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Abstract: The study of the existence of an optimal feedback control problem for the initial-boundary
value problem that describes the motion of the fractional Voigt-α model of a viscoelastic medium
is investigated in this paper. In this model, the Voigt rheological relation is considered with the
left-side fractional Riemann-Liouville derivative, which allows to take into account the memory of
the medium. Also in this model, the memory is considered along the trajectory of the motion of fluid
particles, determined by the velocity field. Due to the insufficient smoothness of the velocity field and,
as a consequence, the impossibility of uniquely determining the trajectory for the velocity field for
any initial value, a weak solution to the problem under study is introduced using regular Lagrangian
flows. Based on the approximation-topological approach to the study of fluid dynamic problems,
the existence of an optimal solution that gives a minimum to a given cost functional is proved.

Keywords: optimal feedback control; Voigt model; alpha-model; fractional derivative
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1. Introduction

The aim of this work is to study the optimal feedback control problem for the alpha-model with the
Voigt fractional rheological relation, taking into account the background of a fluid along the trajectory.
Note that memory properties in general arise not only in the fluid dynamics field but in many absolute
different fields [1]. So the results of this paper can be useful in many fields. A large number of papers
have been devoted to the investigation of control problems [2–4]. Although the control problems for
linear systems are sufficiently well studied, the situation is not so good for nonlinear systems (even
for finite-dimensional cases or local domains). However, due to the complexity of nonlinear systems
describing the fluids motion the control of non-Newtonian fluids motion, such as bitumen, polymers,
various solutions, emulsions and suspensions, blood, and many others, has not been fully studied.
In hydrodynamics the control (optimal control) problems often connected with the fluid control by
external forces. Usually in solving such problems, a control is considered from a given (finite) set.
In our situation, we consider the external forces control depending on the velocity field. Such types
of problems are called feedback control problems [2–5]. In this situation the control is chosen more
accurately, since in such a way the control belongs to the image of some multi-valued map. This is
more naturally due to the fact that control is not chosen from a finite set of available options.
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Also in this paper the alpha model case of fractional Voigt model is considered. Alpha-models
are some kind of regularized approximate systems that depend on some positive parameter α, and
regularization is carried out by some filtering of the velocity vector, which is contained in the argument
of the nonlinear term. The α parameter reflects the width of the spatial filtering scale for the modified
speed. The Helmholtz operator I − α2∆ is most often used as the filtration kernel. The choice of such
an operator is associated with its good mathematical properties. Thus, we ready to proceed to the
formulation of the problem. In a bounded domain Ω ⊂ Rn (in 2D and 3D cases, that is, n = 2, 3)
with a sufficiently smooth boundary ∂Ω on a time interval [0, T], where T > 0,, we consider the
initial-boundary value problem:

∂v
∂t

+
n

∑
i=1

ui
∂v
∂xi
− µ0∆v− µ1

Γ(1− β)
Div

∫ t

0
(t− s)−βE(v)

(
s, z(s; t, x)

)
ds +∇p = f , (1)

u = (I − α2∆)−1v, t ∈ [0, T], x ∈ Ω, (2)

z(τ; t, x) = x +
∫ τ

t
v
(
s, z(s; t, x)

)
ds, t, τ ∈ [0, T], x ∈ Ω, (3)

div v(t, x) = 0, t ∈ [0, T], x ∈ Ω, (4)

v|t=0 = v0, v|[0,T]×∂Ω = 0. (5)

Here v is a vector-function of the velocity of a medium particle, u is a vector-function of a modified
velocity of a medium particle, defined by equality (2), z(τ; t, x) is the trajectory of a medium particle,
indicating at time τ the location of a medium particle located at time moment t at point x, p is a
pressure function, f is a function of the density of external forces, α > 0 is scalar parameter, µ0 > 0,
µ1 ≥ 0, 0 < β < 1 are some constants.

E = (Eij(v)), Eij(v) =
1
2

( ∂vi
∂xj

+
∂vj

∂xi

)
, i, j = 1, n,

is the strain rate tensor. Γ(β) is the Euler gamma function [6] defined through an absolutely convergent
integral

Γ(β) =
∫ ∞

0
tβ−1e−t dt.

This initial-boundary value problem (1)–(5) is an alpha model for the mathematical model
of viscoelastic Voigt medium with fractional rheological relation. The idea of using this kind of
approximation (the alpha-model) first appeared in paper of J. Leray [7] (in this work, J. Leray used the
general form of the filtration kernel) to prove the existence of a weak solution for the Navier-Stokes
system of equations. Later, various alpha-models for the Euler equations [8,9], the Navier-Stokes
system [10] and others were built on this idea. In general, each alpha model is characterized by its
first-order vector differential operator F(u, v) = (F1(u, v), . . . , Fn(u, v)), in which components Fi(u, v)
are linear combinations of all kinds of operators of form uk∂xj v

m, vk∂xj u
m, uk∂xj u

m:

Fi(u, v) =
n

∑
k,j,m=1

Ci
kjmuk∂xj v

m + Di
kjmvk∂xj u

m + Ei
kjmuk∂xj u

m, (6)

where Ci
kjm, Di

kjm, Ei
kjm are some real coefficients. Note that in representation (6) monomials of the form

vk∂xj v
m are not used, since they do not contain the components of the «smoothed» vector field u.

Interest in the study of alpha-models is primarily associated with their application to the study
of turbulence effects for fluid flows. It is also associated with obtaining better numerical results for
alpha-models in comparison to the original models. However, most of the works on the solvability of
alpha-models are devoted to models of the motion of an ideal or Newtonian fluid [11–14]. Only in the
last few years, works began to appear on the study of alpha-models of non-Newtonian fluid [15–18].
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This work continues the study of alpha-models for non-Newtonian fluids, namely, for the fractional
Voigt model of the viscoelastic medium [19]. This mathematical model describes a viscoelastic fluid
flow with a rheological relation σ = µ0E(v) + µ1Dβ

0tE(v) = µ0E(v) + µ1 I1−β
0t E(v), considered along

the trajectories of fluid motion. Here Dβ
0t is the left-side fractional Riemann-Liouville derivative and

I1−β
0t is the Riemann-Liouville fractional integral. This model is a fractional analog of the Voigt model,

which describes the motion of a linearly elastic-retarded fluid. In order to study a large class of
polymers with creep and relaxation effects one must to consider models with fractional derivatives.
It turns out that the models with fractional derivatives are most suitable for this [20,21]. Note that the
advantage of this model is that, together with the definition of the vector-velocity v of the particle’s
motion, the trajectory of the particles of this medium motion z is also determined. Also, note that
the consideration of fractional derivatives in fluid dynamics has many physical applications [22–24].
One of the possible continuations of this model studies is laid out in References [25] and [26].

2. Preliminary Information and Statement of the Main Results

We introduce the main notation and auxiliary statements.
By Lp(Ω), 1 ≤ p < ∞, we denote the set of measurable vector functions v : Ω→ Rn, summable

with p degree. By Wm
p (Ω), m ≥ 1, p ≥ 1, we denote Sobolev spaces. We consider the space C∞

0 (Ω)n of
infinitely differentiable vector functions from Ω to Rn with compact support in Ω. Denote by V the set
{v ∈ C∞

0 (Ω)n, div v = 0}. Also by V0 and V1 we denote the closure of V with respect to the norm of
L2(Ω) and W1

2 (Ω), respectively, and by V2 we denote the space V2 = W2
2 (Ω) ∩V1.

We introduce from Reference [27] the scale of spaces Vβ, β ∈ R. For this we consider the Leray
projector P : L2(Ω)→ V0 and the operator A = −P∆ defined on D(A) = V2. From this operator we
can get a self-adjoint positive operator with compact inverse in V0. Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ . . .
be the eigenvalues of the operator A. We can get an orthonormal basis in V0 by the eigenfunctions
{ej} of the operator A due to the Hilbert theorem on the spectral decomposition of compact operators.
Denote by

E∞ =

{
v =

N

∑
j=1

vjej : vj ∈ R, N ∈ N
}

,

the set of finite linear combinations of ej. Thus, we get the space Vβ, β ∈ R as the completion of E∞

with respect to the norm

‖v‖Vβ =

( ∞

∑
k=1

λ
β
k |vk|2

) 1
2

. (7)

In Reference [27] it is shown that on the space Vβ, β > −1/2, norm (7) is equivalent to the
ordinary norm ‖ · ‖

Wβ
2 (Ω)n of the space Wβ

2 (Ω)n. In addition, according to Reference [28], the norms in

the spaces V1, V2 and V3 can be defined as follows:

‖v‖V1 =

( ∫
Ω
∇v(x) : ∇v(x)dx

) 1
2

, ‖v‖V2 =

( ∫
Ω

∆v(x)∆v(x)dx
) 1

2

,

‖v‖V3 =

( ∫
Ω
∇∆v(x) : ∇∆v(x)dx

) 1
2

.

Here the symbol ” : ” denotes the component-wise matrix product, that is, for C = (cij), D = (dij),

i, j = 1, . . . m, we put C : D =
m
∑

i,j=1
cijdij.

Further, through the V−β = (Vβ)∗, β ∈ N, we denote the space dual to Vβ.
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Note that C([0, T]; F) is the Banach space of continuous on [0, T] functions, Cw([0, T]; F) is the
Banach space of weakly continuous on [0, T] functions, Lp(0, T; F) is the Banach spaces of summable
on [0, T] with p degree functions with values in a Banach space F, respectively.

The set C1D(Ω) consists of one-to-one mappings z : Ω→ Ω coinciding with the identity mapping
on ∂Ω and having continuous first-order partial derivatives on Ω such that det (∂z/∂x) = 1 at every
point of the domain Ω. For this set the norm of continuous functions C(Ω) is used. Further, we will
consider the following set CG = C([0, T]× [0, T], C1D(Ω)). Note that CG ⊂ C([0, T]× [0, T], C1(Ω)),
therefore, in what follows, CG is considered a metric space with a metric defined by the norm of the
space C([0, T]× [0, T], C(Ω)).

We introduce the space in which the solvability of the considered problem will be proved:

W1 = {v ∈ L2(0, T; V1) ∩ L∞(0, T; V0), v′ ∈ L4/3(0, T; V−1)}

with the norm ‖v‖W1 = ‖v‖L2(0,T;V1) + ‖v‖L∞(0,T;V0) + ‖v′‖L4/3(0,T;V−1).

Denote by ∆α : Vβ → Vβ−2, β ≥ 0 the operator ∆α = (J + α2 A), where J = PI, and I is the
identity operator. By virtue of Reference [28], the operator ∆α is invertible. If we apply the Leray
projection P : L2(Ω)→ V0 to the equality v = (I − α2∆)u for β = 3 and express from the last equality
u: u = (J + α2 A)−1v = ∆−1

α v. Then, since v ∈ V1, we get that u ∈ V3.
Note that for the correct formulation of the considered initial-boundary value problem the

trajectories z must be uniquely determined by the velocity field v. In other words, it is necessary that
Equation (3) has a unique solution for the velocity field v. However, the existence of solutions to
Equation (3) for a fixed v is known in Reference [29] only in case v ∈ L1(0, T; C(Ω)n) and this solution
is unique for v ∈ L1(0, T; C1(Ω)n) such that v|(0,T)×∂Ω = 0. Therefore, the trajectories of motion are not
uniquely determined even for strong solutions whose partial derivatives that appear in Equation (3)
are contained in L2(0, T; L2(Ω)). One possible way out of this situation is to regularize the velocity
field at each time instant t by averaging over the variable x and determine the trajectories z(τ; t, x)
for the regularized velocity field [30]. However, relatively recently [31,32], the solvability of Cauchy
integral problem (3) was investigated in the case when the velocity v belongs to the Sobolev space.
Also the existence and uniqueness of regular Lagrangian flows, which are a generalization of the
concept of a classical solution, are established.

Definition 1. Regular Lagrangian flow associated to v is the function z(τ; t, x), (τ; t, x) ∈ [0, T]× [0, T]×Ω
satisfying conditions:

1. the function γ(τ) = z(τ; t, x) is absolutely continuous and satisfies Equation (3) for almost all x ∈ Ω and
t ∈ [0, T];

2. the equality m(z(τ; t, B)) = m(B) holds for any t, τ ∈ [0, T] and an arbitrary Lebesgue measurable set
B ⊆ Ω with Lebesgue measure m(B);

3. for all ti ∈ [0, T], i = 1, 2, 3, and almost all x ∈ Ω

z(t3; t1, x) = z(t3; t2, z(t2; t1, x)).

We give the necessary results from a regular Lagrangian flow.

Theorem 1. [31] Let v ∈ L1(0, T; W1
p(Ω)n), 1 ≤ p ≤ ∞ with conditions div v(t, x) = 0, (t, x) ∈ [0, T]×Ω,

and v|[0,T]×∂Ω = 0. Then there exists a unique regular Lagrangian flow z ∈ C(D; Ln) associated to v (where
C(D, L) is the Banach space of continuous functions on D = [0, T]× [0, T] with values in the metric space of
vector functions L measurable on Ω). Moreover, z(τ; t, Ω) ⊂ Ω up to a set of measure zero and

∂

∂τ
z(τ; t, x) = v(τ, z(τ; t, x)), t, τ ∈ [0, T], for almost all x ∈ Ω.



Mathematics 2020, 8, 1197 5 of 27

Theorem 2. Let v, vm ∈ L1(0, T; Wp
1 (Ω)n), m = 1, 2, . . . for some p > 1. Let div v = 0, div vm = 0,

v|[0,T]×∂Ω = 0, vm|[0,T]×∂Ω = 0. Also, let the inequalities

‖vx‖L1(0,T;Lp(Ω)n×n) + ‖v‖L1(0,T;Lp(Ω)n) ≤ M,

‖vm
x ‖L1(0,T;Lp(Ω)n×n) + ‖vm‖L1(0,T;Lp(Ω)n) ≤ M

are valid. Here vx and vm
x are the Jacobi matrices of the vector functions v and vm. Let vm converges to v in

L1(QT)
N as m → +∞. Let zm(τ; t, x) and z(τ; t, x) are regular Lagrangian flows associated to vm and v,

respectively. Then the sequence zm converges (up to a subsequence) to z with respect to the Lebesgue measure on
the set [0, T]×Ω uniformly on t ∈ [0, T].

This result was proved in Reference [33] in the general case.
Thus, by virtue of Theorem 1 for each v ∈ L2(0, T; V1) and for almost all x ∈ Ω, the Equation (3)

has a unique solution z(v), where z(v)(τ; t, x) = z(τ; t, x), in the class of regular Lagrangian flows.
As a control function, we consider the multi-valued map Ψ : W1 ( L2(0, T, V−1). Assume that Ψ

satisfies the following conditions:

(Ψ1) Ψ is defined on the space W1 and has nonempty, compact, and convex values;
(Ψ2) Ψ is compact and upper semicontinuous (that is, for any function v ∈ W1 and any open

set Y ⊂ L2(0, T, V−1) such that Ψ(v) ⊂ Y, there exists a neighborhood U(v) such that
Ψ(U(v)) ⊂ Y);

(Ψ3) Ψ is globally bounded, that is, there exists a constant R1 > 0 such that

‖Ψ(v)‖L2(0,T,V−1) := sup{‖u‖L2(0,T,V−1) : u ∈ Ψ(v)} ≤ R1 for all v ∈W1;

(Ψ4) Ψ is weakly closed, that is: if {vl}∞
l=1 ⊂W1, vl ⇀ v0, ul ∈ Ψ(vl) and ul → u0 in L2(0, T, V−1)

then u0 ∈ Ψ(v0).

In this paper, a weak statement of the feedback control problem for initial-boundary value problem
(1)–(5) is considered. By feedback, we mean the condition

f ∈ Ψ(v). (8)

We formulate the definition of a weak solution to feedback control problem (1)-(5), (8):

Definition 2. A pair of functions (v, f ) ∈ W1 × L2(0, T, V−1) is called a weak solution of feedback control
problem (1)–(5), (8), if it for all ϕ ∈ V1 and almost all t ∈ (0, T) satisfies the equality

〈v′, ϕ〉 −
∫

Ω

n

∑
i,j=1

(∆−1
α v)ivj

∂ϕj

∂xi
dx + µ0

∫
Ω
∇v : ∇ϕ dx

+
µ1

Γ(1− β)

( ∫ t

0
(t− s)−βE(v)(s, z(v)(s; t, x)) ds, E(ϕ)

)
= 〈 f , ϕ〉, (9)

the initial condition v(0) = v0 and feedback condition (8). Here z(v) is a regular Lagrangian flow associated
to v.

Remark 1. It is known that W ⊂ Cw(0, T; V0) [34]. Therefore, initial condition (5) has sense.

The following theorem is the first result of the paper:

Theorem 3. Let a multi-valued mapping Ψ satisfy conditions (Ψ1)− (Ψ4). Then there is at least one weak
solution (v∗, f∗) ∈W1 × L2(0, T, V−1) of feedback control problem (1)–(5), (8).
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We denote by Σ ⊂W1× L2(0, T; V−1) the set of all weak solutions of problem (1)–(5), (8). Consider
an arbitrary cost functional Φ : Σ→ R, satisfying the following conditions:

(Φ1) For all (v, f ) ∈ Σ a number R2 exists such that Φ(v, f ) ≥ R2.
(Φ2) If vl ⇀ v∗ in W1 and fl → f∗ in L2(0, T; V−1) then Φ(v∗, f∗) ≤ lim

m→∞
Φ(vl , fl).

As an example of this functional, we can take

Φ(v, f ) =
T∫

0

‖v(t)− u∗(t)‖2
V1 dt +

T∫
0

‖ f (t)‖2
V−1 dt.

Here u∗ is some specified velocity field. This functional characterizes the deviation of velocity from
the required, and its minimum yields the minimal deviation of velocity from the one specified by the
minimal control. One of the possible applications of the proposed approach is an optimal feedback
control problem and the results are in the consideration, analysis and calculation of different such
problems with special (necessary in industry) cost functionals Φ.

The following theorem is the second result of this paper.

Theorem 4. If the mapping Ψ satisfies conditions (Ψ1)–(Ψ4) and the functional Φ satisfies conditions
(Φ1), (Φ2), then optimal feedback control problem (1)–(5), (8) has at least one weak solution (v∗, f∗) such that

Φ(v∗, f∗) = inf
(v, f )∈Σ

Φ(v, f ).

The proof of Theorems 3 and 4 is based on the approximation-topological method for investigating
fluid dynamics problems [35]. To do this, first, we pass to the operator interpretation of the problem
under consideration (operator inclusion) in suitable function spaces. Further, since the operators in
the obtained operator inclusion do not have the necessary properties, we consider a problem that
approximates the original one (in this case, it is also an operator inclusion, but with a better operator
that has the required properties and in better functional spaces). Then, based on a priori estimates
of solutions and the theory of the topological degree of multi-valued vector fields, the existence of
a solution to the approximation problem is proved. Finally, it is shown that from the sequence of
solutions of the approximation problem, one can extract a subsequence that converges in a weak sense
to the solution of the original operator inclusion. After proving the solvability of the control problem,
it is shown that in the set of solutions there is at least one solution that gives a minimum to a given
cost functional (this is why this type of problem is called the optimal feedback control problem for
fluid motion).

The work is organized as follows—in Section 3 we consider the family of auxiliary problems and
prove the necessary properties of an introduced operators. Also on the basis of the topological degree
theory for multivalued maps we prove the solvability of the auxiliary problem and establish necessary
estimates for solutions to the auxiliary problem. Section 4 is devoted to the passage, the limit and
the proof of Theorem 3. Section 5 is devoted to the proof of Theorem 4. The final Section 6 contains
conclusions.

3. The Family of Auxiliary Problems

Throughout this section we will assume that v0 ∈ V3.
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Consider the following auxiliary family of systems of equations (0 ≤ ξ ≤ 1) with a small
parameter ε > 0:

ε
∂∆2v

∂t
+

∂v
∂t

+ ξ
n

∑
i=1

(∆−1
α v)i

∂v
∂xi
− µ0∆v

− µ1ξ

Γ(1− β)
Div

∫ t

0
(t− s)−βE(v)

(
s, z(s; t, x)

)
ds +∇p = ξ f , (10)

z(τ; t, x) = x +
∫ τ

t
v
(
s, z(s; t, x)

)
ds, t, τ ∈ [0, T], x ∈ Ω, (11)

div v = 0, t ∈ [0, T], x ∈ Ω, (12)

v|∂Ω = 0, ∆v|∂Ω = 0, t ∈ [0, T] (13)

v|t=0 = v0, x ∈ Ω. (14)

For this family we consider another functional space:

W2 = {v ∈ C([0, T]; V3), v′ ∈ L2(0, T; V3)}

with the norm ‖v‖W2 = ‖v‖C(0,T;V3) + ‖v′‖L2(0,T;V3).
Equation (10) includes the integral calculated along the trajectories of motion of the fluid particles.

As was noted in the previous section, it is necessary that the trajectories are uniquely determined by
the velocity field v(t, x). In other words, Equation (11) must have a unique solution for the velocity
field v(t, x). Note that for the family of auxiliary problems (10)–(14), the velocity v from the space
W2 has sufficient smoothness (due to the embedding of the space V3 in C1(Ω) for n = 2, 3). Thus,
it follows from Reference [29] that the Cauchy problem (11) is non-locally uniquely solvable.

Analogously with the definition of a weak solution for feedback control problem (1)–(5), (8),
we formulate the definition of a weak solution to auxiliary problem (10)–(14), (8) for fixed 0 ≤ ξ ≤ 1.

Definition 3. A pair of functions (v, f ) ∈W2 × L2(0, T; V−1) is called a weak solution to auxiliary problem
(10)–(14), (8) if it satisfies for any ϕ ∈ V1 and almost all t ∈ (0, T) the equality

〈v′, ϕ〉 − ξ
∫

Ω

n

∑
i,j=1

(∆−1
α v)ivj

∂ϕj

∂xi
dx + µ0

∫
Ω
∇v : ∇ϕ dx− ε

∫
Ω
∇∆v′ : ∇ϕ dx

+
µ1ξ

Γ(1− β)

( ∫ t

0
(t− s)−βE(v)(s, z(s; t, x)) ds, E(ϕ)

)
= ξ〈 f , ϕ〉, (15)

feedback condition (8) and initial condition (14). Here z is the trajectory associated to the velocity v.
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To prove the existence of a weak solution to auxiliary problem (10)–(14),(8) for ξ = 1, we rewrite
the auxiliary family in operator form. Using the terms in equality (15), we introduce the operators
using the following equalities:

J : V3 → V−1, 〈Jv, ϕ〉 =
∫

Ω
vϕ dx, v ∈ V3, ϕ ∈ V1;

A : V1 → V−1, 〈Av, ϕ〉 =
∫

Ω
∇v : ∇ϕ dx, v ∈ V1, ϕ ∈ V1;

A2 : V3 → V−1, 〈A2v, ϕ〉 = −
∫

Ω
∇∆v : ∇ϕ dx, v ∈ V3, ϕ ∈ V1;

B : L4(Ω)→ V−1, 〈B(v), ϕ〉 =
∫

Ω

n

∑
i,j=1

(∆−1
α v)ivj

∂ϕj

∂xi
dx, v ∈ L4(Ω), ϕ ∈ V1;

C : V1 × CG → V−1, (C(v, z)(t), ϕ) =
( ∫ t

0
(t− s)−βE(v)(s, z(s; t, x)) ds, E(ϕ)

)
,

v ∈ V1, z ∈ CG, ϕ ∈ V1, for almost all t ∈ (0, T).

Since the function ϕ ∈ V1 is arbitrary in (15), for almost all t ∈ (0, T) this equality is equivalent to
the following operator equation in L2(0, T; V−1):

Jv′ + εA2v′ + µ0 Av− ξB(v) +
µ1ξ

Γ(1− β)
C(v, z) = ξ f .

Thus, a weak solution to auxiliary problem (10)–(14), (8) for a fixed 0 ≤ ξ ≤ 1 is a solution v ∈W2

of the following operator inclusion

Jv′ + εA2v′ + µ0 Av− ξB(v) +
µ1ξ

Γ(1− β)
C(v, z) = ξ f ∈ Ψ(v), (16)

satisfying initial condition (14).
We also define the operators using the following equalities:

L : W2 → L2(0, T; V−1)×V3, L(v) = ((J + εA2)v′ + µ0 Av, v|t=0);

K : W2 → L2(0, T; V−1)×V3, K(v) = (B(v), 0);

G : W2 → L2(0, T; V−1)×V3, G(v) = (
µ1

Γ(1− β)
C(v, z), 0);

Y : W2 → L2(0, T; V−1)×V3, Y(v) = (Ψ(v), v0);

M : W2 →W2, M(v) = L−1(Y(v) + K(v)− G(v)).

Thus, from our problem of finding a solution to operator inclusion (16) for a fixed 0 ≤ ξ ≤ 1
satisfying initial condition (14) we get the problem of finding a solution for a fixed 0 ≤ ξ ≤ 1 to the
following operator inclusion

v ∈ ξM(v) = ξL−1(Y(v) + K(v)− G(v)). (17)

We need the following properties of the operators from inclusions (16) and (17). In order to not
to pile up the notation, we will use the same letter to denote the same operators acting in different
function spaces.

Lemma 1. 1. For any function v ∈ C([0, T]; V3) it holds that the function Av ∈ L2(0, T; V−1) and the
operator A : C([0, T]; V3)→ L2(0, T; V−1) is continuous and the following estimates hold:

‖Av‖V−1 ≤ ‖v‖V1 ; ‖Av‖L2(0,T;V−1) ≤ ‖v‖L2(0,T;V1); (18)
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‖Av‖L2(0,T;V−1) ≤ C1‖v‖C([0,T];V3). (19)

2. The operator A2 : V3 → V−1 is linear, continuous, invertible and the following estimate holds:

‖A2v‖V−1 ≤ ‖v‖V3 . (20)

In addition, the operator A−1
2 : V−1 → V3 is also continuous.

3. For any function v ∈ Lp(0, T; V3), 1 ≤ p < ∞ the function (J + εA2)v belongs to Lp(0, T; V−1) and
the operator (J + εA2) : Lp(0, T; V3) → Lp(0, T; V−1) is continuous and invertible. In addition, the
following estimate holds:

ε‖v‖Lp(0,T;V3) ≤ ‖(J + εA2)v‖Lp(0,T;V−1) ≤ C2(1 + ε)‖v‖Lp(0,T;V3). (21)

Moreover, the inverse to it operator (J + εA2)
−1 : Lp(0, T; V−1) → Lp(0, T; V3)is continuous and for

any w ∈ Lp(0, T; V−1) we have the estimate

‖(J + εA2)
−1w‖Lp(0,T;V3) ≤

1
ε
‖w‖Lp(0,T;V−1). (22)

4. The operator L : W2 → L2(0, T; V−1)×V3 is invertible and the operator L−1 : L2(0, T; V−1)×V3 →
W2 is a continuous operator.

Proof. The proof is carried out in the same way as in Reference [36].

Lemma 2. 1. The map B : L4(Ω)→ V−1 is continuous and the following estimate holds:

‖B(v)‖V−1 ≤ C3‖v‖2
L4(Ω). (23)

2. For any v ∈ L4(0, T; L4(Ω)) the function B(v) ∈ L2(0, T; V−1) and the map B : L4(0, T; L4(Ω)) →
L2(0, T; V−1) is continuous.

3. For any function v ∈ W2 the function B(v) ∈ L2(0, T; V−1) and the map B : W2 → L2(0, T; V−1) is
compact.

Proof. 1. For any v ∈ L4(Ω), ϕ ∈ V1 using Holder’s inequality, we obtain

|〈B(v), ϕ〉| =
∣∣∣∣ n

∑
i,j=1

∫
Ω
(∆−1

α v)ivj
∂ϕj

∂xi
dx
∣∣∣∣ ≤ n

∑
i,j=1

( ∫
Ω
|(∆−1

α v)ivj|2 dx
) 1

2

×
( ∫

Ω

∣∣∣∣∂ϕj

∂xi

∣∣∣∣2 dx
) 1

2

≤
n

∑
i,j=1

( ∫
Ω
|(∆−1

α v)i|4 dx
) 1

4
( ∫

Ω
|vj|4 dx

) 1
4

‖ϕ‖V1

≤ C4‖∆−1
α v‖L4(Ω)‖v‖L4(Ω)‖ϕ‖V1 ≤ C4C5‖v‖2

L4(Ω)‖ϕ‖V1 = C6‖v‖2
L4(Ω)‖ϕ‖V1 .

This implies inequality (23). Note that here we used the following well-known estimate [37,38]:

‖∆−1
α v‖Lp(Ω) = ‖(I − α2∆)−1v‖Lp(Ω) ≤ C5‖v‖Lp(Ω), p > 1. (24)
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We show the continuity of the map B : L4(Ω)→ V−1. For arbitrary vm, v0 ∈ L4(Ω) we have

|〈B(vm), ϕ〉 − 〈B(v0), ϕ〉| =
∣∣∣∣ ∫Ω

n

∑
i,j=1

(∆−1
α vm)ivm

j
∂ϕj

∂xi
dx−

∫
Ω

n

∑
i,j=1

(∆−1
α v0)iv0

j
∂ϕj

∂xi
dx
∣∣∣∣

≤
n

∑
i,j=1
‖(∆−1

α vm)ivm
j − (∆−1

α v0)iv0
j ‖L2(Ω)

∥∥∥∥∂ϕj

∂xi

∥∥∥∥
L2(Ω)

≤ ‖ϕ‖V1

n

∑
i,j=1
‖(∆−1

α vm)ivm
j − (∆−1

α v0)iv0
j ‖L2(Ω)

= ‖ϕ‖V1

( n

∑
i,j=1
‖(∆−1

α vm)ivm
j − (∆−1

α vm)iv0
j + (∆−1

α vm)iv0
j − (∆−1

α v0)iv0
j ‖L2(Ω)

)
≤ ‖ϕ‖V1

( n

∑
i,j=1
‖(∆−1

α vm)ivm
j − (∆−1

α vm)iv0
j ‖L2(Ω) +

n

∑
i,j=1
‖(∆−1

α vm)iv0
j − (∆−1

α v0)iv0
j ‖L2(Ω)

)
≤ C7‖ϕ‖V1

( n

∑
j=1
‖∆−1

α vm‖L4(Ω)‖vm
j − v0

j ‖L4(Ω) +
n

∑
j=1
‖∆−1

α (vm − v0)‖L4(Ω)‖v0
j ‖L4(Ω)

)
≤ C7C5‖ϕ‖V1

( n

∑
j=1
‖vm‖L4(Ω)‖vm

j − v0
j ‖L4(Ω) +

n

∑
j=1
‖vm − v0‖L4(Ω)‖v0

j ‖L4(Ω)

)
≤ C8(‖vm‖L4(Ω)‖vm − v0‖L4(Ω) + ‖vm − v0‖L4(Ω)‖v0‖L4(Ω))‖ϕ‖V1

= C8(‖vm‖L4(Ω) + ‖v0‖L4(Ω))‖vm − v0‖L4(Ω)‖ϕ‖V1 .

Thereby
‖B(vm)− B(v0)‖V−1 ≤ C8(‖vm‖L4(Ω) + ‖v0‖L4(Ω))‖vm − v0‖L4(Ω).

Assuming that vm → v0 in L4(Ω), we obtain that the map B : L4(Ω)→ V−1 is continuous.
2. To prove this item, it is necessary to use the last estimate and repeat the proof of Lemma 2.5.4

(item 2) from Reference [28].
3. To prove this item, we use the Aubin-Simon theorem:

Theorem 5. [28,39,40] Let X ⊂ E ⊂ Y are Banach spaces, the embedding X ⊂ E is compact and the
embedding E ⊂ Y is continuous. Also let F ⊂ Lp(0, T; X), 1 ≤ p ≤ ∞. We assume that for any f ∈ F
its generalized derivative belongs to Lr(0, T; Y), 1 ≤ r ≤ ∞. Now let:

• F is bounded in Lp(0, T; X);
• { f ′ : f ∈ F} is bounded in Lr(0, T; Y).

Then for p < ∞ the set F is relatively compact in Lp(0, T; E), and for p = ∞ and r > 1 the set F is
relatively compact in C([0, T]; E).

Consider the set F = {v ∈ L4(0, T; V3), v′ ∈ L2(0, T; L2(Ω))}. Since the embedding V3 ⊂ L4(Ω)

is compact, the embedding F ⊂ L4(0, T; L4(Ω)) is also compact.

From continuity of embeddings

C([0, T]; V3) ⊂ L4(0, T; V3), L2(0, T; V3) ⊂ L2(0, T; L2(Ω))

the continuous embedding W2 ⊂ F follows. In addition, also we have that the operator B :
L4(0, T; L4(Ω)) → L2(0, T; V−1) is continuous (from the second item of this lemma). Thus, we
have the superposition of embeddings:

W2 ⊂ F ⊂ L4(0, T; L4(Ω))
B−→ L2(0, T; V−1),
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where the first embedding is continuous, the second is compact, and the map B is continuous.
Therefore, for any function v ∈W2 we obtain that the function B(v) ∈ L2(0, T; V−1), and the map
B : W2 → L2(0, T; V−1) is compact. The proof is complete.

We proceed to investigate the properties of the map C. We introduce the following norm
‖v‖k,L2(0,T;V−1) equal to the norm ‖v‖L2(0,T;V−1) where v(t) = e−ktv(t), k ≥ 0. Then the following
lemma holds.

Lemma 3. For any v ∈ L2(0, T; V1), z ∈ CG we have that C(v, z) ∈ L2(0, T; V−1) and the map C :
L2(0, T; V1)× CG → L2(0, T; V−1) is continuous and bounded. In addition, for any fixed function z ∈ CG
and arbitrary u, v ∈ L2(0, T; V1) the following estimate holds:

‖C(v, z)− C(u, z)‖k,L2(0,T;V−1) ≤ C9T1−β
√

T/k‖v− u‖k,L2(0,T;V1). (25)

Proof. The first part of this lemma is proved similarly to the Lemma 2.2 [30]. We prove necessary
estimate (25). Let v(t) = e−ktv(t), u(t) = e−ktu(t). By definition, for almost all t ∈ [0, T] we have
ϕ ∈ L2(0, T, V1) and obtain

〈e−ktC(v, z)(t)− e−ktC(u, z)(t), ϕ(t)〉

=
∫ T

0

∫
Ω

∫ t

0
e−k(t−s)(t− s)−βEij(v− u)(s, z(s; t, x)) ds Eij(ϕ)(t) dx dt.

Then, using the Holder inequality, we obtain

〈e−ktC(v, z)(t)− e−ktC(u, z)(t), ϕ(t)〉 ≤
∫ T

0

∫ t

0
e−k(t−s)(t− s)−β

( ∫
Ω
E2(v− u)(s, z(s; t, x)) dx

)1/2

×
( ∫

Ω
E2(ϕ)(t, x) dx

)1/2
ds dt =

∫ T

0

∫ t

0
e−k(t−s)(t− s)−β‖(v− u)(s, ·)‖V1‖ϕ(t, ·)‖V1 ds dt

≤ C9T1−β‖v− u‖L2(0,T;V1)‖ϕ‖L2(0,T;V1)

( ∫ T

0

∫ t

0
e−k(t−s) ds dt

)1/2.

The last inequality holds by virtue of the following estimate [41] (Theorem 2.6)

‖
∫ t

0
(t− s)−β ϕ(s) ds‖Lp(0,T) ≤ C9T1−β‖ϕ(s)‖Lp(0,T), ϕ(s) ∈ Lp(0, T), 1 ≤ p < ∞.

Estimate the remaining integral:

( ∫ T

0

∫ t

0
e−k(t−s) ds dt

)1/2
=

1
k

∫ T

0
1− e−kt dt ≤ 1

k

∫ T

0
dt =

T
k

.

Thus, we obtain the estimate

〈e−ktC(v, z)(t)− e−ktC(u, z)(t), ϕ(t)〉 ≤ C9T1−β
√

T/k‖v− u‖L2(0,T;V1)‖ϕ‖L2(0,T;V1).

From where necessary estimate (25) follows.

We formulate one more necessary property of the operator C.
But first we define several concepts concerning the measure of noncompactness and L-condensing

operators [30,42].

Definition 4. A non-negative real function ψ defined on a subset of a Banach space F is called a measure of
non-compactness if for any subsetM of this space the following properties are satisfied:
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• ψ(coM) = ψ(M);
• for any two setsM1 andM2 fromM1 ⊂M2 follows that ψ(M1) ≤ ψ(M2).

Here, by coM we denote the convex closure of the set M. As an example of a measure of
non-compactness, we give the Kuratowski measure of non-compactness: the exact lower bound d > 0
for which the setM can be divided into a finite number of subsets whose diameters are less than d.
Kuratowski’s non-compactness measure has several important properties:

• ψ(M) = 0, ifM is a relatively compact subset;
• ψ(M∪ K) = ψ(M) if K is a relatively compact set.

Definition 5. Let X be bounded subset of a Banach space, and L : X → F is a map from X into a Banach
space F. A map g : X → F is called L-condensing if ψ(g(M)) < ψ(L(M)) for any setM ⊆ X such that
ψ(g(M)) 6= 0.

Let γk be the Kuratowski measure of noncompactness in the space L2(0, T; V−1) with the norm
‖v‖k,L2(0,T;V−1). Then the following lemma holds.

Lemma 4. The map G : W2 → L2(0, T; V−1)×V3 is L-condensing with respect to the Kuratowski measure
of noncompactness γk.

Proof. Let M ⊂W2 ⊂ L2(0, T; V1) be an arbitrary bounded set. By virtue of Theorem 2, the set z(M)

is the set of trajectories z that are uniquely determined by the velocities v ∈ M and this set is relatively
compact. Then for any fixed v ∈ W2 the set C(v, z(M)) is relatively compact. In addition, for any
z ∈ z(M), the map C(·, z) satisfies the Lipschitz condition with constant C9T1−β

√
T/k in the norms

‖ · ‖k,L2(0,T,V1) and ‖ · ‖k,L2(0,T,V−1). Then, by Theorem 1.5.7 [42], the map C(v, z) and, therefore, the
map G are C9T1−β

√
T/k-bounded with respect to the Hausdorff measure χk. It is known, see Theorem

1.1.7 [42], that the non-compactness measures of Hausdorff and Kuratowski satisfy the following
inequalities χk(M) ≤ γk(M) ≤ 2χk(M). Therefore, the estimate

γk(G(M)) ≤ C9T1−β
√

T/kγk(L(M))

hold. Choosing k so that C9T1−β
√

T/k < 1, we obtain the statement of the lemma.

Using the above estimates and the properties of the operators, we prove the following a priori
estimates for auxiliary family (10)–(14), (8).

Lemma 5. Let v0 ∈ V3. Then for any solution v ∈W2 of operator inclusion (16) the following estimates hold:

‖v‖L2(0,T;V1) ≤ C10(‖v0‖V0 +
√

ε‖v0‖V2); (26)

‖v‖C([0,T];V0) ≤ C11(‖v0‖V0 +
√

ε‖v0‖V2); (27)

ε‖v‖2
C([0,T];V2) ≤ C12(‖v0‖2

V0 + ε‖v0‖2
V2), (28)

where the constants C10, C11, C12 do not depend on ε and ξ.
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Proof. Let v ∈W2 be a solution of operator inclusion (16). Then for any ϕ ∈ V1 and almost all t ∈ (0, T)
equality (15) holds. Since it is valid for all ϕ ∈ V1, we assume that ϕ = v, where v(t) = e−ktv(t). Then

∫
Ω

v′(t)v(t) dx− ξ
∫

Ω

n

∑
i,j=1

(∆−1
α v)i(t)vj(t)

∂vj(t)
∂xi

dx + µ0

∫
Ω
∇v(t) : ∇v(t) dx

+
µ1ξ

Γ(1− β)

( ∫ t

0
(t− s)−βE(v)(s, z(s; t, x)) ds, E(v(t))

)
− ε

∫
Ω
∇∆v′(t) : ∇v(t) dx = ξ〈 f (t), v(t)〉. (29)

Let us replace v(t) = ektv(t) and separately transform the terms in the left side of the last equality
as follows. Consider the first term:∫

Ω
v′(t)v(t) dx =

∫
Ω
(ektv(t))′v(t) dx = ekt

∫
Ω

v′(t)v(t) dx + kekt
∫

Ω
v(t)v(t) dx

=
ekt

2

∫
Ω

∂(v(t)v(t))
∂t

dx + kekt‖v(t)‖2
V0 =

ekt

2
d
dt
‖v(t)‖2

V0 + kekt‖v(t)‖2
V0 . (30)

Now we turn to the consideration of the following term:

∫
Ω

n

∑
i,j=1

(∆−1
α v)i(t)vj(t)

∂vj(t)
∂xi

dx = ekt
∫

Ω

n

∑
i,j=1

(∆−1
α v)i(t)vj(t)

∂vj(t)
∂xi

dx

=
ekt

2

∫
Ω

n

∑
i,j=1

(∆−1
α v)i(t)

∂(vj(t)vj(t))
∂xi

dx = − ekt

2

∫
Ω

n

∑
i,j=1

∂(∆−1
α v)i(t)
∂xi

v2
j (t) dx

= − ekt

2

∫
Ω

n

∑
j=1

div u(t)v2
j (t) dx = 0.

Finally, we transform the last term:

−ε
∫

Ω
∇∆v′(t) : ∇v(t) dx = −ε

∫
Ω
∇∆(ektv(t))′ : ∇v(t) dx− εkekt

∫
Ω
∇∆v(t) : ∇v(t) dx

−εekt
∫

Ω
∇∆v′(t) : ∇v(t) dx = εkekt

∫
Ω

∆v(t)∆v(t) dx +
εekt

2

∫
Ω

∂

∂t

(
∆v(t)∆v(t)

)
dx

= εkekt‖v(t)‖2
V2 +

εekt

2
d
dt
‖v(t)‖2

V2 .

Thus, equality (29) can be rewritten as follows:

ekt

2
d
dt
‖v(t)‖2

V0 + kekt‖v(t)‖2
V0 + µ0ekt‖v(t)‖2

V1 + εkekt‖v(t)‖2
V2 +

εekt

2
d
dt
‖v(t)‖2

V2

= − µ1ξ

Γ(1− β)

( ∫ t

0
(t− s)−βE(ektv)(s, z(s; t, x)) ds, E(v(t))

)
+ ξekt〈 f (t), v(t)〉. (31)

We estimate modulo the right-hand side of the resulting equality. Using the Cauchy inequality

bc ≤ δb2

2
+

c2

2δ

for δ = 1/µ0, we obtain:

ξekt〈 f (t), v(t)〉 ≤ ekt‖ f (t)‖V−1‖v(t)‖V1 ≤
ekt

2µ0
‖ f (t)‖2

V−1 +
µ0ekt

2
‖v(t)‖2

V1 .



Mathematics 2020, 8, 1197 14 of 27

Multiplying both sides of equality (31) on e−kt, for almost all t ∈ (0, T) we have

1
2

d
dt
‖v(t)‖2

V0 +
ε

2
d
dt
‖v(t)‖2

V2 + k‖v(t)‖2
V0 +

µ0

2
‖v(t)‖2

V1 + εk‖v(t)‖2
V2

≤ µ1

Γ(1− β)

∣∣∣∣(e−kt
∫ t

0
(t− s)−βE(ektv)(s, z(s; t, x)) ds, E(v(t))

)∣∣∣∣+ 1
2µ0
‖ f (t)‖2

V−1 .

We integrate the last inequality with respect to t from 0 to τ, where τ ∈ [0, T]. Then

1
2
‖v(t)‖2

V0 +
ε

2
‖v(t)‖2

V2 + k
∫ τ

0
‖v(t)‖2

V0 dt + εk
∫ τ

0
‖v(t)‖2

V2 dt

+
µ0

2

∫ τ

0
‖v(t)‖2

V1 dt ≤ 1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2µ0

∫ τ

0
‖ f (t)‖2

V−1 dt

+
µ1

Γ(1− β)

∫ τ

0

∣∣∣∣(e−kt
∫ t

0
(t− s)−βE(ektv)(s, z(s; t, x)) ds, E(v(t))

)∣∣∣∣ dt.

We use estimate (25) for u = 0. In this way,

1
2
‖v(t)‖2

V0 +
ε

2
‖v(t)‖2

V2 + k
∫ τ

0
‖v(t)‖2

V0 dt + εk
∫ τ

0
‖v(t)‖2

V2 dt

+
µ0

2

∫ τ

0
‖v(t)‖2

V1 dt ≤ 1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
µ1C9T1−β

√
T/(2k)

Γ(1− β)
‖v‖2

L2(0,T;V1) +
1

2µ0
‖ f ‖2

L2(0,T;V−1).

We assume that the number k is sufficiently large such that
µ1C9T1−β

√
T/(2k)

Γ(1− β)
≤ µ0/4.

The nonnegativity of the quantities ‖v(t)‖2
V0 , ‖v(t)‖2

V2 and ‖v(t)‖2
V1 yields the following estimates:

µ0

2

∫ τ

0
‖v(t)‖2

V1 dt ≤ 1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2µ0
‖ f ‖2

L2(0,T;V−1) +
µ0

4
‖v‖2

L2(0,T;V1),

ε

2
‖v(t)‖2

V2 ≤
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2µ0
‖ f ‖2

L2(0,T;V−1) +
µ0

4
‖v‖2

L2(0,T;V1),

1
2
‖v(t)‖2

V0 ≤
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2µ0
‖ f ‖2

L2(0,T;V−1) +
µ0

4
‖v‖2

L2(0,T;V1).

Since the right-hand side in all the above inequalities does not depend on τ, we pass to the
maximum in τ ∈ [0, T] in the left-hand sides of these inequalities. Then

µ0

2
‖v‖2

L2(0,T;V1) ≤
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2µ0
‖ f ‖2

L2(0,T;V−1) +
µ0

4
‖v‖2

L2(0,T;V1),

ε

2
‖v‖2

C([0,T];V2) ≤
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2µ0
‖ f ‖2

L2(0,T;V−1) +
µ0

4
‖v‖2

L2(0,T;V1),

1
2
‖v‖2

C([0,T];V0) ≤
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2µ0
‖ f ‖2

L2(0,T;V−1) +
µ0

4
‖v‖2

L2(0,T;V1).

From this and feedback condition (8) the required estimates (26)-(28) directly follow. The proof
is complete.
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Lemma 6. Let v0 ∈ V3. For any solution v ∈W2 for operator inclusion (16) we have the following estimates

ε‖v′‖L2(0,T;V3) ≤ C13

(
1 +

1
ε

)
‖v0‖2

V0 + C13
√

ε‖v0‖V2 + C13‖v0‖2
V2 ; (32)

‖v‖C([0,T];V3) ≤ ‖v0‖V3 +
C13T

1
2

ε

(
1 +

1
ε

)
‖v0‖2

V0 +
C13T

1
2

√
ε
‖v0‖V2 +

C13T
1
2

ε
‖v0‖2

V2 ; (33)

‖v′‖L4/3(0,T;V−1) ≤ C14(‖v0‖2
V0 + ε‖v0‖2

V2 + 1); (34)

ε‖v′‖L4/3(0,T;V3) ≤ C15(‖v0‖2
V0 + ε‖v0‖2

V2 + 1); (35)

where the constants C13, C14, C15 do not depend on ε, v and ξ.

Proof. Let v ∈W2 be a solution of (16). Then it satisfies the following operator equality

Jv′ + εA2v′ + µ0 Av− ξB(v) +
µ1ξ

Γ(1− β)
C(v, z) = ξ f . (36)

Hence,

‖(J + εA2)v′‖L2(0,T;V−1) = ‖ξ f + ξB(v)− µ0 Av− µ1ξ

Γ(1− β)
C(v, z)‖L2(0,T;V−1).

We estimate the right-hand side of the last equality. By estimates (18) and (25) for u = 0, we get:

‖ξ f + ξB(v)− µ0 Av− µ1ξ

Γ(1− β)
C(v, z)‖L2(0,T;V−1)

≤ ‖ f ‖L2(0,T;V−1) + ‖B(v)‖L2(0,T;V−1) +
µ1C9T1−β

Γ(1− β)
‖v‖L2(0,T;V1) + µ0‖v‖L2(0,T;V1). (37)

We separately estimate the ‖B(v)‖L2(0,T;V−1). Using (23), and the continuity of the embedding
V2 ⊂ L4(Ω), we have:

‖B(v)‖L2(0,T;V−1) =
( ∫ T

0
‖B(v)‖2

V−1 dt
) 1

2 ≤ C3

( ∫ T

0
‖v(t)‖4

L4(Ω) dt
) 1

2

≤ C16

( ∫ T

0
‖v(t)‖4

V2 dt
) 1

2 ≤ C16T
1
2 max

t∈[0,T]
‖v(t)‖2

V2 = C16T
1
2 ‖v‖2

C([0,T];V2).

We rewrite inequality (37) as follows

‖ξ f + ξB(v)− µ0 Av− µ1ξ

Γ(1− β)
C(v, z)‖L2(0,T;V−1)

≤ C17(‖ f ‖L2(0,T;V−1) + C16T1/2‖v‖2
C([0,T];V2) + ‖v‖L2(0,T;V1)).

From the a priori estimates (26) and (28) it immediately follows that

‖(J + εA2)v′‖L2(0,T;V−1) ≤ C13

(
1 +

1
ε

)
‖v0‖2

V0 + C13
√

ε‖v0‖V2 + C13‖v0‖2
V2 .

To prove estimate (32), it remains to use the left (21) for p = 2:

ε‖v′‖L2(0,T;V3) ≤ ‖(J + εA2)v′‖L2(0,T;V−1)

≤ C13

(
1 +

1
ε

)(
‖v0‖2

V0 + ‖ f ‖2
L2(0,T;V−1)

)
+ C13

√
ε‖v0‖V2 + C13‖v0‖2

V2 .

Hence, inequality (32) is established.
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We pass to the proof of estimate (33). Represent the function v ∈W2 as follows:

v(t) =
∫ t

0
v′(s)ds + v0.

Then

‖v(t)‖V3 ≤
∥∥∥∥v0 +

∫ t

0
v′(s) ds

∥∥∥∥
V3
≤ ‖v0‖V3 +

∫ t

0
‖v′(s)‖V3 ds ≤ ‖v0‖V3 + T

1
2 ‖v′‖L2(0,T;V3).

Since the right-hand side of the resulting inequality does not depend on t, we pass to the maximum
in τ ∈ [0, T] in the left-hand side. Then, taking into account estimate (32), we obtain

max
t∈[0,T]

‖v(t)‖V3 ≤ ‖v0‖V3 +
C13T

1
2

ε

(
1 +

1
ε

)
‖v0‖2

V0 +
C13T

1
2

√
ε
‖v0‖V2 +

C13T
1
2

ε
‖v0‖2

V2 .

Thus, we received estimate (33).
Now we prove inequality (34). As before, v ∈W2 is a solution of operator Equation (36). Then

‖v′‖L4/3(0,T;V−1) ≤ ‖ξ f + ξB(v)− µ0 Av− µ1ξ

Γ(1− β)
C(v, z)− εA2v′‖L4/3(0,T;V−1)

≤ ‖ f ‖L4/3(0,T;V−1) + ‖B(v)‖L4/3(0,T;V−1) + µ0‖Av‖L4/3(0,T;V−1)

+
µ1

Γ(1− β)
‖C(v, z)‖L4/3(0,T;V−1) + ε‖A2v′‖L4/3(0,T;V−1). (38)

We separately consider the terms on the right-hand side of the last inequality. First, we estimate
‖B(v)‖L4/3(0,T;V−1). Given from Reference [34] the well-known inequality for n = 3

‖u‖L4(Ω) ≤ 2
1
2 ‖u‖

1
4
L2(Ω)

‖∇u‖
3
4
L2(Ω)

, u ∈ V1,

and estimate (23), we obtain (for the case n = 2 the proof is similar):

‖B(v)‖L4/3(0,T;V−1) =
( ∫ T

0
‖B(v)‖

4
3
V−1 dt

) 3
4 ≤ C3

( ∫ T

0
‖v‖

8
3
L4(Ω)

dt
) 3

4

≤ 2C3

( ∫ T

0
‖v‖

2
3
L2(Ω)

‖∇v‖2
L2(Ω) dt

) 3
4 ≤ C18

( ∫ T

0
‖v‖

2
3
V0‖v‖2

V1 dt
) 3

4

≤ C18‖v‖
1
2
C([0,T];V0)

( ∫ T

0
‖v‖2

V1 dt
) 3

4
= C18‖v‖

1
2
C([0,T];V0)

‖v‖
3
2
L2(0,T;V1)

. (39)

Consider the following term. We use the Holder inequality and estimate (18). Then

‖Av‖L4/3(0,T;V−1) =
( ∫ T

0
‖Av‖

4
3
V−1 dt

) 3
4 ≤

( ∫ T

0
‖v‖

4
3
V1 dt

) 3
4

≤ T
1
4

( ∫ T

0
‖v‖2

V1 dt
) 1

2
= T

1
4 ‖v‖L2(0,T;V1). (40)

Similarly, using the Holder inequality and estimate (25) for u = 0, we obtain an estimate for the
next term:

‖C(v, z)‖L4/3(0,T;V−1) =
( ∫ T

0
‖C(v, z)‖

4
3
V−1 dt

) 3
4 ≤ T

1
4

( ∫ T

0
‖C(v, z)‖2

V−1 dt
) 1

2

= T
1
4 ‖C(v, z)‖L2(0,T;V−1) ≤ T

1
4 T1−βC9‖v‖L2(0,T;V1).
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Finally, we consider the last term. Using inequality (20), we get:

ε‖A2v′‖L4/3(0,T;V−1) = ε

( ∫ T

0
‖A2v′‖

4
3
V−1 dt

) 3
4

≤ ε

( ∫ T

0
‖v′‖

4
3
V3 dt

) 3
4

≤ ε‖v′‖L4/3(0,T;V3).

Let us estimate the right-hand side of the last inequality. We use the left side of estimate (22)
for p = 4/3. Thus, to obtain an estimate of ε‖v′‖L4/3(0,T;V3), it is necessary to obtain an estimate of
‖(J + εA2)v′‖L4/3(0,T;V−1). To do this, we again use operator Equation (36). From its appearance, it
follows that

ε‖v′‖L4/3(0,T;V3) ≤ ‖ f ‖L4/3(0,T;V−1)+ ‖B(v)‖L4/3(0,T;V−1)−µ0‖Av‖L4/3(0,T;V−1)+µ1‖C(v, z)‖L4/3(0,T;V−1).

Thus,

ε‖A2v′‖L4/3(0,T;V−1) ≤ ε‖v′‖L4/3(0,T;V3)

≤ ‖ f ‖L4/3(0,T;V−1) + ‖B(v)‖L4/3(0,T;V−1) + µ0‖Av‖L4/3(0,T;V−1) +
µ1

Γ(1− β)
‖C(v, z)‖L4/3(0,T;V−1). (41)

From (38), estimates (39)–(41) and a priori estimates (26) and (27), we get

‖v′‖L4/3(0,T;V−1) ≤ 2(‖ f ‖L4/3(0,T;V−1) + ‖B(v)‖L4/3(0,T;V−1) + µ0‖Av‖L4/3(0,T;V−1)

+
µ1

Γ(1− β)
‖C(v, z)‖L4/3(0,T;V−1)) ≤ C19(‖ f ‖L2(0,T;V−1) + ‖v‖L2(0,T;V1)

+‖v‖
1
2
C([0,T];V0)

‖v‖
3
2
L2(0,T;V1)

) ≤ C20(‖ f ‖L2(0,T;V−1) + ‖v0‖V0 +
√

ε‖v0‖V2

+(‖v0‖V0 +
√

ε‖v0‖V2 + ‖ f ‖L2(0,T;V−1))
1
2 (‖v0‖V0 +

√
ε‖v0‖V2 + ‖ f ‖L2(0,T;V−1)))

3
2

≤ C21(‖v0‖V0 +
√

ε‖v0‖V2 + ‖ f ‖L2(0,T;V−1) + 1)2 ≤ 4C21(‖v0‖2
V0 + ε‖v0‖2

V2 + 1).

This completes the proof of inequality (34), where C14 = 4C21.
Finally, applying again estimates (39) and (40), for the right-hand side of (41), as well as a priori

estimates (26) and (27), we obtain

ε‖v′‖L4/3(0,T;V3) ≤ 2(‖ f ‖L4/3(0,T;V−1) + ‖B(v)‖L4/3(0,T;V−1) + µ0‖Av‖L4/3(0,T;V−1)

+
µ1

Γ(1− β)
‖C(v, z)‖L4/3(0,T;V−1)) ≤ C22(‖ f ‖L2(0,T;V−1) + ‖v‖L2(0,T;V1)

+‖v‖
1
2
C([0,T];V0)

‖v‖
3
2
L2(0,T;V1)

) ≤ C23(‖ f ‖L2(0,T;V−1) + ‖v0‖V0 +
√

ε‖v0‖V2

+(‖v0‖V0 +
√

ε‖v0‖V2 + ‖ f ‖L2(0,T;V−1))
1
2 (‖v0‖V0 +

√
ε‖v0‖V2 + ‖ f ‖L2(0,T;V−1))

3
2 )

≤ C24(‖v0‖V0 +
√

ε‖v0‖V2 + ‖ f ‖L2(0,T;V−1) + 1)2 ≤ 4C24(‖v0‖2
V0 + ε‖v0‖2

V2 + 1).

Thus, inequality (35), where C15 = 4C24 is established. The proof is complete.

Lemma 7. Let v0 ∈ V3. Then for any solution v ∈ W2 of operator Equation (16) we have the following
estimate:

‖v‖W2 ≤ C25, (42)

where C25 > 0 is a constant that depends on ε.

Theorem 6. Let v0 ∈ V3. Then there is at least one solution v ∈ W2 of auxiliary problem (10)–(14), (8) for
ξ = 1.



Mathematics 2020, 8, 1197 18 of 27

Proof. To prove this theorem, we use the topological degree theory for multi-valued vector fields [2,43].
Consider operator inclusion (17). From Corollary 7 it follows that all solutions of inclusion (17) are
in the ball BR ⊂ W2 of radius R = C25 + 1 centered at zero. By item 4 of Lemma 1 the operator
L : W2 → L2(0, T; V−1) × V3 is invertible. Then there is no solution of the family of following
inclusions

v ∈ ξM, where ξ ∈ [0, 1],

on the boundary of the same ball BR.
By virtue of item 4 of Lemma 1 the operator L−1 : L2(0, T; V−1)× V3 → W2 is continuous. By

the Lemmas 2 and 4 the map (Y(v) + K(v)− G(v)) : W2 → L2(0, T; V−1)×V3 is L - condensing with
respect to the Kuratowski γk non-compactness measure. Therefore, the operatorM : W2 → W2 is
condensing with respect to the Kuratowski γk non-compactness measure.

Thus, the vector field v− ξM(v) is non-degenerate on the boundary of the ball BR, which means
that the topological degree deg(I − ξM(v), BR, 0) is defined for this vector field . By the properties of
homotopy invariance and normalization of degree we obtain that

deg(I −M(v), BR, 0) = deg(I, BR, 0) = 1.

The non-zero degree of the mapping ensures the existence of at least one solution v ∈ W2 of
inclusion (17) for ξ = 1, and therefore of auxiliary problem (8), (10)–(14) for ξ = 1. The theorem is
proved.

4. Proof of Theorem 3

We proceed directly to the proof of the solvability of feedback control problem (1)–(5), (8). To do
this, we carry out the passage to the limit in auxiliary problem (10)–(14), (8) for ξ = 1. Since the space
V3 is dense in V0, then for each v∗0 ∈ V0 there exists a sequence vm

0 ∈ V3 converging to v∗0 in V0.
If v∗0 ≡ 0, then we put vm

0 ≡ 0, εm = 1/m. If ‖v∗0‖V0 6= 0, then starting from some number we have
‖vm

0 ‖V2 6= 0. Then we put εm = 1/(m‖vm
0 ‖2

V2). Under our choice {εm} resulting sequence converges
to zero as m→ ∞. Moreover, εm‖vm

0 ‖2
V2 ≤ 1.

By Theorem 6, for each εm and vm
0 there exists a solution vm ∈ W2 ⊂ W1 of auxiliary problem

(10)–(14), (8) for ξ = 1. Thus, each solution vm for all ϕ ∈ V1 for almost all t ∈ (0, T) satisfies
the equality

〈v′m, ϕ〉 −
∫

Ω

n

∑
i,j=1

(∆−1
α vm)i(vm)j

∂ϕj

∂xi
dx + µ0

∫
Ω
∇vm : ∇ϕ dx

−εm

∫
Ω
∇∆v′m : ∇ϕ dx +

µ1

Γ(1− β)

( ∫ t

0
(t− s)−βE(vm)(s, zm(s; t, x)) ds, E(ϕ)

)
= 〈 fm, ϕ〉, (43)

and the initial condition
vm|t=0 = vm

0 .

Since the sequence {vm
0 } converges in V0, it is bounded by the norm V0. Hence,

‖vm
0 ‖2

V0 + εm‖vm
0 ‖2

V2 ≤ C26.
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Thus, from estimates (26), (27), (34) and (35) we obtain that

‖vm‖2
L2(0,T;V1) ≤ C27, (44)

‖vm‖2
C([0,T];V0) ≤ C28, (45)

‖v′m‖L4/3(0,T;V−1) ≤ C29, (46)

ε‖v′m‖L4/3(0,T;V3) ≤ C30, (47)

where the constants C27, C28, C29, C30 do not depend on ε. Due to the continuity of the embedding
C([0, T]; V0) ⊂ L∞(0, T; V0) and estimates (44)–(46), without loss of generality (if necessary, passing to
a subsequence) we obtain that

vm → v∗ weakly in L2(0, T; V1) as m→ ∞, (48)

vm → v∗ *-weakly in L∞(0, T; V0) as m→ ∞, (49)

v′m → v′∗ weakly in L4/3(0, T; V−1) as m→ ∞, (50)

and that the limit function v∗ belongs to the space W1.
Consider Cauchy problem (3) for the limit function v∗. Since v∗ ∈ W1, therefore v∗ satisfies

the conditions of Theorem 1. Therefore, in [0, T]× [0, T]×Ω there exists a Lagrangian regular flow
z∗(τ; t, x) associated to v∗. We denote by zm(τ; t, x) the Lagrangian regular flow associated to vm.

Lemma 8. The sequence zm(τ; t, x) converges to z(τ; t, x) with respect to the Lebesgue measure on the set
[0, T]×Ω in (τ, x) for t ∈ [0, T].

This lemma follows from the a priori estimate (42) and Theorem 2.
The proofs of the solvability of feedback control problem (8), (1)–(5) are divided into two parts.

First, we prove the passage to the limit in auxiliary problem (8), (10)–(14) for ξ = 1 and a test function
ϕ from V1, which is sufficiently smooth, then for the arbitrary function ϕ ∈ V1.

I part. Let the test function ϕ ∈ V1 be smooth. We pass to the limit in each term of (43).

For m→ ∞, by the definition of weak convergence vm → v∗ in L2(0, T; V1) we get

µ0

∫
Ω
∇vm : ∇ϕ dx → µ0

∫
Ω
∇v∗ : ∇ϕ dx

for any ϕ ∈ V1.

Due to weak convergence v′m → v′∗ in L4/3(0, T; V−1) as m→ ∞ we obtain that

〈v′m, ϕ〉 → 〈v′∗, ϕ〉

for any ϕ ∈ V1.

Further, using estimate (47), without loss of generality and, if necessary, passing to a
subsequence, we have that there exists a function u ∈ L4/3(0, T; V3) such that

εmv′m → u weakly in L4/3(0, T; V3) as m→ ∞.

Then
εm〈∇∆v′m,∇ϕ〉 → 〈∇∆u,∇ϕ〉, as m→ ∞.

However, the sequence εmv′m converges to zero in the sense of distributions on [0, T] with
values in V−3. Indeed, for any smooth scalar function ψ with compact support and for
ϕ ∈ V3, we obtain
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lim
m→∞

∣∣∣∣εm

∫ T

0

∫
Ω
∇∆v′m : ∇ϕ dxψ(t) dt

∣∣∣∣ = lim
m→∞

εm

∣∣∣∣ ∫ T

0

∫
Ω

∆v′m∆ϕ dxψ(t) dt
∣∣∣∣

= lim
m→∞

εm

∣∣∣∣ ∫ T

0

∫
Ω
∇v′m : ∇∆ϕ dxψ(t) dt

∣∣∣∣ = lim
m→∞

εm lim
m→∞

∣∣∣∣ ∫ T

0

∫
Ω
∇v′m : ∇∆ϕ dxψ(t) dt

∣∣∣∣
= lim

m→∞
εm lim

m→∞

∣∣∣∣ ∫Ω

( ∫ T

0
∇v′mψ(t) dt

)
: ∇∆ϕ dx

∣∣∣∣
= lim

m→∞
εm lim

m→∞

∣∣∣∣ ∫Ω

( ∫ T

0
∇vm

∂ψ(t)
∂t

dt
)

: ∇∆ϕ dx
∣∣∣∣

= lim
m→∞

εm lim
m→∞

∣∣∣∣ ∫ T

0

∫
Ω
∇vm : ∇∆ϕ dx

∂ψ(t)
∂t

dt
∣∣∣∣.

Since vm weakly converges to v∗ in L2(0, T; V1) and, therefore, converges to v∗ in the sense
of distributions, then

lim
m→∞

εm lim
m→∞

∣∣∣∣ ∫ T

0

∫
Ω
∇vm : ∇∆ϕ dxψ(t) dt

∣∣∣∣ = ∣∣∣∣ ∫ T

0

∫
Ω
∇v∗ : ∇∆ϕ dx

∂ψ(t)
∂t

dt
∣∣∣∣ lim

m→∞
εm = 0.

Thus, due to the uniqueness of the weak limit

εm〈∇∆v′m,∇ϕ〉 → 0 as m→ ∞.

Since the embedding V1 ⊂ L4(Ω) is completely continuous, and the embedding L4(Ω) ⊂
V−1 is continuous, by Theorem 5 it follows, that

F = {v ∈ L2(0, T; V1), v′ ∈ L4/3(0, T; V−1)} ⊂ L2(0, T; L4(Ω)).

Then, taking into account estimates (45) and (46) we conclude that

vm → v∗ strongly in L2(0, T; L4(Ω)).

Since the operator ∆−1
α = (I − α2∆)−1 : L2(0, T; V1)→ L2(0, T; V3) is continuous, then

∫
Ω

n

∑
i,j=1

(∆−1
α vm)i(vm)j

∂ϕj

∂xi
dx →

∫
Ω

n

∑
i,j=1

(∆−1
α v∗)i(v∗)j

∂ϕj

∂xi
dx as m→ ∞,

where the first sequence (∆−1
α vm)i weakly converges in L2(0, T; V1), and the second (vm)j

strongly in L2(0, T; L4(Ω)). Consequently, their product converges weakly to the product
of limits.

Now show that

µ1

Γ(1− β)

( ∫ t

0
(t− s)−βE(vm)(s, zm(s; t, x)) ds, E(ϕ)

)
→ µ1

Γ(1− β)

( ∫ t

0
(t− s)−βE(v∗)(s, z∗(s; t, x)) ds, E(ϕ)

)
. (51)
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Consider the following difference

µ1
Γ(1− β)

( ∫ t

0
(t− s)−βE(vm)(s, zm(s; t, x)) ds, E(ϕ)

)
− µ1

Γ(1− β)

( ∫ t

0
(t− s)−βE(v∗)(s, z∗(s; t, x)) ds, E(ϕ)

)
=

µ1
Γ(1− β)

( ∫ t

0
(t− s)−β

∫
Ω

[
E(vm)(s, zm(s; t, x))− E(v∗)(s, zm(s; t, x))

]
: E(ϕ) dx ds

)
+

µ1
Γ(1− β)

( ∫ t

0
(t− s)−β

∫
Ω

[
E(v∗)(s, zm(s; t, x))− E(v∗)(s, z∗(s; t, x))

]
: E(ϕ) dx ds

)
= Zm

1 + Zm
2 .

(1) We show first that Zm
1 → 0 as m→ ∞.

Denote the integral over domain Ω in Zm
1 by I:

I =
∫

Ω

[
E(vm)(s, zm(s; t, x))− E(v∗)(s, zm(s; t, x))

]
: E(ϕ) dx.

We make the change of variables x = zm(t; s, y) in I (where the reverse change is y =

zm(s; t, x)):

I =
∫

Ω

[
E(vm)(s, y)− E(v∗)(s, y)

]
: E(ϕ)(zm(t; s, y)) dy.

We rewrite Zm
1 and continue the further expansion:

Zm
1 =

µ1

Γ(1− β)

( ∫ t

0
(t− s)−β

∫
Ω

[
E(vm)(s, y)− E(v∗)(s, y)

]
: E(ϕ)(zm(t; s, y)) dy ds

)

=
µ1

Γ(1− β)

( ∫ t

0
(t− s)−β

∫
Ω

[
E(vm)(s, y)− E(v∗)(s, y)

]
:
[
E(ϕ)(zm(t; s, y))

−E(ϕ)(z∗(t; s, y))
]

dy ds
)
+

µ1

Γ(1− β)

( ∫ t

0
(t− s)−β

∫
Ω

[
E(vm)(s, y)

−E(v∗)(s, y)
]

: E(ϕ)(z∗(t; s, y)) dy ds
)
= Zm

11 + Zm
12.

(a) Due to the weak convergence vm to v∗ in the space L2(0, T; V1), we obtain that Zm
12 → 0

as m→ ∞.
(b) Applying the Holder and the Cauchy-Bunyakovsky inequalities, we get

|Zm
11|2 ≤ C31

( ∫ t

0
(t− s)−β‖vm(s, ·)− v∗(s, ·)‖V1‖ϕx(zm(t; s, ·))− ϕx(z∗(t; s, ·))‖V0 ds

)2

≤ C32‖vm(s, ·)− v∗(s, ·)‖L2(0,T;V1) ×
∫ T

0
‖ϕx(zm(t; s, ·))− ϕx(z∗(t; s, ·))‖V0 ds. (52)

We denote the second efficient in the last inequality by Φm(s) :

Φm(s) =
∫ T

0
‖ϕx(zm(t; s, ·))− ϕx(z∗(t; s, ·))‖V0 ds.

We show the convergence Φm(s)→ 0 as m→ ∞ for every s ∈ [0, T]. Note, that

Φm(s) =
∫ T

0

∫
Ω
|ϕx(zm(t; s, y))− ϕx(z∗(t; s, y))|2 dy ds.
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Let ε > 0 be a sufficiently small number.The continuity of the function ϕx in Ω means that
there exists δ(ε) such that if |x′′ − x′| ≤ δ(ε), then

|ϕx(x′′)− ϕx(x′)| ≤ ε. (53)

Since the sequence zm(t; s, y) converges to z∗(t; s, y) in the Lebesgue measure with respect to
(t, y), therefore for δ(ε) there exists the number N = N(δ(ε)) which for m ≥ N the following
inequality holds:

m({(t, y) : |zm(t; s, y)− z∗(t; s, y)| ≥ δ(ε)}) ≤ ε. (54)

We denote
Q(> δ(ε)) = {(t, y) ∈ QT : |zm(t; s, y)− z∗(t; s, y)| > δ(ε)};

Q(≤ δ(ε)) = {(t, y) ∈ QT : |zm(t; s, y)− z∗(t; s, y)| ≤ δ(ε)}.

Then

Φm(s) ≤ C33

( ∫
Q(>δ(ε))

|ϕx(zm(t; s, y))− ϕx(z∗(t; s, y))|2 dy ds

·
∫

Q(≤δ(ε))
|ϕx(zm(t; s, y))− ϕx(z∗(t; s, y))|2 dy ds

)
= C33

(
Φ1

m(s) + Φ2
m(s)

)
. (55)

By virtue of (53) for Φ2
m(s) we have |zm(t; s, y)− z∗(t; s, y)| ≤ δ(ε). Hence

Φ2
m(s) ≤

∫
Q(≤δ(ε))

ε2 dy ds = C34ε2. (56)

By virtue of (54) for Φ1
m(s) we have m(Q(> δ(ε))) ≤ ε. Hence

Φ1
m(s) ≤ C35‖ϕx‖C(Ω)

∫
Q(>δ(ε))

dy ds = C35ε‖ϕx‖C(Ω). (57)

Thus, from (55), (56) and (57) it follows that for small ε > 0 and m ≥ N(δ(ε)) the following
inequality holds

Φm(s) ≤ C36ε.

Consequently, convergence Φm(s) → 0 as m → ∞ for all s ∈ [0, T] is obtained. Consider
the right side of inequality (4). Due to the boundedness of the first efficient (since vm ∈
L2(0, T; V1)) and the convergence to 0 of the second efficient as m→ ∞, we get that Zm

11 → 0
as m→ ∞.

Thus, it is proved that Zm
1 → 0 as m→ ∞.

(2) Now show that Zm
2 → 0 as m→ ∞. Consider the auxiliary function ṽ(t, x) smooth and finite

on [0, T]×Ω such that ‖v∗ − ṽ‖L2(0,T;V1) ≤ ε for sufficiently small ε > 0. We now estimate
Zm

2 through three integrals

|Zm
2 | ≤ C37

( ∫ t

0
(t− s)−β

∫
Ω
‖v∗(s, zm(s; t, x))− ṽ(s, zm(s; t, x))‖V1 ds

+
∫ t

0
(t− s)−β

∫
Ω
‖ṽ(s, zm(s; t, x))− ṽ(s, z∗(s; t, x))‖V1 ds

+
∫ t

0
(t− s)−β

∫
Ω
‖ṽ(s, z∗(s; t, x))− v∗(s, z∗(s; t, x))‖V1 ds

)
= C37

(
Zm

21 + Zm
22 + Zm

23
)
.
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We make a change of variables in the norms under the integrals Zm
21 and Zm

23:

‖v∗(s, zm(s; t, x))− ṽ(s, zm(s; t, x))‖V1 = ‖v∗(s, y)− ṽ(s, y)‖V1 ;

‖ṽ(s, z∗(s; t, x))− v∗(s, z∗(s; t, x))‖V1 = ‖ṽ(s, y)− v∗(s, y)‖V1 .

Then we get

Zm
21 + Zm

23 = C37(
∫ t

0
(t− s)−β‖v∗(s, ·)− ṽ(s, ·)‖V1 ds) ≤ C37ε.

We estimate also Zm
22

Zm
22 ≤ C37(

∫ t

0
(t− s)−β

( ∫
Ω
|ṽx(s, zm(s; t, ·))− ṽx(s, z∗(s; t, ·))|2 dx

)1/2 ds).

By virtue of Lemma 8 zm(s; t, x) converges to z(s; t, x) and the function ṽx(t, x) is bounded
and smooth. Therefore, by the Lebesgue theorem, we obtain that Zm

2 → 0 as m→ ∞. Thus,
convergence (51) is proved.

Taking into account the a priori estimates (44)–(46) and conditions (Ψ1)-(Ψ4), without loss of
generality, we can assume that there exists f∗ ∈ L2(0, T; V−1) such that fm → f∗ ∈ Ψ(v∗) as
m→ ∞.

As a result, it was shown that the functions v∗ and f∗ with a smooth test function ϕ from V1

satisfy the equality:

〈v′∗, ϕ〉 −
∫

Ω

n

∑
i,j=1

(∆−1
α v∗)i(v∗)j

∂ϕj

∂xi
dx + µ0

∫
Ω
∇v∗ : ∇ϕ dx

+
µ1

Γ(1− β)

( ∫ t

0
(t− s)−βE(v∗)(s, z∗(s; t, x)) ds, E(ϕ)

)
= 〈 f∗, ϕ〉. (58)

Since the sequence {vm} has a priori estimates (44), (45) and (46), due to the weak
convergence properties for v∗ we immediately obtain the estimate:

‖v∗‖L∞(0,T;V0) + ‖v∗‖L2(0,T;V1) + ‖v∗‖L4/3(0,T;V−1) ≤ C38.

Whence it follows that v∗ ∈W1. Thus, the passage to the limit was proved for a test function
ϕ ∈ V1, which is smooth.

II part. Let us prove this passage to the limit for an arbitrary test function ϕ from V1. We rewrite (58)
for smooth ϕ in the form:

[G1, ϕ]− [G2, ϕ] = 0, (59)

where

[G1, ϕ] = 〈v′, ϕ〉 −
∫

Ω

n

∑
i,j=1

(∆−1
α v)i(v)j

∂ϕj

∂xi
dx + µ0

∫
Ω
∇v : ∇ϕ dx

+
µ1

Γ(1− β)

( ∫ t

0
(t− s)−βE(v)(s, z(s; t, x)) ds, E(ϕ)

)
; [G2, ϕ] = 〈 f , ϕ〉.

Lemma 9. Let the test function ϕ be smooth. Then

|[G1, ϕ]| ≤ C39‖ϕ‖V1 , |[G2, ϕ]| ≤ C40‖ϕ‖V1 . (60)

The proof of this Lemma is similar to obtaining a priori estimates in section 3.
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Since the set of smooth functions is dense in V1, for ϕ ∈ V1 there exists a sequence of smooth
functions ϕl ∈ V1 such that |ϕl − ϕ|V1 → 0 for l → ∞. By virtue of (59) we obtain

[G1, ϕ]− [G2, ϕ] = [G1, ϕ− ϕl ]− [G2, ϕ− ϕl ] + [G1, ϕl ]− [G2, ϕl ]

= [G1, ϕ− ϕl ]− [G2, ϕ− ϕl ].

From the last equality and estimates (60) we obtain

|[G1, ϕ]− [G2, ϕ]| ≤ C41|ϕ− ϕl |.

Taking into account the last inequality and passing to the limit as l → ∞ in equality (58)
for ϕ = ϕl we obtain equality (58) for arbitrary ϕ ∈ V1, which completes the proof of the
existence of weak solutions for feedback control problem (1)–(5), (8).

5. Proof of Theorem 4

From Theorem 3 we obtain that the set of solutions is nonempty. Therefore, there exists a
minimizing sequence (vl , fl) ∈ Σ such that

lim
l→∞

Φ(vl , fl) = inf
(v, f )∈Σ

Φ(v, f ).

As before, in the proof of Theorem 3 from estimates (44)–(46) it follows:

vl ⇀ v∗ weakly in L2(0, T; V1),

vl ⇀ *-weakly in L∞(0, T; V0),

v′l ⇀ v′∗ weakly in L4/3(0, T; V−1),

vl → v∗ strongly in L2(0, T; L4(Ω)),

zl(τ; t, x)→ z(τ; t, x) in the Lebesgue measure with respect to (τ, x) on [0, T]×Ω,

fl → f∗ ∈ Ψ(v∗) strongly in L2(0, T; V−1).

Similarly from inclusion

Jv′l + µ0 Avl − B(vl) +
µ1

Γ(1− β)
C(vl , zl) = fl ∈ Ψ(vl),

passing to the limit, we obtain

Jv′∗ + µ0 Av∗ − B(v∗) +
µ1

Γ(1− β)
C(v∗, z∗) = f∗ ∈ Ψ(v∗).

We get that (v∗, f∗) ∈ Σ. Since the functional Φ is lower semicontinuous with respect to the
relatively weak topology, we have

Φ(v∗, f∗) ≤ inf
(v, f )∈Σ

Φ(v, f ).

Thereby (v∗, f∗) is the required solution. The theorem is proved.

6. Conclusions

To summarize all reasonings, calculations and proofs in this paper, the mathematical model
describing the motion of viscoelastic mediums was investigated. This model is equipped with the
Voigt rheological relation. This relation is considered with the left-side fractional Riemann-Liouville
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derivative, which allows us to take into account the memory of the medium. This memory is considered
along the trajectory of the motion of fluid particles, determined by the velocity field. This allows a
more accurate description of the physical process of fluid motion. Also in this paper the model under
consideration is called the alpha-model. Interest in the study of alpha-models is primarily associated
with their application to the study of turbulence effects for fluid flows.

The main result of this paper is the solutions existence to the feedback control problem for the
mathematical model under consideration. Also the existence of an optimal solution to the problem
under consideration that gives a minimum to a given bounded quality functional is proved. Results of
this paper provide an opportunity for the future investigation of this model. The authors propose the
following future research directions for the model under consideration—1) the numerical analysis of
the obtained solutions; 2) the consideration of a turbulence case of this problem; 3) the investigation of
a II class of alpha-models for this problem and so forth.
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