = 0, zx = ωxz.

The coalgebra is

∆(x) = x⊗ 1 + zn ⊗ x, ∆(z) = z⊗ z + dxzn+1 ⊗ xz,

ε(z) = 1, ε(x) = 0,

S(z) = z−1, S(x) = −znx.

H4n is a neither pointed nor semisimple quasitrangular Hopf algebra of dimension 4n extended by
H4. In the present paper, we shall investigate the bialgebra (Hopf algebra) structures on the quotients
H4[z; σ]/ 〈 zn − t〉 in general.

3. Classification of Twisted Homomorphisms for H4

In this section, we give the classification of twisted homomorphisms for H4.
Let (σ, J) and (σ′, J′) be twisted homomorphisms for H4 and H′4 respectively, and H4[z, σ] and

H′4[z′, σ′] the corresponding Ore extensions of automorphism type. The datum (σ, J) is said to be
equivalent to (σ′, J′), denoted by (σ, J) ≈ (σ′, J′), if there is a bi-algebraic isomorphism Φ : H4[z, σ]→
H′4[z′, σ′] such that Φ(H4) = H′4 as bialgebras.
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Therefore, if Φ : H4[z; σ] ∼= H′4[z′; σ′] as bialgebras, then

(Φ⊗Φ)(J)(Φ(z)⊗Φ(z)) = ∆′(Φ(z)) (6)

Φ(z)Φ(h) = Φ(σ(h))Φ(z), (7)

ε(Φ(z)) = 1 (8)

for all h ∈ R.
We have the following main result.

Theorem 2. Any twisted homomorphism (σ, J) for H4 is equivalent to one of the following lists.

(a) the pair (σ1,s, J1,d) :

σ1,s(g) = g, σ1,s(x) = sx,

J1,d = 1⊗ 1 + d (gx⊗ x) .

for any d ∈ k and 0 6= s ∈ k.
(b) the pair (σ2,s, J2,d) :

σ2,s(g) = g + 2gx, σ2,s(x) = sx,

J2,d = 1⊗ 1 + 2e1 ⊗ x + d(gx⊗ x).

for any d ∈ k and 0 6= s ∈ k.
(c) the pair (σ3,s, J3) :

σ3,s(g) = g + 2x, σ3,s(x) = s gx,

J3 = 1⊗ 1− 2e1 ⊗ e1 + 2e1 ⊗ x.

for any 0 6= s ∈ k.

Proof. Let (σ, J) be a twisted homomorphism for H4. The proof is given in three steps as follows.
Step 1: Firstly, we assume that

J =
1

∑
i,j=0

(aijgi ⊗ gj + bijgi ⊗ gjx + cijgix⊗ gj + dijgix⊗ gjx) ∈ H4 ⊗H4

satisfies Equations (1) and (2). Tedious computations and comparing the coefficients of terms by
Equations (1) and (2) show that the Drinfeld twist J for H4 must be one of the following

(1)
J1 = 1⊗ 1 + 4(a− 1)e1 ⊗ e1 + 2cgx⊗ e1 + d (gx⊗ x + 4(a− 1)e0x⊗ e0x)

for any a, c, d.
(2)

J2 = 1⊗ 1 + 2be1 ⊗ x + d(gx⊗ x),

for any b 6= 0 and d.
(3)

J3 = 1⊗ 1 + 4(a− 1)e1 ⊗ e1 + 2be1 ⊗ x + 2cgx⊗ e1 + d′(gx⊗ x)

for any a 6= 1, b 6= 0 and c, where d′ = bc
a−1 .
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Step 2: Secondly, we note that

J1(σ⊗ σ)∆(h) = ∆(σ(h))J1, (9)

ε ◦ σ = ε. (10)

The Equation (10) and σ ∈ Aut(H4) imply that

σ(g) = g + mx + ngx, σ(x) = px + qgx.

for some p, q, m, n ∈ k. Recall that J1 can be written as

J1 = a(1⊗ 1) + (1− a)(g⊗ 1) + (1− a)(1⊗ g) + (a− 1)(g⊗ g) + c(gx⊗ 1− gx⊗ g)

+d((a− 1)1⊗ 1 + ag⊗ 1 + (a− 1)1⊗ g + (a− 1)g⊗ g)(x⊗ x)

for any a, c, d. Equation (9) imply that

J1(σ⊗ σ)∆(g) = ∆(σ(g))J1, J1(σ⊗ σ)∆(x) = ∆(σ(x))J1.

The above two equations show that

2(a− 1)p = (2a− 1)q, (11)

2(a− 1)m = (2a− 1)n, (12)

2(a− 1)n + 2c = (2a− 1)m, (13)

am2 + 2(1− a)mn + (a− 1)n2 = 2cm− cn, (14)

amn + (1− a)n2 + (1− a)m2 + (a− 1)mn = cn, (15)

an2 + 2(1− a)mn + (a− 1)m2 = cn, (16)

amp + (1− a)np + (1− a)mq + (a− 1)nq = 2cp− cq, (17)

amq + (1− a)nq + (1− a)mp + (a− 1)np = cq, (18)

anp + (1− a)mp + (1− a)nq + (a− 1)mq = cq, (19)

anq + (1− a)mq + (1− a)np + (a− 1)mp = cq. (20)

If a = 3
4 , then c = 0, m + n = 0, p + q = 0 by Equations (11)–(13) and Equations (14)–(20) hold

automatically. However, σ 6∈ Aut(H4). Therefore, a 6= 3
4 . Now we set κ = 1

4a−3 , then

m = (1 + κ)c, n = (1− κ)c

by Equations (12) and (13) and we can rewrite

p =
1
2
(1 + κ)s, q =

1
2
(1− κ)s

by Equation (11). Also, such m, n and p, q enjoy Equations (14)–(20) automatically and σ1 ∈ Aut(H4).
Therefore, we get a twisted homomorphism (σκ,s

1 , Jc,d
1 ), for H4, where

σκ,s
1 (g) = g + 2c (e0 + κe1) x, σκ,s

1 (x) = s(e0 + κe1)x(s 6= 0),

Jc,d
1 = 1⊗ 1 +

(
1
κ
− 1
)

1⊗ e1 + 2cgx⊗ e1 + d
(

gx⊗ x +

(
1
κ
− 1
)

e0x⊗ e0x
)

for any κ 6= 0, c, d.
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Similarly, we get the twisted homomorphism (σs
2, Jb,d

2 ), where

σs
2(g) = g + 2bgx, σs

2(x) = sx(s 6= 0),

Jb,d
2 = 1⊗ 1 + 2b(e1 ⊗ x) + d(gx⊗ x)

for any b 6= 0 and d, and the twisted homomorphism (σκ,s
3 , Jb,c

3 ), where

σκ,s
3 (g) = g + 2 ((b + c)e0 + κ(c− b)e1)) x, σκ,s

3 (x) = s(e0 + κe1)x(s 6= 0),

Jb,c
3 = 1⊗ 1 +

(
1
κ
− 1
)

e1 ⊗ e1 + 2be1 ⊗ x + 2cgx⊗ e1 +
4κbc
1− κ

(gx⊗ x),

for any κ 6= 0, 1, b 6= 0, c.
Step 3: Now, assume that Φ : H = H4[z, σ]→ H′ = H′4[z′, σ′] is a bialgebra isomorphism. Define

deg r = 0 for all r ∈ H4 and deg z = 1. Then we can extend this to define the lexicographic order on
H4[z; σ]. Since Φ is bialgebra isomorphism from H to H′, we have Φ(z) = A′z′ + B′ by considering
the expression for Φ(z) as a polynomial z with coefficients in H′4, where A′, B′ ∈ H′4. It is easy to see
that A′ is invertible in H′4 since Φ is an isomorphism.

By Equation (6), we have

∆′(A′)J′(z′ ⊗ z′) + ∆′(B′)

= (Φ⊗Φ)(J)((A′ ⊗ A′)(z′ ⊗ z′) + (A′ ⊗ B′)(z′ ⊗ 1) + (B′ ⊗ A′)(1⊗ z′) + B′ ⊗ B′).

Comparing the coefficients of z′ ⊗ 1 and 1⊗ z′, we get B′ = 0. Hence we have Φ(z) = A′z′.
Equation (6) holds if and only if

∆′(A′)J′ = (Φ⊗Φ)(J)(A′ ⊗ A′). (21)

Now, by Equation (8) , it follows that

A′ = e′0 + b0e′1 + c0e′0x′ + d0e′1x′.

Let us investigate them case by case.

(1) For the twisted homomorphism (σκ,s
1 , Jc,d

1 ), where

σκ,s
1 (g) = g + 2c(e0 + κe1)x, σκ,s

1 (x) = s(e0 + κe1)x (s 6= 0),

Jc,d
1 = 1⊗ 1 + (κ−1 − 1)e1 ⊗ e1 + 2cgx⊗ e1 + d((κ−1 − 1)e0 ⊗ e0 + g⊗ 1) (x⊗ x) .

Assume that
(σκ,s

1 , Jc,d
1 ) ≈ (σκ′ ,s′

1 , J1
c′ ,d′),

where

σκ′ ,s′
1 (g′) = g′ + 2c′(e′0 + κ′e′1)x′, σκ′ ,s′

1 (x′) = s′(e′0 + κ′e′1)x′ (s′ 6= 0),

Jc′ ,d′
1 = 1⊗ 1 + (κ′

−1 − 1)e′1 ⊗ e′1 + 2c′g′x′ ⊗ e′1 + d′((κ′−1 − 1)e′0 ⊗ e′0 + g′ ⊗ 1)
(
x′ ⊗ x′

)
in H′4. By Equation (7), we have

Φ(z)Φ(x) = Φ(σ(x))Φ(z), Φ(z)Φ(g) = Φ(σ(g))Φ(z).
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Therefore, we have

sb0 = s′, sκ = b0s′κ′, c0 = c′ − cµb0, d0 = cµκ − c′b0κ′. (22)

It is noted that b0 = s′
s , b2

0 = κ
κ′ .

On the other hand, it is straightforward to see that by Equation (21),

(Φ⊗Φ)(Jc,d
1 )

(
A′ ⊗ A′

)
= ∆′(A′)Jc′ ,d′

1 .

Comparing coefficients of all terms and noting that Equation (22), one get

d′ = dµ2 + 2cµd0 − κ−1d2
0.

Hence

a0 = 1, b0 =
s′

s
= ε

√
κ

κ′
,

c0 = c′ − cµ

√
κ

κ′
ε, d0 = −

√
κκ′(c′ − cµ

√
κ

κ′
ε),

d′ = dµ2 + κc2µ2 − κ′c′2

for any c, d, c′, d′ and sκ 6= 0, s′κ′µ 6= 0.
In particular, for any c, d and sκ 6= 0, we can choose suitable triples (b0, c0, d0), such that

c′ = 0, κ′ = 1, s′ = ε
√

κs, d′ = dµ2 + κc2µ2.

Therefore, we get
(σκ,s

1 , Jc,d
1 ) ≈ (σ1,s′ , J1,d′),

where

σ1,s′(g) = g, σ1,s′(x) = s′x(s′ 6= 0), J1,d′ = 1⊗ 1 + d′ (gx⊗ x) ,

for any d′ ∈ k and 0 6= s′ ∈ k.

(2) For the twisted homomorphism (σs
2, Jb,d

2 ), where

σs
2(g) = g + 2bgx, σs

2(x) = sx (s 6= 0), Jb,d
2 = 1⊗ 1 + 2b(e1 ⊗ x) + d(gx⊗ x)

for any d and b 6= 0.
Assume that

(σs
2, Jb,d

2 ) ≈ (σs′
2 , J2

b′ ,d′),

where

σs′
2 (g′) = g′ + 2b′g′x′, σs′

2 (x′) = s′x′ (s′ 6= 0), Jb′ ,d′
2 = 1⊗ 1 + 2b′(e′1 ⊗ x′) + d′(g′x′ ⊗ x′)

in H′4. By Equation (7), we have

Φ(z)Φ(x) = Φ(σ(x))Φ(z), Φ(z)Φ(g) = Φ(σ(g))Φ(z).

Therefore, we have

sb0 = s′, s = b0s′, c0 = b′ − bµb0, d0 = b0b′ − bµκ. (23)
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It is noted that b0 = s′
s and get that b2

0 = 1.
Computing

(Φ⊗Φ)(Jb,d
2 )

(
A′ ⊗ A′

)
and ∆′(A′)Jb′ ,d′

2

as in the case (1), and comparing coefficients of all terms and noticing that Equation (23), one get that

d′ = dµ2 − 2bµd0 − d2
0.

Hence

a0 = 1, b0 =
s′

s
= ε,

c0 = b′ − bµε, d0 = εb′ − bµ,

d′ = dµ2 − b′2 + b2µ2

for any d, d′, b 6= 0, b′ 6= 0 and s 6= 0, s′µ 6= 0.
In particular, for any d, b 6= 0 and s 6= 0, we can choose suitable triples (b0, c0, d0), such that

b′ = 1, s′ = εs, d′ = dµ2 + b2µ2 − 1.

This means that
(σs

2, Jb,d
2 ) ≈ (σ2,s′ , J2,d′),

where

σ2,s′(g) = g + 2gx, σ2,s′(x) = s′x(s′ 6= 0),

J2,d′ = 1⊗ 1 + 2(e1 ⊗ x) + d′ (gx⊗ x)

for any d′ ∈ k and 0 6= s′ ∈ k.

(3) For the twisted homomorphism pair (σκ,s
3 , Jb,c

3 ), where

σκ,s
3 (g) = 2 ((b + c)e0 + κ(c− b)e1)) x, σκ,s

3 (x) = s(e0 + κe1)x (s 6= 0),

Jb,c
3 = 1⊗ 1 + (κ−1 − 1)e1 ⊗ e1 + 2be1 ⊗ x + 2cgx⊗ e1 + d′(gx⊗ x)

for any b 6= 0 and c, where d′ = 4κ bc
1−κ with κ 6= 0, 1.

Now, we assume that
(σκ,s

3 , Jb,c
3 ) ≈ (σκ′ ,s′

3 , J3
b′ ,c′),

where

σκ′ ,s′
3 (g′) = g′ + 2

(
(b′ + c′)e′0 + κ′(c′ − b′)e′1)

)
x′, σκ′ ,s′

3 (x′) = s′(e′0 + κ′e′1)x′ (s′ 6= 0),

Jb′ ,c′
3 = 1⊗ 1 + (κ′−1 − 1)e′1 ⊗ e′1 + 2b′e′1 ⊗ x′ + 2c′g′x′ ⊗ e′1 + d′′(g′x′ ⊗ x′)

in H′4. By Equation (7), we have

Φ(z)Φ(x) = Φ(σ(x))Φ(z), Φ(z)Φ(g) = Φ(σ(g))Φ(z).

From the above equations, we easily get that

sb0 = s′, sκ = b0s′κ′, c0 = b′ + c′ − µb0(b + c), d0 = µκ(c− b)− b0κ′(c′ − b′). (24)

It is noted that b0 = s′
s and b2

0 = κ
κ′ .
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Furthermore, tediously computing

(Φ⊗Φ)(Jb,c
3 )

(
A′ ⊗ A′

)
and ∆′(A′)Jb′ ,c′

3

and comparing coefficients of all terms of them, one get that

d′′ = d′µ2 + 2cµd0 − 2bµd0 − κ−1d2
0.

Hence

a0 = 1, b0 =
s′

s
= ε

√
κ

κ′
,

c0 = (b′ + c′)− (b + c)µ
√

κ

κ′
ε, d0 = µκ(c− b)−

√
κκ′(c′ − b′),

d′′ = d′µ2 + κ(c− b)2µ2 − κ′(c′ − b′)2

for any c, c′, b, b′ 6= 0 and sκ 6= 0, s′κ′µ 6= 0.
In particular, for any c and sκ 6= 0, we can choose suitable triples (b0, c0, d0), such that

b′ = 1, c′ = 0, κ′ = −1, s′ = ε
√
−κs, d′′ = 0

and we get
(σκ,s

3 , Jb,c
3 ) ≈ (σ3,s′ , J3),

where

σ3,s′(g) = g + 2x, σ3,s′(x) = s′gx(s′ 6= 0), J3 = 1⊗ 1− 2e1 ⊗ e1 + 2e1 ⊗ x

for any 0 6= s′ ∈ k.
The proof is completed.

Using Theorem 2 and ([22], Theorem 2.4), we deduce the following result.

Corollary 1. Assume that H = H4[z; σ], a BOEA for H4. Then H is one of the following lists up
to isomorphism.

(1) Hs,d
1 : Hs,d

1 is generated by g, x, z subjecting to the relations

g2 = 1, x2 = 0, xg = −gx, zg = gz, zx = sxz (s 6= 0).

The coalgebra is defined by

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x,

∆(z) = z⊗ z + d gxz⊗ xz,

ε(g) = 1, ε(z) = 1, ε(x) = 0

for any d.
(2) Hs,d

2 : Hs,d
2 is generated by g, x, z subjecting to the relations

g2 = 1, x2 = 0, xg = −gx, zx = sxz, zg = gz + 2gxz (s 6= 0).
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The coalgebra is defined by

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x,

∆(z) = z⊗ z + 2e1z⊗ xz + d gxz⊗ xz

ε(g) = 1, ε(z) = 1, ε(x) = 0

for any d.
(3) Hs

3: Hs
3 is generated by g, x, z subjecting to the relations

g2 = 1, x2 = 0, xg = −gx, zx = sgxz (s 6= 0), zg = gz + 2xz.

The coalgebra is defined by

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x,

∆(z) = z⊗ z− 2e1z⊗ e1z + 2e1z⊗ xz,

ε(g) = 1, ε(z) = 1, ε(x) = 0.

In the sequel, we always suppose that H = H4[z; σ], a BOEA for H4.

4. The Quotients of the BOEA for H4

Let R be a Hopf algebra, and R[z; σ] a BOEA for R. Suppose that there exists 0 6= t ∈ R such that

∆(t) =
n−1

∏
i=0

(σi ⊗ σi)(J)(t⊗ t) and th = σn(h)t (∗)

for all h ∈ R. we get by ([6], Lemma 2.5) that R[z; σ]/〈zn − t〉 is a bialgebra.
The aim of this section is to investigate all bialgebra structures on the quotients H4[z; σ]/ 〈 zn − t〉 ,

where t ∈ H4 satisfying (∗). Firstly, up to equivalence, (σ, J) should be one of the twisted
homomorphisms given in Theorem 2.

Let us determine all t ∈ H4 satisfying (∗).

(a) For the twisted homomorphism (σ1,s, J1,d), where

σ1,s(g) = g, σ1,s(x) = sx,

J1,d = 1⊗ 1 + d (gx⊗ x)

for any d ∈ k and s 6= 0.
Now we assume that

t = a1e0 + b1e1 + c1e0x + d1e1x.

It is easy to see that a1 = 1 since ε(t) = 1. On the other hand, since

tx = σn
1,s(x)t, tg = σn

1,s(g)t,

It follows that

b1 = sn, b1sn = 1,

c1 = d1 = 0.
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Hence t = e0 + εe1, where b1 = sn = ε = ±1. For simplicity of discussion, we denote t by tε and
σ1,s by σ. It is easy to see that

∆(tε) = tε ⊗ tε.

We have the following lemma for the case (a).

Lemma 1. The element tε satisfies the following.

(1) If s2 = 1, then ∆(tε) =
n−1
∏
i=0

(
σi ⊗ σi) (J1,d) (tε ⊗ tε) if and only if d = 0.

(2) If s2 6= 1, then ∆(tε) =
n−1
∏
i=0

(
σi ⊗ σi) (J1,d)(tε ⊗ tε).

Proof. Noting that

(σ⊗ σ)(J1,d) = (σ⊗ σ)(1⊗ 1 + dgx⊗ x) = 1⊗ 1 + ds2gx⊗ x,

we have
(σi ⊗ σi)(J1,d) = 1⊗ 1 + ds2igx⊗ x

and
`−1

∏
i=0

(
σi ⊗ σi

)
(J1,d) =

`−1

∏
i=0

(
1⊗ 1 + d s2igx⊗ x)

)
= 1⊗ 1 + d

(
`−1

∑
i=0

s2i

)
gx⊗ x.

(i) If s2 = 1, then we have
n−1

∑
i=0

s2i = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n,

n−1

∏
i=0

(
σi ⊗ σi

)
(J1,d) = 1⊗ 1 + nd gx⊗ x.

One sees that

n−1

∏
i=0

(
σi ⊗ σi

)
(J1,d) (tε ⊗ tε) = tε ⊗ tε + nd t−εx⊗ tεx.

Hence if s2 = 1, then ∆(tε) =
n−1
∏
i=0

(
σi ⊗ σi) (J1,d) (tε ⊗ tε) if and only if d = 0.

(ii) If s2 6= 1, then
`−1

∏
i=0

(
σi ⊗ σi

)
(J1,d) = 1⊗ 1 + d

s2` − 1
s2 − 1

gx⊗ x.

Noting that
n−1

∑
i=0

s2i =
s2n − 1
s2 − 1

= 0,

we have
n−1

∏
i=0

(
σi ⊗ σi

)
(J1,d) = 1⊗ 1

and

∆(tε) =
n−1

∏
i=0

(
σi ⊗ σi

)
(J1,d)(tε ⊗ tε)

for any d.
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The proof is completed.

For suitable elements d ∈ k and s = ω ∈ k, if tε satisfies the hypothesis of Lemma 1, then

H = H4[z; σ]/〈zn − tε〉

is a bialgebra.
In this case, we have ω2n = 1 and the bialgebra H is one of the following lists.
Case 1: If ω is 2-th primitive root of unity: ω2 = 1.

(i) if n ≥ 2 is even, for example n = 2m(m ≥ 1), then ω2m = 1 and tε = e0 + ω2me1 = 1. Thus we get
the bialgebra H1

8m(m ≥ 1) generated by g, x, z with the relations

g2 = 1, xg = −gx, x2 = 0, zg = gz, zx = −xz, z2m = 1.

The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

(ii) if n > 2 is odd, for example n = 2m + 1(m ≥ 1), then ω2m+1 = −1 and tε = e0 + ω2m+1e1 = g.
Then we get the bialgebra H2

4(2m+1)(m ≥ 1) generated by g, x, z with the relations

g2 = 1, xg = −gx, x2 = 0, zg = gz, zx = −xz, z2m+1 = g.

The coalgebra is
∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

In fact, up to isomorphism, H2
4(2m+1)(m ≥ 1) is generated by z, x with the relations

z4m+2 = 1, x2 = 0, zx = −xz.

The coalgebra is
∆(x) = x⊗ 1 + z2m+1 ⊗ x, ∆(z) = z⊗ z;

ε(z) = 1, ε(x) = 0.

Case 2: Assume that n ≥ 2 and let ω be the 2r-th primitive root of unity with r > 1. Since ω2n = 1,
we have r|n. Let n = `r. Then ωn = (−1)`.

(i) If ` is even, for example ` = 2m(m ≥ 1), then ωn = 1 and tε = e0 + ωne1 = 1. Thus we get the
bialgebra H1

8mr(2m, r, d)(m ≥ 1) generated by g, x, z with the relations

g2 = 1, xg = −gx, x2 = 0, zg = gz, zx = ωxz, z2mr = 1.

The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z− d xgz⊗ xz;

ε(g) = 1, ε(z) = 1, ε(x) = 0.
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(ii) If ` is odd, for example ` = 2m + 1(m ≥ 0), then ωn = −1 and tε = e0 + ωne1 = g. Thus we get
the bialgebra H2

4(2m+1)r(2m + 1, r, d)(m ≥ 0) generated by g, x, z with the relations

g2 = 1, xg = −gx, x2 = 0, zg = gz, zx = ωxz, z(2m+1)r = g.

The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z− dx gz⊗ xz;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

In fact, up to isomorphism, H2
4(2m+1)(2m + 1, r, d)(m ≥ 0) is generated by z, x with the relations

z2(2m+1)r = 1, x2 = 0, zx = ωxz.

The coalgebra is

∆(x) = x⊗ 1 + z(2m+1)r ⊗ x, ∆(z) = z⊗ z− dx z(2m+1)r+1 ⊗ xz;

ε(z) = 1, ε(x) = 0.

In particular, if r = n, then ` = 1 and the bialgebra H4n(1, n, d) is generated by x, z with the
relations

z2n = 1, x2 = 0, zx = ωxz.

The coalgebra is

∆(z) = z⊗ z− dxzn+1 ⊗ xz, ∆(x) = x⊗ 1 + zn ⊗ x;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

Case 3: Let ` be odd and ω be `-th primitive root of unity with ` > 1. Setting ω′ = −ω, then ω′ is
the 2`-th primitive root of unity with order 2` and (ω′)2n = ω2n = 1. This case turns into Case 2.

(b) For the twisted homomorphism (σ2,s, J2,d), where

σ2,s(g) = g + 2gx, σ2,s(x) = sx,

J2,d = 1⊗ 1 + 2e1 ⊗ x + d (gx⊗ x)

for any d ∈ k and s 6= 0.
It is easy to see that if s = 1, then

σn
2,s(x) = x, σn

2,s(g) = g + 2ngx (25)

and if s 6= 1, then

σn
2,s(x) = snx, σn

2,s(g) = g +
2(1− sn)

1− s
gx. (26)

Now we assume that
t = a2e0 + b2e1 + c2e0x + d2e1x.

One see that a2 = 1 since ε(t) = 1. On the other hand,

tx = σn
2,s(x)t, tg = σn

2,s(g)t.
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(i) If s = 1, then

e0x + b2e1x = e1x + b2e0x,

g− c2e0x + d2e1x = g + (c1 + 2n)e0x− (d2 + 2n)e1x.

Therefore, we have b2 = 1, c2 = d2 = −n, and we get t0 = 1− nx ∈ H4 satisfying (∗) and

∆(t0) = 1⊗ 1− nx⊗ 1− ng⊗ x.

(ii) If s 6= 1, then

e0x + b1e1x = sne1x + snb2e0x,

−c2e0x + d2e1x =

(
c2 + b2

2(1− sn)

1− s

)
e0x−

(
d2 +

2(1− sn)

1− s

)
e1x.

It follows that

b2 = sn, b2sn = 1,

c2 = b2
sn − 1
1− s

, d2 =
sn − 1
1− s

.

Hence
tε = e0 + εe1 +

1− ε

1− s
e0x +

ε− 1
1− s

e1x = e0 + εe1 +
1− ε

1− s
gx,

where b1 = sn = ε = ±1. We denote t by tε and σ2,s by σ in discussion.

We have the following in the case (b).

Lemma 2. The element tε satisfies the following condition:

(1) If s2 = 1, then ∆(tε) =
n−1
∏
i=0

(
σi ⊗ σi) (J2,d) (tε ⊗ tε) if and only if d = −1.

(2) If s2 6= 1, then ∆(tε) =
n−1
∏
i=0

(
σi ⊗ σi) (J2,d)(tε ⊗ tε).

Proof. Analogous argument to the proof of Lemma 1.

For suitable elements d ∈ k and s = ω ∈ k, if tε satisfies the hypothesis of Lemma 2, then
B = H4[z; σ]/〈zn − tε〉 is a bialgebra.

In this case, ω2n = 1 and ε = ωn. The bialgebra B is one of the following lists.
Case 1: If ω = 1, of course ω2 = ωn = ω2n = 1. Thus we get the bialgebra B1

4n generated by
g, x, z with the relations

g2 = 1, xg = −gx, x2 = 0, zg = gz + 2gxz, zx = xz, zn = 1− nx.

The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z + 2e1z⊗ xz− gxz⊗ xz;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

Case 2: If ω = −1, then ω2 = 1.



Mathematics 2020, 8, 1293 16 of 24

(i) Assume that n ≥ 2 is even, for example n = 2m(m ≥ 1), then ω2m = 1. Thus we get the bialgebra
B2

8m(m ≥ 1) generated by g, x, z with the relations

g2 = 1, xg = −gx, x2 = 0, zg = gz + 2gxz, zx = −xz, z2m = 1.

The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z + 2e1z⊗ xz− gxz⊗ xz;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

(ii) if n > 2 is odd, for example n = 2m + 1(m ≥ 1), then ωn = ω2m+1 = −1. Thus we get the
bialgebra B3

4(2m+1)(m ≥ 1) generated by g, x, z with the relations

g2 = 1, xg = −gx, x2 = 0, zg = gz + 2gxz, zx = −xz, z2m+1 = g + gx.

The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z + 2e1z⊗ xz− gxz⊗ xz;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

Case 3: Let ω be 2r-th primitive root of unity with r > 1. Since ω2n = 1, we have r|n. Let n = `r.
Therefore, ωn = (−1)`.

(i) If ` is even, for example ` = 2m, we get the bialgebra B1
8mr(2m, r, d) generated by g, x, z with the

relations
g2 = 1, xg = −gx, x2 = 0, zg = gz + 2gxz, zx = ωxz, z2mr = 1.

The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z + 2e1z⊗ xz + dg xz⊗ xz;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

(ii) If ` is odd with ` = 2m + 1, we get a bialgebra B2
4(2m+1)r(2m + 1, r, d) generated by g, x, z with the

relations

g2 = 1, xg = −gx, x2 = 0, zg = gz + 2gxz, zx = ωxz, z(2m+1)r = g +
2

1−ω
gx.

The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z + 2e1z⊗ xz + dg xz⊗ xz;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

Case 4: Let ` be odd and ω be `-th primitive root of unity with ` > 1. Setting ω′ = −ω, then ω′ is
the 2`-th primitive root of unity with order 2` and (ω′)2n = ω2n = 1. This case turns into Case 3.

(c) For the twisted homomorphism (σ3,s, J3), we also denote σ3,s by σ in the case. It is easy to
see that

σi(e0) = e0 + fi(s)e0x + fi(−s)e1x, σi(e1) = e1 − fi(s)e0x− fi(−s)e1x.
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σi(e0x) = sie0x, σi(e1x) = (−s)ie1x,

where f0(x) = 0 and for i > 0

fi(x) = 1 + x + · · ·+ xi−1 =


i, for x = 1,

xi−1
x−1 , for x 6= 1.

We see that
fi(x) + xi = fi+1(x)

and the following equations hold by induction.

2
k

∑
i=0

(−1)k−i fi(x)− fk+1(x) = (−1)k+1 fk+1(−x), (27)

2
k

∑
i=0

(−1)k−i fi+1(x)− fk+2(x) = (−1)k+2 fk+2(−x). (28)

We also see that(
σi ⊗ σi

)
(J3)

=
(

σi ⊗ σi
)
(1⊗ 1− 2e1 ⊗ e1 + 2e1 ⊗ e0x + 2e1 ⊗ e1x)

= A− 2 fi(s) fi+1(s)e0x⊗ e0x− 2 fi(−s) fi+1(−s)e1x⊗ e1x

+2 fi+1(s)e1 ⊗ e0x + 2 fi+1(−s)e1 ⊗ e1x + 2 fi(s)e0x⊗ e1

+2 fi(−s)e1x⊗ e1 − 2 fi(s) fi+1(−s)e0x⊗ e1x− 2 fi(−s) fi+1(s)e1x⊗ e0x

where A = 1⊗ 1− 2e1 ⊗ e1. It is noted that

Al =

{
1⊗ 1, if l is even;
A, if l is odd.

Lemma 3. We have

l

∏
i=0

(
σi ⊗ σi

)
(J3) = Al+1

+2

(
l

∑
i=0

(−1)l−i fi+1(s)

)
e1 ⊗ e0x + 2

(
l

∑
i=0

(−1)i fi+1(−s)

)
e1 ⊗ e1x

+2

(
l

∑
i=0

(−1)l−i fi(s)

)
e0x⊗ e1 + 2

(
l

∑
i=0

(−1)i fi(−s)

)
e1x⊗ e1

+2

(
l

∑
i=0

(−1)l−i+1 fi(s) fi+1(s)

)
e0x⊗ e0x + 2

(
l

∑
i=0

(−1)i+1 fi(−s) fi+1(−s)

)
e1x⊗ e1x

+2

(
l

∑
i=0

(−1)i fi(−s) fi+1(−s)

)
e0x⊗ e1x + 2

(
l

∑
i=0

(−1)i+1 fi(−s) fi+1(−s)

)
e1x⊗ e0x.

Proof. The equation is trivial if l = 0. Applying Equations (27) and (28), one can get the result
by induction.

The proof is finished.
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Assume that
tx = σn

3,s(x)t, tg = σn
3,s(g)t,

and
t = a3e0 + b3e1 + c3e0x + d3e1x.

It is easy to see that a3 = 1 since ε(t) = 1 and

σi(e0x) = sie0x, σi(e1x) = (−s)ie1x,

e0x + b3e1x = b3sne0x + (−s)ne1x,

e0 − b1e1 − c1e0x + d1e1x = e0 − b1e1 + (c1 + 2b1 fn(s))e0x + (2 fn(−s)− d1)e1x.

It follows that

b3 = s−n = (−s)n, c3 = −b3 fn(s), d3 = fn(−s).

Therefore, we have
t = e0 + b3e1 − b3 fn(s)e0x + fn(−s)e1x,

where (−s2)n = 1 and b3 = (−1)nsn. We also have b2
3 = s2n = (−1)n.

We denote t by tν where ν = (−1)nsn with (−s2)n = 1. In this case

tν = e0 + νe1 − ν fn(s)e0x + fn(−s)e1x.

It is easy to see that

∆(tν) = e0 ⊗ e0 + e1 ⊗ e1 + b3e1 ⊗ e0 + b3e0 ⊗ e1 + c3e0x⊗ e0 + c3e0 ⊗ e0x

+c3e1x⊗ e1 − c3e1 ⊗ e1x + d3e1x⊗ e0 − d3e1 ⊗ e0x + d3e0x⊗ e1 + d3e0 ⊗ e1x.

Lemma 4. The following condition holds

∆(tν) =
n−1

∏
i=0

(
σi ⊗ σi

)
(J3)(tν ⊗ tν)

if and only if
n−1

∑
i=0

(−s2)i = 0.

Proof. (Sketch) By Lemma 3, it is straightforward to see

n−1

∏
i=0

(
σi ⊗ σi

)
(J3)(tν ⊗ tν)

= ∆(tν) +

(
n−1

∑
i=0

(−1)i+1s2i

)
e0x⊗ e0x + ν

(
n−1

∑
i=0

(−1)i+1s2i

)
e0x⊗ e1x

+ν

(
n−1

∑
i=0

(−1)is2i

)
e1x⊗ e0x +

(
n−1

∑
i=0

(−1)n−is2i

)
e1x⊗ e1x.

Comparing the coefficients of each term of two-hand side of ∆(tν), we have

∆(tν) =
n−1

∏
i=0

(
σi ⊗ σi

)
(J3)(tν ⊗ tν)
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if and only if
n−1

∑
i=0

(−s2)i = 0.

The proof is completed.

Now we assume that n ≥ 2, s = ω ∈ k, and

tν = e0 + νe1 − ν fn(s)e0x + fn(−s)e1x,

where

ν = (−1)nωn, (−ω2)n = 1,
n−1

∑
i=0

(−ω2)i = 0.

Thus, we get that
C = H4[z; σ]/〈zn − tν〉

is a bialgebra.
In this case, (−ω2)n = 1 (n ≥ 2) , ω2 6= −1, and ν = (−1)nωn. The bialgebra C is one of the

following lists.
Case 1: If −ω2 = −1, then ω = ±1. Hence n must be an even and set n = 2m. Then

n−1

∑
i=0

(−ω2)i = 0.

(i) If ω = 1, then ν = (−1)nωn = 1 and

t1 = 1− 2m e0x.

We get the bialgebra C1
8m(m ≥ 1) generated by g, x, z with the relations

g2 = 1, xg = −gx, x2 = 0, zg = gz + 2xz, zx = gxz, z2m = 1− 2m e0x.

The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z− 2e1z⊗ e1z + 2e1z⊗ xz;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

(ii) If ω = −1, then ν = (−1)nωn = 1 and

t1 = 1 + 2m e1x.

We get the bialgebra C2
8m(m ≥ 1) generated by g, x, z with the relations

g2 = 1, xg = −gx, x2 = 0, zg = gz + 2xz, zx = −gxz, z2m = 1 + 2m e1x.

The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z− 2e1z⊗ e1z + 2e1z⊗ xz;

ε(g) = 1, ε(z) = 1, ε(x) = 0.
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Case 2: Assume that ω2 6= ±1 and n ≥ 4 is even, we have ω2n = 1 and

n−1

∑
i=0

(−ω2)i = 0

always holds.

(a) Let ω be a 2r-th primitive root of unity with r > 2. Then we also have r|n. Let n = `r. Then
ν = (−ω)n = ωn = (−1)`.

(i) If ` is even with ` = 2m, then ν = 1 and

fn(ω) =
ωn − 1
ω− 1

= 0, fn(−ω) =
(−ω)n − 1
−ω− 1

= 0.

Hence t1 = e0 + e1 = 1 and we get a bialgebra C1
8mr(2m, r)(m ≥ 1) generated by g, x, z with

the relations

g2 = 1, xg = −gx, x2 = 0, zg = gz + 2xz, zx = ωgxz, z2mr = 1.

The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z− 2e1z⊗ e1z + 2e1z⊗ xz;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

(ii) If ` is odd with ` = 2m + 1(m ≥ 1), then ν = −1 and

fn(ω) =
ωn − 1
ω− 1

=
2

1−ω
, fn(−ω) =

(−ω)n − 1
−ω− 1

=
2

1 + ω
.

Hence
t−1 = g +

2
1−ω

e0x +
2

1 + ω
e1x.

We get a bialgebra C2
4(2m+1)r(2m + 1, r)(m ≥ 1, r is even) generated by g, x, z with the

relations
g2 = 1, xg = −gx, x2 = 0, zg = gz + 2xz, zx = ωgxz,

z(2m+1)r = g +
2

1−ω
e0x +

2
1 + ω

e1x.

The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z− 2e1z⊗ e1z + 2e1z⊗ xz;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

(b) Let ` be odd and ω be `-th primitive root of unity with ` > 1. We can replace ω by −ω. This case
turns into the case (a) above.

Case 3: Assume that ω2 6= ±1 and n = 2m + 1(m ≥ 1), we have ωn = ± i and

n−1

∑
i=0

(−ω2)i = 0.
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It is easy to see that

ν = (−ω)n = −ωn, fn(ω) =
ωn − 1
ω− 1

, fn(−ω) =
ωn + 1
ω + 1

.

Hence
tν = e0 −ωne1 +

ωn + 1
1−ω

e0x +
ωn + 1
1 + ω

e1x.

We get the bialgebra C±4(2m+1) (m ≥ 1) generated by g, x, z with the relations

g2 = 1, xg = −gx, x2 = 0, zg = gz + 2xz, zx = ωgxz,

z2m+1 = e0 ∓ ie1 +
±i + 1
1−ω

e0x +
±i + 1
ω + 1

e1x,

where ω2m+1 = ±i.
The coalgebra is

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x, ∆(z) = z⊗ z− 2e1z⊗ e1z + 2e1z⊗ xz;

ε(g) = 1, ε(z) = 1, ε(x) = 0.

In summary we get the following result.

Theorem 3. Let H = H4[z; σ] be the BOEA for H4 and H := H/ 〈 zn − t〉, where σ ∈ Aut(H4) and t ∈ H4

satisfy

∆(t) =
n−1

∏
i=0

(σi ⊗ σi)(J)(t⊗ t)

and
th = σn(h)t, for all h ∈ H4.

Then H is a bialgebra and up to isomorphism, it is one of the following lists.

(a) H1
8m(m ≥ 1), H2

4(2m+1)(m ≥ 1),

H1
8mr(2m, r, d)(m ≥ 1), H2

4(2m+1)r(2m + 1, r, d)(m ≥ 0), where ω is 2r-th root of unity with r > 1;

(b) B1
4m(m ≥ 1), B2

8m(m ≥ 1),

B3
4(2m+1)(m ≥ 1), B1

8mr(2m, r, d)(m ≥ 1), B2
4(2m+1)r(2m + 1, r, d)(m ≥ 0), where ω is 2r-th root of

unity with r > 1;
(c) C1

8m(m ≥ 1), C2
8m(m ≥ 1),

C3
8mr(2m, r)(m ≥ 1), C4

4(2m+1)r(2m + 1, r)(m ≥ 1, r is even ), where ω is an 2r-th root of unity with
r > 1;

(d) C±4(2m+1)(m ≥ 1), where ω2m+1 = ±i.

5. Hopf Algebra Structures for H4-Ore Extension of Automorphism Type

Let H = H4[z; σ] be the BOEA for H4, and Hz an algebra obtained from H by adding a new
generator z−1 such that

zz−1 = z−1z = 1.
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Theorem 4. Keeping notations as above. Then up to isomorphism, Hz is a Hopf algebra if and only if Hz is
generated by g, x, z subjecting to relations

g2 = 1, x2 = 0, zz−1 = z−1z = 1,

xg = −gx, zg = gz, zx = sxz (s 6= 0).

The coalgebra is defined by

∆(g) = g⊗ g, ∆(x) = x⊗ 1 + g⊗ x,

∆(z) = z⊗ z + d gxz⊗ xz,

ε(g) = 1, ε(z) = 1, ε(x) = 0,

S(g) = g, S(z) = z−1, S(x) = −gx

for any d.

Proof. Up to equivalence we have yielded the twisted homomorphism (σ, J) for H4 listed in Theroem 2.

(a) For the twisted homomorphism (σ1,s, J1,d), where

σ1,s(g) = g, σ1,s(x) = sx,

J1,d = 1⊗ 1 + d (gx⊗ x)

for any d ∈ k and s 6= 0. One see that

Sσ1,s(g) = g = S(g), Sσ1,s(x) = σ1,sS(s−1x) = −s−1σ(gx) = −gx = S(x).

It follows that θl = θr = 1 and
Sσ1,s(h) = S(h)

for all h ∈ H4. Hence Hz is a Hopf algebra with S(z) = z−1.
(b) For the twisted homomorphism (σ2,s, J2,d), where

σ2,s(g) = g + 2gx, σ2,s(x) = sx,

J2,d = 1⊗ 1 + 2e1 ⊗ x + d(gx⊗ x)

for any d ∈ k and s 6= 0. one see that

σ−1
2,s (g) = g− 2s−1gx, σ−1

2,s (x) = s−1x.

Hence we have
Sσ2,s(g) = g + 4e0x, Sσ2,s(x) = gx.

In this case, we have θ := θl = 1 + 2e1x = θr. But

Sσ2,s(g) = g + 4e0x, θ−1S(g)θ = (1− 2e1x)g(1 + 2e1x) = g + 4e1x.

It follows that Sσ2,s(g) 6= θ−1S(g)θ and Hz is not a Hopf algebra by Theorem 1.
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(c) For the twisted homomorphism (σ3,s, J3), where

σ3,s(g) = g + 2x, σ3,s(x) = s gx(s 6= 0),

J3 = 1⊗ 1− 2e1 ⊗ e1 + 2e1 ⊗ x.

Similarly, Hz also is not a Hopf algebra.

The proof is completed.

Now, we consider Hopf algebra structure on the quotient

H4[z; σ]/ 〈 zn − t〉 ,

where H4[z; σ] is the BOEA for H4 satisfying

∆(t) =
n−1

∏
i=0

(σi ⊗ σi)(J)(t⊗ t)

and

th = σn(h)t, for all h ∈ H4.

The following result is one of the main results.

Theorem 5. Let H = H4[z; σ] be the BOEA for H4 and H := H/ 〈 zn − t〉, where σ ∈ Aut(H4) and t ∈ H4

satisfy

∆(t) =
n−1

∏
i=0

(σi ⊗ σi)(J)(t⊗ t)

and
th = σn(h)t, for all h ∈ H4.

If H is a Hopf algebra, then it is one of the following lists up to isomorphism.

(a) H1
8m(m ≥ 1), H2

4(2m+1)(m ≥ 1);

(b) H1
8mr(2m, r, d)(m ≥ 1), H2

4(2m+1)r(2m + 1, r, d)(m ≥ 0), where ω is 2r-th root of unity with r > 1.

Proof. By the proof of Theorem 4, we see that only for the twisted homomorphism (σ1,s, J1,d), θl and
θr enjoy the conditions (1) and (2) in Theorem 1.

Now, we assume that d = 0 if ω2 = 1, and d is arbitrary if ω2 6= 1 and ω2n = 1. Note that

n−1

∏
i=0

(
σi ⊗ σi

)
(J1,d) =

n−1

∏
i=0

(
1⊗ 1 + d ω2igx⊗ x)

)
= 1⊗ 1 + d

(
n−1

∑
i=0

ω2i

)
gx⊗ x.

Hence
n−1

∏
i=0

(
σi ⊗ σi

)
(J1,d) = 1⊗ 1.

Therefore, the remaining conditions in Theorem 1 also hold. By Theorem 1, we get that H1
8m(m ≥

1), H2
4(2m+1)(m ≥ 1); H1

8mr(2m, r, d)(m ≥ 1), H2
4(2m+1)r(2m + 1, r, d)(m ≥ 0), where ω is 2r-th root of

unity with r > 1, are all Hopf algebras. The antipodes S can be easily given by Theorem 1.
The remaining two cases are referred to Theorem 3 and the proof of Theorem 4.
This completes the proof.
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