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Abstract: In the present work, we study many fixed point results in intuitionistic generalized fuzzy
cone metric space. Precisely, we prove new common fixed point theorems for three self mappings that
do not require any commutativity or continuity but a generalized contractive condition. Our results
are generalizations for many results in the literature. Some examples are given to support these results.
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1. Introduction

In the year 1965, Zadeh [1] introduced the concept of fuzzy sets which permit the gradual
assessment of the membership of the elements in a set. In contrast to classical sets, these sets are serving
good in describing the vague and imprecise expressions in a formal way. As these sets have no means
of incorporating the hesitation, Atanassov [2] brought out a possible solution with intuitionistic fuzzy
sets in the year 1983. These sets serve as a powerful tool to deal with vagueness. In addition, in the year
1975, Kramosil and Michalek [3] first introduced a metric on fuzzy sets. Subsequently, kinds of fuzzy
metrics [4–6] were introduced over fuzzy sets. In the year 1994, George and Veeramani [7] modified
the definition of fuzzy metric space that was given by Kramosil and Michalek [3] and obtained a
metrizable Hausdorff topology. As a consequence of these findings, several authors came up with
generalized versions of these spaces in various settings. In 2007, Huang and Zhang [8] introduced
cone and cone metric space, and, after that, Tarkan Oner et al. [9] defined fuzzy cone metric space as a
generalization of fuzzy metric space [7]. Mohamed and Ranjith [10] came up with intuitionistic fuzzy
cone metric space in the year 2017.

In 2019, Jeyaraman and Sowndrarajan [11] defined intuitionistic generalized fuzzy cone metric
space as a generalization in the sense of Sedghi and Shobe [12] and proved some common fixed point
theorems for (φ, ψ)-weak contractions in these spaces. The idea of fuzzy contractive mapping was
introduced by Gregori and Sapena [13], and they have also extended the Banach fixed point theorem
with fuzzy contractive mappings. Many researchers have established many common fixed point
theorems in these spaces and in their extended versions, see [13–24].

In the present paper, we study the Banach Contraction theorem in the setting of intuitionistic
generalized fuzzy cone metric space [11] and to construct some common fixed point theorems for
three self mappings which satisfy generalized contractive conditions in the intuitionistic generalized
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fuzzy cone metric spaces. The significant advantage of these theorems is that they work well where
the Banach contraction theorem fails. Examples are provided to exhibit the novelty of the results
given here.

2. Preliminaries

Let us begin the section with triangular norms which are kinds of binary operations introduced
by Karl Menger and later revised by Schweizer and Sklar [25] with stronger axioms, as stated here.

Definition 1. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if it satisfies the
following conditions:

[n1] ∗ is commutative, associative, and continuous,
[n2] a ∗ 1 = a for all a ∈ [0, 1],
[n3] a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Definition 2. A binary operation � : [0, 1] × [0, 1] → [0, 1] is a continuous t-conorm if it satisfies the
following conditions:

[cn1] � is commutative, associative and continuous,
[cn2] a � 0 = a for all a ∈ [0, 1],
[cn3] a � b ≤ c � d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Definition 3 ([9]). Let B be a real Banach space and C be a subset of B. C is called a closed cone if and only if:

[C1] C is nonempty, closed and C 6= {0},
[C2] ρ, σ ∈ R, ρ, σ ≥ 0, c1, c2 ∈ C imply ρc1 + σc2 ∈ C,
[C3] c ∈ C and −c ∈ C imply c = 0.

The closed cones considered here are subsets of a real Banach space B and are with nonempty interiors.

Definition 4 ([11]). An Intuitionistic Generalized Fuzzy Cone Metric Space (briefly, IGFCM Space) is a
5-tuple (Z ,M,N, ∗, �) where Z is an arbitrary set, ∗ is a continuous t-norm, � is a continuous t-conorm, C is a
closed cone and M, N are fuzzy sets in Z3 × int(C) satisfying the following conditions: For all ζ, η, ω, u ∈ Z
and c, c′ ∈ int(C),

(1) M(ζ, η, ω, c) +N(ζ, η, ω, c) ≤ 1,
(2) M(ζ, η, ω, c) > 0,
(3) M(ζ, η, ω, c) = 1 if and only if ζ = η = ω,
(4) M(ζ, η, ω, c) = M(p{ζ, η, ω}, c), where p is a permutation function,
(5) M(ζ, η, ω, c + c′) ≥M(ζ, η, u, c) ∗M(u, ω, ω, c′),
(6) M(ζ, η, ω, ·) : int(C)→ [0, 1] is continuous,
(7) N(ζ, η, ω, c) < 1,
(8) N(ζ, η, ω, c) = 0 if and only if ζ = η = ω,
(9) N(ζ, η, ω, c) = N(p{ζ, η, ω}, c), where p is a permutation function,

(10) N(ζ, η, ω, c + c′) ≤ N(ζ, η, u, c) �N(u, ω, ω, c′),
(11) N(ζ, η, ω, ·) : int(C)→ [0, 1] is continuous.

The pair (M,N) is called Intuitionistic Generalized Fuzzy Cone Metric on Z . The functions M(ζ, η, ω, c)
and N(ζ, η, ω, c) denote, respectively, the degree of nearness and the degree of non nearness between ζ, η and ω

with respect to c.
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Remark 1. It is to be noted that:

(i) The intuitionistic fuzzy setting provides both a membership degree and a nonmembership degree for an
element, whereas the fuzzy settings provide only the membership degree alone and thus the space considered
here will definitely provide a better environment than the latter to work with the applications.

(ii) Reference [2] Every fuzzy setting can be generalized to intuitionistic fuzzy setting but not the converse.

Example 1. Let B = R2 and consider the closed cone C = {(c1, c2) ∈ R2 : c1 ≥ 0, c2 ≥ 0} in B. Let the
t-norm ∗ be defined by ρ ∗ σ = min{ρ, σ} and the t-conorm � be defined by ρ � σ = max{ρ, σ}. Define the
functions M,N : R3 × int(C)→ [0, 1] by

M(ζ, η, ω, c) = e−
|ζ−η|+|η−ω|+|ω−ζ|

‖c‖ ,

N(ζ, η, ω, c) = e−
|ζ−η|+|η−ω|+|ω−ζ|

‖c‖ (e
|ζ−η|+|η−ω|+|ω−ζ|

‖c‖ − 1),

for all ζ, η, ω ∈ R and c ∈ int(C). Then, (R,M,N, ∗, �) is an IGFCM Space.

3. Main Results

Let us begin the section by introducing the following ideas in the IGFCM Space. These special
features play vital roles in building the results we intend to present here.

Definition 5. A symmetric IGFCM Space is an IGFCM Space (Z ,M,N, ∗, �) satisfying

M(η, ω, ω, c) = M(ω, η, η, c) and N(η, ω, ω, c) = N(ω, η, η, c)

for all η, ω ∈ Z and c ∈ int(C).

Remark 2. An IGFCM Space is symmetric.

Definition 6. Let (Z ,M,N, ∗, �) be an IGFCM Space. A self mapping P : Z → Z is said to be k-Fuzzy
Cone Contractive (briefly, k-FCC) if there exists k ∈ (0, 1) such that(

1
M(P(ζ),P(η),P(ω), c)

− 1
)
≤ k

(
1

M(ζ, η, ω, c)
− 1
)

,

N(P(ζ),P(η),P(ω), c) ≤ kN(ζ, η, ω, c),

for all ζ, η, ω ∈ Z and c ∈ int(C).

Definition 7. In an IGFCM Space (Z ,M,N, ∗, �), the pair (M,N) is said to be triangular if, for all
ζ, η, ω, u ∈ Z and c ∈ int(C),(

1
M(ζ, η, ω, c)

− 1
)
≤
(

1
M(ζ, η, u, c)

− 1
)
+

(
1

M(u, ω, ω, c)
− 1
)

,

N(ζ, η, ω, c) ≤ N(ζ, η, u, c) +N(u, ω, ω, c).

Definition 8. Let (Z ,M,N, ∗, �) be an IGFCM Space, ζ ′ ∈ Z and {ζn} be a sequence in Z .

(i) {ζn} is said to converge to ζ ′ if, for all c ∈ int(C),

limn→+∞

(
1

M(ζn ,ζ ′ ,ζ ′ ,c) − 1
)
= 0 and limn→+∞ N(ζn, ζ ′, ζ ′, c) = 0.

It is denoted by limn→+∞ ζn = ζ ′ or by ζn → ζ ′ as n→ +∞.



Mathematics 2020, 8, 1212 4 of 13

(ii) {ζn} is said to be a Cauchy sequence if, for all c ∈ int(C) and m ∈ N,

limn→+∞

(
1

M(ζn+m ,ζn ,ζn ,c) − 1
)
= 0 and limn→+∞ N(ζn+m, ζn, ζn, c) = 0.

(iii) (Z ,M,N, ∗, �) is called a complete IGFCM space if every Cauchy sequence in Z converges.

Definition 9. Let (Z ,M,N, ∗, �) be an IGFCM Space. A sequence {ζn} in Z is k-Fuzzy Cone Contractive
(briefly, k-FCC) if there exists k ∈ (0, 1) such that(

1
M(ζn, ζn+1, ζn+1, c)

− 1
)
≤ k

(
1

M(ζn−1, ζn, ζn, c)
− 1
)

, and

N(ζn, ζn+1, ζn+1, c) ≤ kN(ζn−1, ζn, ζn, c),

for all c ∈ int(C).

The following theorem gives the extension of Banach Contraction Principle in the IGFCM Space.

Theorem 1. Let (Z ,M,N, ∗, �) be a complete IGFCM Space in which k-FCC sequences are Cauchy. Let
P : Z → Z be a k-FCC mapping. Then, P has a unique fixed point.

Remark 3. The proof of Theorem 1 follows from Theorem 2 when P = Q = R and k2 = k3 = k4 = 0.

Next, let us prove some common fixed point theorems for three self mappings satisfying
generalized contractive conditions in a complete IGFCM Space.

Theorem 2. Let (Z ,M,N, ∗, �) be a complete IGFCM Space where (M, N) is triangular. If P,Q,R : Z → Z
are such that for all ζ, η, ω ∈ Z and c ∈ int(C),

(
1

M(Pζ,Qη,Rω, c)
− 1
)
≤

 k1

(
1

M(ζ,η,ω,c) − 1
)
+ k2

(
1

M(ζ,η,Rω,c) − 1
)

+k3

(
1

M(ζ,Qη,ω,c) − 1
)
+ k4

(
1

M(Pζ,η,ω,c) − 1
)  , (1)

N(Pζ,Qη,Rω, c) ≤
{

k1N(ζ, η, ω, c) + k2N(ζ, η,Rω, c)
+k3N(ζ,Qη, ω, c) + k4N(Pζ, η, ω, c)

}
, (2)

where ki ∈ [0,+∞], i = 1, . . . , 4 and k1 + 2(k2 + k3) + k4 < 1. Then, P,Q and R have a unique common
fixed point.

Proof. Let ζ0 ∈ Z be arbitrary. Let the sequence {ζn} be defined by

ζ3n+1 = Pζ3n,

ζ3n+2 = Qζ3n+1 and

ζ3n+3 = Rζ3n+2, for n ≥ 0.

From (1), (
1

M(ζ3n+1, ζ3n+2, ζ3n+2, c)
− 1
)
≤
(

1
M(Pζ3n,Qζ3n+1,Qζ3n+1, c)

− 1
)

≤

 k1

(
1

M(ζ3n ,ζ3n+1,ζ3n+1,c) − 1
)
+ k2

(
1

M(ζ3n ,ζ3n+1,Qζ3n+1,c) − 1
)

+k3

(
1

M(ζ3n ,Qζ3n+1,ζ3n+1,c) − 1
)
+ k4

(
1

M(Pζ3n ,ζ3n+1,ζ3n+1,c) − 1
) 
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=

 k1

(
1

M(ζ3n ,ζ3n+1,ζ3n+1,c) − 1
)
+ k2

(
1

M(ζ3n ,ζ3n+1,ζ3n+2,c) − 1
)

+ k3

(
1

M(ζ3n ,ζ3n+2,ζ3n+1,c) − 1
)
+ k4

(
1

M(ζ3n+1,ζ3n+1,ζ3n+1,c) − 1
) 

=

 k1

(
1

M(ζ3n ,ζ3n+1,ζ3n+1,c) − 1
)

+k2

(
1

M(ζ3n ,ζ3n+1,ζ3n+2,c) − 1
)
+ k3

(
1

M(ζ3n ,ζ3n+2,ζ3n+1,c) − 1
) 

≤


k1

(
1

M(ζ3n ,ζ3n+1,ζ3n+1,c) − 1
)

+k2

[(
1

M(ζ3n ,ζ3n+1,ζ3n+1,c) − 1
)
+
(

1
M(ζ3n+1,ζ3n+2,ζ3n+2,c) − 1

)]
+ k3

[(
1

M(ζ3n ,ζ3n+1,ζ3n+1,c) − 1
)
+
(

1
M(ζ3n+1,ζ3n+2,ζ3n+2,c) − 1

)]


=

 (k1 + k2 + k3)
(

1
M(ζ3n ,ζ3n+1,ζ3n+1,c) − 1

)
+(k2 + k3)

(
1

M(ζ3n+1,ζ3n+2,ζ3n+2,c) − 1
)  .

Therefore,(
1

M(ζ3n+1, ζ3n+2, ζ3n+2, c)
− 1
)
≤ k1 + k2 + k3

1− (k2 + k3)

(
1

M(ζ3n, ζ3n+1, ζ3n+1, c)
− 1
)

.

Similarly,(
1

M(ζ3n+2, ζ3n+3, ζ3n+3, c)
− 1
)
≤ k1 + k2 + k3

1− (k2 + k3)

(
1

M(ζ3n+1, ζ3n+2, ζ3n+2, c)
− 1
)

,(
1

M(ζ3n+3, ζ3n+4, ζ3n+4, c)
− 1
)
≤ k1 + k2 + k3

1− (k2 + k3)

(
1

M(ζ3n+2, ζ3n+3, ζ3n+3, c)
− 1
)

.

Putting Mn =
(

1
M(ζn ,ζn+1,ζn+1,c) − 1

)
and k = k1+k2+k3

1−(k2+k3)
, we obtain the inequalities:

For n = 0, 1, 2, . . . ,

M3n+1 ≤ kM3n,

M3n+2 ≤ kM3n+1 and

M3n+3 ≤ kM3n+2.

These inequalities together result in

Mn+1 ≤ kMn, for n = 0, 1, 2, . . . , (3)

From (2),

N(ζ3n+1, ζ3n+2, ζ3n+2, c) ≤ N(Pζ3n,Qζ3n+1,Qζ3n+1, c)

≤
{

k1N(ζ3n, ζ3n+1, ζ3n+1, c) + k2N(ζ3n, ζ3n+1,Qζ3n+1, c)
+k3N(ζ3n,Qζ3n+1, ζ3n+1, c) + k4N(Pζ3n, ζ3n+1, ζ3n+1, c)

}

=

{
k1N(ζ3n, ζ3n+1, ζ3n+1, c) + k2N(ζ3n, ζ3n+1, ζ3n+2, c)

+ k3N(ζ3n, ζ3n+2, ζ3n+1, c) + k4N(ζ3n+1, ζ3n+1, ζ3n+1, c)

}

=

{
k1N(ζ3n, ζ3n+1, ζ3n+1, c)

+k2N(ζ3n, ζ3n+1, ζ3n+2, c)) + k3N(ζ3n, ζ3n+2, ζ3n+1, c)

}

≤


k1N(ζ3n, ζ3n+1, ζ3n+1, c)

+k2 [N(ζ3n, ζ3n+1, ζ3n+1, c) +N(ζ3n+1, ζ3n+2, ζ3n+2, c)]
+ k3 [N(ζ3n, ζ3n+1, ζ3n+1, c) +N(ζ3n+1, ζ3n+2, ζ3n+2, c)]


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=

{
(k1 + k2 + k3)N(ζ3n, ζ3n+1, ζ3n+1, c)
+(k2 + k3)N(ζ3n+1, ζ3n+2, ζ3n+2, c)

}
.

Therefore,

N(ζ3n+1, ζ3n+2, ζ3n+2, c) ≤ k1 + k2 + k3

1− (k2 + k3)
N(ζ3n, ζ3n+1, ζ3n+1, c).

Similarly,

N(ζ3n+2, ζ3n+3, ζ3n+3, c) ≤ k1 + k2 + k3

1− (k2 + k3)
N(ζ3n+1, ζ3n+2, ζ3n+2, c),

N(ζ3n+3, ζ3n+4, ζ3n+4, c) ≤ k1 + k2 + k3

1− (k2 + k3)
N(ζ3n+2, ζ3n+3, ζ3n+3, c).

Putting Nn = N(ζn, ζn+1, ζn+1, c), we have the inequalities:
For n = 0, 1, 2, . . . ,

N3n+1 ≤ kN3n,

N3n+2 ≤ kN3n+1 and

N3n+3 ≤ kN3n+2.

These inequalities together result in

Nn+1 ≤ kNn for n = 0, 1, 2, . . . , (4)

(3) and (4) make {ζn} a k-FCC sequence.
Now, (M, N) is triangular and the space (Z ,M,N, ∗, �) is symmetric. Therefore, we have

(
1

M(ζn, ζn, ζm, c)
− 1
)
≤


(

1
M(ζn ,ζn+1,ζn+1,c) − 1

)
+
(

1
M(ζn+1,ζn+2,ζn+2,c) − 1

)
+ · · ·+

(
1

M(ζm−1,ζm ,ζm ,c) − 1
) 

= Mn +Mn+1 + · · ·+Mm−1

≤ knM0 + kn+1M0 + · · ·+ km−1M0

≤ kn

1− k
M0 → 0 as n→ +∞.

N(ζn, ζn, ζm, c) ≤
{

N(ζn, ζn+1, ζn+1, c)
+N(ζn+1, ζn+2, ζn+2, c) + · · ·+N(ζm−1, ζm, ζm, c)

}
= Nn +Nn+1 + · · ·+Nm−1

≤ knN0 + kn+1N0 + · · ·+ km−1N0

≤ kn

1− k
N0 → 0 as n→ +∞.

Thus, {ζn} is Cauchy. As Z is complete, there exists ζ̇ ∈ Z such that

lim
n→+∞

(
1

M(ζn, ζ̇, ζ̇, c)
− 1
)
= 0, lim

n→+∞
N(ζn, ζ̇, ζ̇, c) = 0. (5)
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From (4) to (5), we obtain that

Mn+1 ≤ knM0, Nn+1 ≤ knN0 for n = 0, 1, 2, . . . ,

lim
n→+∞

Mn = 0, lim
n→+∞

Nn = 0. (6)

Since (M, N) is triangular,(
1

M(ζ̇, ζ̇,Pζ̇, c)
− 1
)
≤
(

1
M(ζ̇, ζ̇, ζ3n+2, c)

− 1
)
+

(
1

M(ζ3n+2,Pζ̇,Pζ̇, c)
− 1
)

, (7)

N(ζ̇, ζ̇,Pζ̇, c) ≤ N(ζ̇, ζ̇, ζ3n+2, c) +N(ζ3n+2,Pζ̇,Pζ̇, c). (8)

From (1),(
1

M(ζ3n+2,Pζ̇,Pζ̇, c)
− 1
)
≤
(

1
M(Qζ3n+1,Pζ̇,Pζ̇, c)

− 1
)

≤

 k1

(
1

M(ζ3n+1,ζ̇,ζ̇,c)
− 1
)
+ k2

(
1

M(ζ3n+1,ζ̇,Pζ̇,c)
− 1
)

+k3

(
1

M(ζ3n+1,Pζ̇,ζ̇,c)
− 1
)
+ k4

(
1

M(Qζ3n+1,ζ̇,ζ̇,c)
− 1
) 

=

 k1

(
1

M(ζ3n+1,ζ̇,ζ̇,c)
− 1
)
+ k2

(
1

M(ζ3n+1,ζ̇,Pζ̇,c)
− 1
)

+k3

(
1

M(ζ3n+1,Pζ̇,ζ̇,c)
− 1
)
+ k4

(
1

M(ζ3n+2,ζ̇,ζ̇,c)
− 1
) 

→ (k2 + k3)

(
1

M(ζ̇, ζ̇,Pζ̇, c)
− 1
)

as n→ +∞.

Therefore,

lim
n→+∞

sup
(

1
M(ζ3n+2,Pζ̇,Pζ̇, c)

− 1
)
≤ (k2 + k3)

(
1

M(ζ̇, ζ̇,Pζ̇, c)
− 1
)

. (9)

From (2),

N(ζ3n+2,Pζ̇,Pζ̇, c) ≤ N(Qζ3n+1,Pζ̇,Pζ̇, c)

≤
{

k1N(ζ3n+1, ζ̇, ζ̇, c) + k2N(ζ3n+1, ζ̇,Pζ̇, c)
+k3N(ζ3n+1,Pζ̇, ζ̇, c) + k4N(Qζ3n+1, ζ̇, ζ̇, c)

}

=

{
k1N(ζ3n+1, ζ̇, ζ̇, c) + k2N(ζ3n+1, ζ̇,Pζ̇, c)
+k3N(ζ3n+1,Pζ̇, ζ̇, c) + k4N(ζ3n+2, ζ̇, ζ̇, c)

}
→ (k2 + k3)N(ζ̇, ζ̇,Pζ̇, c) as n→ +∞.

Therefore,
lim

n→+∞
supN(ζ3n+2,Pζ̇,Pζ̇, c) ≤ (k2 + k3)N(ζ̇, ζ̇,Pζ̇, c). (10)

From (7) to (10), we obtain that(
1

M(ζ̇, ζ̇,Pζ̇, c)
− 1
)
≤ (k2 + k3)

(
1

M(ζ̇, ζ̇,Pζ̇, c)
− 1
)

,

N(ζ̇, ζ̇,Pζ̇, c) ≤ (k2 + k3)N(ζ̇, ζ̇,Pζ̇, c).

Since k2 + k3 < 1, we have(
1

M(ζ̇, ζ̇,Pζ̇, c)
− 1
)
= 0 and N(ζ̇, ζ̇,Pζ̇, c) = 0.
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Therefore, Pζ̇ = ζ̇.
In a similar way, we can show that Qζ̇ = ζ̇ and Rζ̇ = ζ̇. Then, Pζ̇ = Qζ̇ = Rζ̇ = ζ̇.
Suppose Pζ̈ = Qζ̈ = Rζ̈ = ζ̈.
From (1),

(
1

M(ζ̇, ζ̈, ζ̈, c)
− 1
)
=

(
1

M(Pζ̇,Qζ̈,Rζ̈, c)
− 1
)

≤

 k1

(
1

M(ζ̇,ζ̈,ζ̈,c)
− 1
)
+ k2

(
1

M(ζ̇,ζ̈,Rζ̈,c)
− 1
)

+k3

(
1

M(ζ̇,Qζ̈,ζ̈,c)
− 1
)
+ k4

(
1

M(Pζ̇,ζ̈,ζ̈,c)
− 1
) 

=

 k1

(
1

M(ζ̇,ζ̈,ζ̈,c)
− 1
)
+ k2

(
1

M(ζ̇,ζ̈,ζ̈,c)
− 1
)

+k3

(
1

M(ζ̇,ζ̈,ζ̈,c)
− 1
)
+ k4

(
1

M(ζ̇,ζ̈,ζ̈,c)
− 1
) 

= (k1 + k2 + k3 + k4)

(
1

M(ζ̇, ζ̈, ζ̈, c)
− 1
)

That is,
(

1
M(ζ̇, ζ̈, ζ̈, c)

− 1
)
≤ (k1 + k2 + k3 + k4)

(
1

M(ζ̇, ζ̈, ζ̈, c)
− 1
)

.

Therefore,
(

1
M(ζ̇, ζ̈, ζ̈, c)

− 1
)
= 0, since k1 + k2 + k3 + k4 < 1.

Hence, we can conclude that ζ̇ is the unique common fixed point of P,Q and R.

Corollary 1. Let (Z ,M,N, ∗, �) be a complete IGFCM Space where (M, N) is triangular. If P : Z → Z is
such that, for all ζ, η, ω ∈ Z and c ∈ int(C),

(
1

M(Pζ,Pη,Pω, c)
− 1
)
≤

 k1

(
1

M(ζ,η,ω,c) − 1
)
+ k2

(
1

M(ζ,η,Pω,c) − 1
)

+k3

(
1

M(ζ,Pη,ω,c) − 1
)
+ k4

(
1

M(Pζ,η,ω,c) − 1
)  ,

N(Pζ,Pη,Pω, c) ≤
{

k1N(ζ, η, ω, c) + k2N(ζ, η,Pω, c)
+k3N(ζ,Pη, ω, c) + k4N(Pζ, η, ω, c)

}
,

where ki ∈ [0,+∞], i = 1, . . . , 4 and k1 + 2(k2 + k3) + k4 < 1. Then, P has a unique fixed point.

Example 2. Consider the metric space Z = [0,+∞) with metric d given by d(ζ, η) = |ζ − η| for
all ζ, η ∈ Z . Let C = R+, ∗ be a continuous t-norm, and � be a continuous t-conorm. Define the
M,N : Z3 × (0,+∞)→ [0, 1] by

M(ζ, η, ω, c) =
c

c + (|ζ − η|+ |η −ω|+ |ω− ζ|) , N(ζ, η, ω, c) =
|ζ − η|+ |η −ω|+ |ω− ζ|

c + (|ζ − η|+ |η −ω|+ |ω− ζ|) ,

for all ζ, η, ω ∈ Z and c ∈ int(C). Then, it is clear that (Z ,M,N, ∗, �) is a complete IGFCM Space and
that (M, N) is triangular. Consider the self mappings P,Q and R from Z to Z , given by

Pζ =

{
6
5 ζ + 3, ζ ∈ [0, 1),
3
4 ζ + 7

2 , ζ ∈ [1,+∞),

Qζ =

{
6
5 ζ + 3, ζ ∈ [0, 1),
2
3 ζ + 14

3 , ζ ∈ [1,+∞),
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Rζ =

{
6
5 ζ + 3, ζ ∈ [0, 1),
1
2 ζ + 7, ζ ∈ [1,+∞).

Here, P,Q and R together satisfy the condition (1) with

k1 =
3
4

, k2 =
1

21
, k3 =

1
21

, k4 =
1

21
.

Therefore, P,Q and R have a unique common fixed point and it is ζ = 14.

Remark 4. In the above example, P,Q and R are not k-FCC and hence Theorem 1 cannot assure the existence
of fixed points of any of P,Q and R.

Theorem 3. Let (Z ,M,N, ∗, �) be a complete IGFCM Space where (M, N) is triangular. If P,Q,R : Z → Z
is such that for all ζ, η, ω ∈ Z and c ∈ int(C),(

1
M(Pζ,Qη,Rω, c)

− 1
)
≤ k

(
1

Ψ1(ζ, η, ω)
− 1
)

, (11)

N(Pζ,Qη,Rω, c) ≤ kΨ2(ζ, η, ω), (12)

where k ∈ (0, 1) and

Ψ1(ζ, η, ω) = min{M(ζ,Qη,Rω, c),M(Pζ, η,Rω, c),M(Pζ,Qη, ω, c)}, and

Ψ2(ζ, η, ω) = min{N(ζ,Qη,Rω, c),N(Pζ, η,Rω, c),N(Pζ,Qη, ω, c)}.

Then, P,Q and R have a unique common fixed point.

Proof. Let ζ0 ∈ Z be arbitrary. Define the sequence {ζn} as in Theorem 2.
Then, from (11) and (12), for n = 0, 1, 2, ...,(

1
M(ζ3n+1, ζ3n+2, ζ3n+2, c)

− 1
)
≤ k

1− k

(
1

M(ζ3n, ζ3n+1, ζ3n+1, c)
− 1
)

,(
1

M(ζ3n+2, ζ3n+3, ζ3n+3, c)
− 1
)
≤ k

1− k

(
1

M(ζ3n+1, ζ3n+2, ζ3n+2, c)
− 1
)

,(
1

M(ζ3n+3, ζ3n+4, ζ3n+4, c)
− 1
)
≤ k

1− k

(
1

M(ζ3n+2, ζ3n+3, ζ3n+3, c)
− 1
)

,

N(ζ3n+1, ζ3n+2, ζ3n+2, c) ≤ k
1− k

N(ζ3n, ζ3n+1, ζ3n+1, c),

N(ζ3n+2, ζ3n+3, ζ3n+3, c) ≤ k
1− k

N(ζ3n+1, ζ3n+2, ζ3n+2, c),

N(ζ3n+3, ζ3n+4, ζ3n+4, c) ≤ k
1− k

N(ζ3n+2, ζ3n+3, ζ3n+2, c).

Therefore, we have(
1

M(ζn+1, ζn+2, ζn+2, c)
− 1
)
≤ k

1− k

(
1

M(ζn, ζn+1, ζn+1, c)
− 1
)

,

N(ζn+1, ζn+2, ζn+2, c) ≤ k
1− k

N(ζn, ζn+1, ζn+1, c).
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Using these inequalities repeatedly, we obtain that(
1

M(ζn+1, ζn+2, ζn+2, c)
− 1
)
≤ kn

1− k

(
1

M(ζ0, ζ1, ζ1, c)
− 1
)

,

N(ζn+1, ζn+2, ζn+2, c) ≤ kn

1− k
N(ζ0, ζ1, ζ1, c).

Therefore, {ζn} is k-FCC and Cauchy and hence we can find an element ζ̇ ∈ Z such that

lim
n→+∞

(
1

M(ζn, ζ̇, ζ̇, c)
− 1
)
= 0, lim

n→+∞
N(ζn, ζ̇, ζ̇, c) = 0, (13)

Since (M, N) is triangular,(
1

M(ζ̇, ζ̇,Pζ̇, c)
− 1
)
≤
(

1
M(ζ̇, ζ̇, ζ3n+2, c)

− 1
)
+

(
1

M(ζ3n+2,Pζ̇,Pζ̇, c)
− 1
)

, (14)

N(ζ̇, ζ̇,Pζ̇, c) ≤ N(ζ̇, ζ̇, ζ3n+2, c) +N(ζ3n+2,Pζ̇,Pζ̇, c). (15)

From (11) and (12), we can bring that

lim
n→+∞

sup
(

1
M(ζ3n+2,Pζ̇,Pζ̇, c)

− 1
)
≤ k

(
1

M(ζ̇, ζ̇,Pζ̇, c)
− 1
)

and (16)

lim
n→+∞

supN(ζ3n+2,Pζ̇,Pζ̇, c) ≤ kN(ζ̇, ζ̇,Pζ̇, c). (17)

From (14) to (17), we obtain that(
1

M(ζ̇, ζ̇,Pζ̇, c)
− 1
)
≤ k

(
1

M(ζ̇, ζ̇,Pζ̇, c)
− 1
)

,

N(ζ̇, ζ̇,Pζ̇, c) ≤ kN(ζ̇, ζ̇,Pζ̇, c).

As k < 1, we get that (
1

M(ζ̇, ζ̇,Pζ̇, c)
− 1
)
= 0, N(ζ̇, ζ̇,Pζ̇, c) = 0.

Therefore, Pζ̇ = ζ̇. In a similar way, we can bring that Qζ̇ = ζ̇ and Rζ̇ = ζ̇.
Suppose Pζ̈ = Qζ̈ = Rζ̈ = ζ̈.
From (11), we have that(

1
M(ζ̇, ζ̈, ζ̈, c)

− 1
)
=

(
1

M(Pζ̇,Qζ̈,Rζ̈, c)
− 1
)
≤ k

(
1

Ψ1(ζ, η, ω)
− 1
)

,

where, Ψ1(ζ, η, ω) = min
{

M(ζ̇,Qζ̈,Rζ̈, c),M(Pζ̇, ζ̈,Rζ̈, c),M(Pζ̇,Qζ̈, ζ̈, c)
}

= min
{

M(ζ̇, ζ̈, ζ̈, c),M(ζ̇, ζ̈, ζ̈, c),M(ζ̇, ζ̈, ζ̈, c)
}

= M(ζ̇, ζ̈, ζ̈, c).

From (12),

N(ζ̇, ζ̈, ζ̈, c) = N(Pζ̇,Qζ̈,Rζ̈, c) ≤ kΨ2(ζ, η, ω),

where, Ψ2(ζ, η, ω) = min
{

N(ζ̇,Qζ̈,Rζ̈, c),N(Pζ̇, ζ̈,Rζ̈, c),N(Pζ̇,Qζ̈, ζ̈, c)
}

= min
{

N(ζ̇, ζ̈, ζ̈, c),N(ζ̇, ζ̈, ζ̈, c),N(ζ̇, ζ̈, ζ̈, c)
}
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= N(ζ̇, ζ̈, ζ̈, c).

Therefore, (
1

M(ζ̇, ζ̈, ζ̈, c)
− 1
)
≤ k

(
1

M(ζ̇, ζ̈, ζ̈, c)
− 1
)

, N(ζ̇, ζ̈, ζ̈, c) ≤ kN(ζ̇, ζ̈, ζ̈, c).

Hence,
(

1
M(ζ̇, ζ̈, ζ̈, c)

− 1
)
= 0, N(ζ̇, ζ̈, ζ̈, c) = 0.

Therefore, ζ̇ = ζ̈ and we can conclude that P,Q and R have a unique common fixed point.

Example 3. Consider the IGFCM Space given in Examsple 2 and the self mappings P, Q, R from Z to Z ,
given by

Pζ =

{
1
2 ζ − 1

4 , ζ ∈ [0, 1),
1
2 ζ + 3

2 , ζ ∈ [1,+∞),

Qζ =

{
1
2 ζ − 1

4 , ζ ∈ [0, 1),
2
3 ζ + 1, ζ ∈ [1,+∞),

Rζ =

{
1
2 ζ − 1

4 , ζ ∈ [0, 1),
1
3 ζ + 2, ζ ∈ [1,+∞).

Then, (
1

M(Pζ,Pη,Pω, c)
− 1
)
=

1
2

(
1

M(ζ, η, ω, c)
− 1
)
≤ 1

4

(
1

Ψ1(ζ, η, ω)
− 1
)

and

N(Pζ,Pη,Pω, c) =
1
2
N(ζ, η, ω, c) ≤ 1

4
Ψ2(ζ, η, ω)

for all ζ, η, ω ∈ Z . Thus, P,Q and R together satisfy the conditions (11) and (12) with k = 1
4 . Therefore, P,Q

and R have a unique common fixed point, and it is ζ = 3.

Corollary 2. Let (Z ,M,N, ∗, �) be a complete IGFCM Space where (M, N) is triangular. If P : Z → Z is
such that for all ζ, η, ω ∈ Z and c ∈ int(C),(

1
M(Pζ,Pη,Pω, c)

− 1
)
≤ k

(
1

Ψ1(ζ, η, ω)
− 1
)

, N(Pζ,Pη,Pω, c) ≤ kΨ2(ζ, η, ω)

where k ∈ (0, 1) and

Ψ1(ζ, η, ω) = min{M(ζ,Pη,Pω, c),M(Pζ, η,Pω, c),M(Pζ,Pη, z, c)}, and

Ψ2(ζ, η, ω) = min{N(ζ,Pη,Pω, c),N(Pζ, η,Pω, c),N(Pζ,Pη, z, c)}.

Then, P has a unique fixed point.

4. Conclusions

This work extended the Banach contraction theorem to intuitionistic generalized fuzzy cone
metric spaces. This work also constructed and proved some common fixed point theorems for three
self mappings under generalized fuzzy contractive conditions. It is clear from the examples that the
common fixed point theorems given here assure the existence of fixed points of the mappings, but the
Banach contraction theorem fails to prove the existence of the common fixed point of such examples.
The results proved here can be further extended to various spaces in different settings by increasing the
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number of self mappings, by imposing conditions on/between them and by analyzing the generalized
contractive conditions.
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