
mathematics

Article

An Analytical Model for 5G Network Resource
Sharing with Flexible SLA-Oriented Slice Isolation

Natalia Yarkina 1 , Yuliya Gaidamaka 1,2,* , Luis M. Correia 3 and Konstantin Samouylov 1,2

1 Applied Informatics and Probability Department, Peoples’ Friendship University of Russia (RUDN
University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; natyarkina@sci.pfu.edu.ru (N.Y.);
samuylov-ke@rudn.ru (K.S.)

2 Institute of Informatics Problems, Federal Research Center “Computer Science and Control” of the Russian
Academy of Sciences, Vavilov St. 44-2, Moscow 119333, Russia

3 IST/INESC-ID, Universidade de Lisboa, Rua Alves Redol, 9, 1E, 1000-029 Lisbon, Portugal;
luis.m.correia@tecnico.ulisboa.pt

* Correspondence: gaydamaka-yuv@rudn.ru

Received: 16 June 2020; Accepted: 14 July 2020; Published: 17 July 2020
����������
�������

Abstract: Network slicing is a novel key technology in 5G networks which permits to provide a
multitude of heterogeneous communication services over a common network infrastructure while
satisfying strict Quality of Service (QoS) requirements. Since radio spectrum resources are inherently
scarce, the slicing of the radio access network should rely on a flexible resource sharing policy that
provides efficient resource usage, fairness and slice isolation. In this article, we propose such a policy
for bandwidth-greedy communication services. The policy implies a convex programming problem
and is formalized to allow for session-level stochastic modeling. We developed a multi-class service
system with service rates obtained as a solution to the optimization problem, a Markovian Arrival
Process and state-dependent preemptive priorities. We use matrix-analytic methods to find the steady
state distribution of the resulting continuous-time Markov chain and the expressions for important
performance metrics, such as data rates. Numerical analysis illustrates the efficiency of the proposed
slicing scheme compared to the complete sharing and complete partitioning policies, showing that
our approach leads to a data rate about the double of that obtained under complete partitioning for
the analyzed scenario.

Keywords: Markov Chain model; matrix-analytic methods; convex programming; preemptive
priority; Markovian Arrival Process; network slicing; slice isolation; 5G

1. Introduction

Network slicing is a key novel technology introduced in 5G networks as a response to
two challenges:

• to efficiently transmit data with completely different characteristics and Quality of Service (QoS)
requirements over the same physical network infrastructure, and

• to provide seamless support for diverse business models and market scenarios, for example,
Mobile Virtual Network Operators (MVNO), which do not possess their own network
infrastructure yet seek autonomy in administration and admission control.

Network slicing permits creating a multitude of logical networks for different tenants over a
common infrastructure. Current industry standards define a network slice as a logical network that
provides specific network capabilities and network characteristics [1,2]. According to Reference
[2], the dynamic scale-in and scale-out of resources in a slice should be supported and occur with
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minimal impact on QoS. ITU-T Recommendations also indicate that slices should be isolated from
each other, so that their interference is minimal [3]. Moreover, depending on the slices’ requirements,
different levels of isolation should be available, which may result, for instance, in the preemption of a
slice’s resources by another slice with a higher isolation level [2].

Slices can span across several network segments—user equipment (which can belong to multiple
slices simultaneously), Radio Access Network (RAN), core network, and so forth—and thus constitute
complete end-to-end logical networks. The resources allocated to a slice can be dedicated and/or
shared in terms of processing power, storage, bandwidth, and so forth [4]. Since network slicing
implies infrastructure sharing, its efficiency is contingent upon finding an adequate policy for allocating
resources among slices. In light of the requirements stated above and common industry practice,
such a policy should be QoS-oriented and provide

1. efficient resource usage,
2. fair, non-discriminating resource allocation among users, and
3. flexible isolation of slices from one another.

The problem of resource allocation in network slicing has been addressed in many recent studies,
some theoretical and of a more general nature, and some technology-specific. One category of
works, namely References [5–7], deals with the end-to-end slicing, which relates and extends the
virtual network embedding problem [5]. Generally, this approach implies representing the physical
network and the virtual network formed by the slices in graph form and finding a mapping between
them. Another large category of studies focuses on how to share a particular network resource or
a combination of resources among a set of slices. For the most part, this category revolves around
RAN and radio spectrum (channel) resources, since the latter inherently cannot be easily scaled
up. However, the ways to consider and slice RAN resources vary—while many studies address
the slicing of the radio resources of a single base station [8–17], others consider a combination
of specific RAN-related resources, namely the base station’s radio channel capacity, cache and
backhaul bandwidth [18], a cluster of several homogeneous [19–21] or heterogeneous [22–24] base
stations, or the capacity of a Cloud-RAN (C-RAN), in which the baseband resources of several
homogeneous [25,26] or heterogeneous [27,28] radio systems are centralized into a single resource
pool. Besides, some studies deal with finite sets of purely abstract [29,30] or more specific—radio,
transport and computing [31]—network resources.

The assumptions regarding the network slices also vary. Some researchers tailor their slicing
schemes for the standardized slice types defined in Reference [1] and corresponding to the three
categories of 5G services [2]—Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low-Latency
Communications (URLLC) and Massive Machine-Type Communications (mMTC) also referred to
as Massive Internet of Things (MIoT). RAN resource allocation among such three slices is addressed
in Reference [10,15]. Some authors generalize the previous approach and consider a finite set of
slices, assuming each slice to carry either data-rate- or delay-sensitive traffic [11,16,26], which loosely
corresponds to eMBB and URLLC. The trade-off between data-rate- and delay-sensitivity for each slice
can be adjusted through weights in Reference [13], while in References [23,24,31] slices are characterized
by delay tolerance and bit rate requested for the slice’s user at every base station. In Reference [32],
slices are assumed to carry either elastic or inelastic traffics. References [17,18] consider a set of slices,
each providing a finite number of services with certain characteristics. Finally, many studies consider
a set of slices without specifying the nature of the carried traffic [9,12,14,19–22,25,29]; in this case,
the scenario of MVNOs is sometimes exploited, although from a broader perspective than that of the
one currently deployed. Yet another approach is adopted in Reference [28], where each slice tenant is
assumed to have a Service Level Agreement (SLA) with the infrastructure provider, specifying the
slice’s bounds in terms of data rate. Three types of slices are thus defined—with upper and lower
bounds fixed, with only a lower bound fixed, and unrestricted (best effort).

The network slicing strategies proposed in the literature are aimed at fulfilling manifold criteria,
such as to maximize the overall user data rate [15,19,27], to maximize data-rate- and latency-related
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utility functions [13,24], to minimize the overall resource usage while providing performance isolation
of the slices [25] or meeting data-rate- and latency-related requirements [16,23]. In References [23,24] a
fixed bandwidth allocated to the slice in the core network is considered as an additional constraint.
The policy proposed in Reference [12] is aimed at satisfying, on average, the prenegotiated resource
shares per tenant within an allowed deviation. Preset minimum shares per slice are also assumed
in References [8,9,19,29], however in References [8,29] the effective slice capacities are allowed to go
below the guaranteed minima, following the slice workload, while in Reference [19] the minima serve
as an optimization constraint, hence being reserved. The objective of the slicing policy proposed
in Reference [29] is to minimize the weighted sum of the relative differences between allocated and
demanded resource shares. QoS provision and fairness are the focus of References [15,30]. The objective
in Reference [26] is to maximize the time-averaged expectation of the infrastructure provider’s utility,
defined as the difference between the income (data rate and delay gain) and cost (power and spectrum
resources). Some works adopt auction models, where resource allocation follows the tenants’ bids for
their slices [14] or for their slice users [20,21]. Some works [16,17] specifically consider slice isolation,
which is provided by setting a fixed upper limit on the slice’s capacity. Slice isolation via guaranteed
minima is proposed in References [8,9,19,29]. Finally, some authors, namely References [15,17,27],
take into account slice priorities.

In the literature, the majority of studies, except for the most technology-specific ones, assume each
of the considered resources to be homogeneous and divisible, and propose an algorithm for
determining slices’ sizes (capacities) as shares of the resources’ capacities [9,12–15,18,20,21,29,30]. If the
services provided in the slice to end users require a certain minimum data rate, such as Guaranteed Bit
Rate (GBR) services, the slicing policy may include not only resource allocation but also admission
control [17,21,23,27]. Network slicing at the admission-control level is discussed in Reference [33] along
with other approaches to RAN slicing, while user blocking probabilities for such systems are estimated
in References [17,21]. Besides, since network slices are to be created and terminated dynamically [2],
some studies [31,32,34] investigate the slice admission control, that is, whether a new slice instance
can/should be admitted to the network. The problem of associating users to base stations under slicing
constraints is addressed in References [23,24]. More technology-specific works, such as References
[10,11], represent radio resources in the form of a time-frequency grid composed of Resource Blocks
(which reflects the physical layer of 4G/5G RAN) and consider not only the share of the total number
of Resource Blocks allocated to a slice per time slot, but also their position on the grid, taking account
of the corresponding technology-specific constraints.

Two major approaches to the resource slicing problem can be distinguished in the literature.
Some authors [12,13,19–21,23,27] propose to perform resource allocation to slices (inter-slice allocation)
by means of resource allocation to individual network users with some additional slicing-specific
constraints. Then, the slice capacity can be obtained by summing up the resource shares allocated
to the corresponding users. Although such a strategy can yield the optimal solution, it may
also be computationally inefficient and deprive slice tenants of a certain degree of autonomy and
confidentiality [15,22]. The other approach assumes a hierarchical resource slicing (also referred
to as two-level [14] or distributed [22]), in which inter-slice allocation is decoupled from resource
scheduling to slice users (intra-slice allocation). In this case, the slice shares are determined based
upon some aggregated information about slice users and/or additional criteria (e.g., the tenants’
bids [14]), after which resources are allocated to slice users within the computed slice capacities.
Furthermore, some researchers assume the two steps of the hierarchical RAN slicing to be performed
on the same time scale [8,15,22], usually every Transmission Time Interval, while others consider a
longer slicing/decision interval [9,11], which may imply traffic prediction using machine learning
techniques [25,31].

The predominant mathematical methods applied in slicing-related resource-sharing problems are
those of optimization theory—the resource shares allocated to slices/slice users are often determined
as the solution to a linear or non-linear optimization problem [7,11–13,15,16,18,19,23,24,26–28,31].
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Algorithmic resource slicing policies are proposed in References [8,9]. Besides, numerous works opt
for game theory methods [14,20–22]. Machine learning along with Markov decision processes are
applied in References [25,31,32]. Continuous-Time Markov Chain (CTMC) models for network slicing
analysis are proposed in References [17,34]. The authors of Reference [34] consider a one-dimensional
CTMC which transitions represent slice instantiation and termination, and use it to establish a flexible
auction-based slice-admission policy. A four-dimensional CTMC which transitions correspond to
establishing and terminating user sessions is proposed in Reference [17] to analyze the performance of
resource allocation to two network slices each offering two GBR services with different priorities.

In this article, we propose a flexible and highly customizable resource slicing scheme that satisfies
the important criteria given above—efficient resource usage, fairness and performance isolation
of slices. The scheme is intended for a QoS-aware, service-oriented slicing, where each slice is
homogeneous with respect to traffic characteristics and QoS requirements. We adopt a hierarchical
approach to slicing and focus on the inter-slice allocation, assuming that the intra-slice allocation
is performed by slice tenants at their discretion. Overall, our approach and formulation of the
inter-slice allocation problem is similar to the one adopted in Reference [15], however, we consider
the performance isolation of slices, by which we understand, in particular, that traffic bursts in one
slice do not affect performance and QoS in other slices, or, at least, effects thereof are minimized.
A similar concept of performance isolation is adopted in References [9,25]. Also, similar to References
[17,21,23,27], we assume user admission control as part of our slicing scheme.

The proposed slicing scheme is formulated in such a way that its efficiency and the impact of its
various parameters and customizable components can be readily analyzed via session-level analytical
modeling. To this end, we make use of the Markov process theory and develop a multi-class service
system with state-dependent preemptive priorities, in which job service rates are found as the solution
to a non-linear programming problem. Also, we use the Markovian Arrival Process (MAP, [35,36]) for
one class of jobs to represent a slice which workload is less regular than that represented by a Poisson
process. Being both analytically tractable and highly parametrizable, the MAP allows for applying the
matrix-analytic methods and, on the other hand, permits to specify a wide range of arrival processes
due to its many independent parameters; moreover, there exist techniques for MAP fitting from real
traffic data (see e.g., Reference [37]). Similar to Reference [38], we apply matrix-analytic methods to
obtain the stationary distribution of the CTMC representing the system and use it to find expressions
for performance measures. Finally, we provide a numerical example, where the analytical model
serves to compare the proposed policy with the classical resource sharing schemes—complete sharing
(CS) and complete partitioning (CP, sometimes referred to as static slicing in the context of network
slicing [20]). An algorithm based upon the Gradient Projection Method [39] is suggested for solving
the arising optimization problem.

The contribution of the article is twofold. First, we propose a new resource slicing scheme,
which focuses on flexible performance isolation of slices and fairness, and is customizable to reflect
both QoS requirements and SLA terms. Second, the scheme is formalized to allow for session-level
stochastic modeling, and in order to evaluate its performance we develop a CTMC model—a multi-class
service system with state-dependent preemptive priorities, a MAP and the service rates obtained as a
solution to a convex programming problem—for which the stationary state distribution is derived.

The article is structured as follows. Section 2 introduces the basic model assumptions. Section 3
details the proposed slicing policy and formalizes its resource allocation and preemption components.
In Section 4, we present a multi-class service system for analyzing the performance of the proposed
policy for three active slices. The steady-state distribution of the system is derived and the expressions
of its main performance metrics are obtained. Section 5 offers numerical results, which give an insight
into the performance of the proposed slicing policy, in particular, in comparison with CS and CP.
Also, an algorithm for solving the optimization problem based upon the Gradient Projection Method
is suggested. Section 6 concludes the article.
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2. Basic Assumptions

We consider the downlink transmission from a 4G/5G co-located base station (featuring both
LTE and NR radio access technologies) at which radio access resource virtualization and network
slicing are implemented [40]. Note that the proposed approach is applicable to a 5G-only network as
well, however, although the network architecture for 5G has not yet been standardized (in contrast
to its radio interface), the likely upcoming solution is a full integration with 4G (akin to 2G/GSM or
3G/UMTS). Following Reference [28], we suppose that the network slicing is performed at the level of
virtualized resources. This approach implies the resource allocation among slices/users in terms of
virtual resources, which are then translated into network (physical) resources. Generally speaking,
the total amount of virtual resources available for allocation depends on the radio conditions for users
at each time instant; however, for simplicity, we assume the total base station capacity available for
allocation to be fixed.

Suppose that S slices are active at the base station and denote the set of active slices by S, S = |S|.
Denote by C > 0 the capacity of the base station (measured in bits per second, bps), that is, the total
amount of resources available, and by Cs ≥ 0 the capacity of slice s ∈ S. We assume that each
slice is intended for a particular type of traffic, for example, for streaming video, videoconferencing,
software updates, and so forth, rather than for a mix of diverse traffic administrated by the same tenant
(which may be the case namely in the MVNO scenario). Thus, we assume that each slice s ∈ S is
homogeneous in terms of traffic characteristics and QoS requirements and provides to its users only
one service with a data rate not smaller than as > 0 (bps) and not larger than bs ≤ C (bps). The lower
bound may reflect QoS requirements [25,27] and corresponds, for instance, to the data rate necessary
for providing a certain maximum tolerable delay [15], while the upper bound may be due to the
characteristics of a particular service, implying that a higher data rate does not improve the associated
QoS (the transmission of voice is a good example of a service with such characteristics). Note that we
assume all capacity/data rate parameters to be real-valued, that is, C, Cs, as, bs ∈ R+.

Let ns denote the number of users in slice s ∈ S. We suppose that an effective data rate x(i)s ,
0 < as ≤ x(i)s ≤ bs, allocated to a slice s user i is variable and depends on the slice’s capacity and the
number of users currently in it, since the sum of the users’ data rates cannot exceed the capacity of

the slice, that is,
ns
∑

i=1
x(i)s ≤ Cs. Without loss of generality, we assume further that a slice’s resources are

equally shared among all its users, that is, x(i)s = xs =
Cs
ns

, i = 1, . . . , ns. Note that the latter assumption
serves only to determine the slices’ capacities Cs, s ∈ S, by the slicing scheme detailed in the next
session, however, once the capacities established, the actual allocation among users x(i)s , i = 1, . . . , ns,
is not the subject of this work, and the capacity of a slice can be distributed among its users at the
discretion of the slice’s tenant (e.g., in function of the radio channel conditions). Finally, we assume
that a user can be active in one slice only and have no more than one active connection in it.

A slicing algorithm implemented at the base station is aimed at proving (a) efficient resource usage,
(b) fair resource allocation among users, and (c) performance isolation of slices. Clearly, performance
isolation cannot be guaranteed for unlimited traffic in all slices, hence, following Reference [32],
we assume that performance isolation of slice s ∈ S is provided as long as the number ns of users
in this slice does not exceed a threshold Gs, 0 ≤ Gs ≤

⌊
C
as

⌋
= max

{
y ∈ N : y ≤ C

as

}
. Since as > 0,

the threshold can be set as a share 0 ≤ γs ≤ 1 of the capacity C, in which case Gs =
⌊

Cγs
as

⌋
, s ∈ S. Note

that we allow for capacity overbooking [31], and therefore, in the general case, 0 ≤ ∑s∈S γs ≤ S.
In order to provide flexibility and efficient resource usage, we assume that the booked capacity

γsC is not reserved or strictly guaranteed to slice s, but rather slice s has priority in its allocation.
Generally speaking, if the base station is fully loaded, the slices in which the number of users is less or
equal to Gs have priority in resource allocation over slices in which the number of users is above Gs

(or the share of the base station resources occupied by the slice’s users at the minimum data rate as is
above γs).
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We suppose that the allocated user data rate xs is not allowed to drop below as, because this
results in the violation of the service’s QoS requirements. In order to satisfy the minimum data rate
requirements and provide performance isolation, admission control with request prioritization is used
as a part of the slicing scheme. We assume that a request arriving to a slice where the number of users
is under or equal to Gs, if free resources are not enough, will preempt users in “violator” slices—the
slices in which the number of users is above the threshold. We define the proposed slicing scheme
formally in the next section.

3. Network Slicing with Performance Isolation

Denote a = (a1, . . . , aS)
T and b = (b1, . . . , bS)

T . We can represent the state of the base station
under study by a row vector n = (ns)s∈S and define the state space as

Ω = {n ∈ NS : na ≤ C}. (1)

Note that ns = 0, 1, . . . , bC/asc. We partition the state space (1) as Ω = Ω0
⋃

Ω1 where Ω0 =

{n ∈ Ω : nb ≤ C} and Ω1 = Ω \Ω0. Also, for each state n ∈ Ω we partition the set of slices as
S = S0(n)

⋃
S+(n), where S0(n) = {s ∈ S : ns = 0} and S+(n) = {s ∈ S : ns > 0}.

3.1. Resource Allocation

Denote by xs(n) the data rate to each user in slice s ∈ S in state n ∈ Ω. Then, the capacities of
slices are obtained as Cs(n) = nsxs(n). We assume, following Reference [41], that allocating data rate
xs(n) ∈ [as, bs] to a user of slice s has utility Us(xs) to the infrastructure provider, and the functions
Us(xs), s ∈ S, are increasing, strictly concave and continuously differentiable of xs, as ≤ xs ≤ bs.
In this paper we focus on the utility functions

Us(xs) = ln xs, s ∈ S, (2)

proposed by Kelly in Reference [41] for proportionally fair resource sharing, which in our case coincide
with max–min fairness [42]. However, other utility functions, which reflect better the nature of the
slices’ traffic, can also be considered.

For n ∈ Ω0, we set xs(n) = bs and, by consequence, Cs(n) = nsbs for all s ∈ S.
For n ∈ Ω1, we set xs(n) = bs for s ∈ S0(n) and propose to determine the data rates for s ∈ S+(n)

as the solution to a convex programming problem as follows:

∑
s∈S+(n)

ws(ns)nsUs(xs) −→ max, (3)

subject to ∑
s∈S+(n)

nsxs = C (4)

over x ∈P = {x ∈ R|S+(n)| : as ≤ xs ≤ bs, s ∈ S+(n)}. (5)

For each s ∈ S, the weight function ws(n) is assumed positive for all n ∈ N, equal to 1 for n ≤ Gs,
and smaller than 1 and nonincreasing for n > Gs. The idea behind such requirements is to ensure
max–min fair resource allocation to users as long as the corresponding slices do not exceed their
thresholds Gs, and to penalize (squeeze) the “violator” slices, in which the number of users exceeds Gs.
In this work, we define the weight functions as

ws(n) =

 1, n ≤ Gs,
1

n− Gs + 1
, n > Gs.

(6)
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In what follows, unless specifically stated, by ws we mean ws(ns) and by w, the column vector
(w1(n1), . . . , wS(nS))

T .
Since the objective function (3) is differentiable and strictly concave by assumption and the

feasible region (4), (5) is compact and convex, there exists a unique maximum for the data rate vector x,
which can be found by Lagrangian methods. For the utility functions (2), the unique stationary point
of the problem (3), (4) has the coordinates

x∗s =
Cws

∑r∈S+(n) nrwr
, s ∈ S+(n), (7)

and is located at the intersection of the hyperplane (4) and the open ray xs =
ws
y , y > 0, s ∈ S+(n).

However, if the stationary point (7) does not satisfy the direct constraint (5) then the solution lies on
the boundary of the feasible region (4), (5).

In the case when x∗ /∈P, the problem (3)–(5) can be solved numerically via the Gradient Projection
Method [39]. The method is based upon the iterative process dk = P∇ f (xk), xk+1 = xk + τkdk,
τk > 0 : xk+1 ∈P, where P is the projection matrix and ∇ f (x) is the gradient of the objective function.
The latter, for the utility (2), equals the column vector

∇ f (x) =
(nsws

xs

)
s∈S+(n)

. (8)

Initially, P is the projection matrix onto the hyperplane (4):

P = I−ΠT(ΠΠT)−1Π, (9)

where Π = n. However, once a boundary of P is reached, matrix Π should be appended to include
the hyperplane of the corresponding constraint, and the current approximation xk should be placed
on the boundary. Finally, the intersection point of (4) with the diagonal of P connecting the points
(as)s∈S+(n) and (bs)s∈S+(n) can be used as the initial approximation x0.

3.2. Admission Control and Resource Preemption

Let es represent a row vector of order S in which the sth entry is 1 and all others are zero. Let the
system be in state n ∈ Ω and denote

g(n) = ∑
s∈S

as min{ns, Gs}. (10)

Now, an arriving request to slice s will be lost only in two cases—either n + es /∈ Ω and ns + 1 >

Gs, or n + es /∈ Ω, ns + 1 ≤ Gs and C − g(n) < as. The arriving request is, conversely, accepted if
either n + es ∈ Ω, or n + es /∈ Ω, ns + 1 ≤ Gs and C− g(n) ≥ as. In the latter case resources for the
arriving request are freed according to Algorithm 1. Condition C− g(n) ≥ as ensures that enough
resources are available to preempt. Upon acceptance of the request the system will transition into state
n̂ + es where n̂ is obtained via Algorithm 1.
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Algorithm 1: Resource preemption upon an arrival into slice s in state n
Input: s ∈ S, n ∈ Ω such that n + es /∈ Ω, ns + 1 ≤ Gs and C− g(n) ≥ as

Output: n̂ ∈ Ω such that, upon acceptance of the request the system will transition into state
n̂ + es

1 n̂ := n // initialization
2 repeat
3 R := {r ∈ S : n̂r > Gr, wr(n̂r) = min

j∈S
wj(n̂j)} // candidates for preemption

4 Choose r ∈ R // randomly or according to a preset order
5 n̂ := n̂− er

6 until C− n̂a ≥ as

4. A CTMC Model

4.1. Model Assumptions

We suppose that three slices are active at the base station and that re-slicing is performed
often enough so that we can assume resources to be reallocated whenever a user connection is
established or terminated. Under these assumptions, we can represent the functioning of the base
station described in Sections 2 and 3 as a three-class preempt-loss system with elastic jobs and make
use of the matrix-analytic methods for its analysis.

Consider a loss system of continuous capacity C with no waiting spaces and three job classes,
S = {1, 2, 3}. We assume class 1 and 2 jobs to arrive according to Poisson processes (PP) with rates λ1

and λ2 respectively. Class 3 jobs form a MAP characterized by two square matrices Q0 and Q1 of order
K. The matrix Q = Q0 + Q1 represents the infinitesimal generator of the CTMC {ξ(t), t ≥ 0} that
controls the MAP. Matrix Q1 contains the transition rates of {ξ(t), t ≥ 0} accompanied by an arrival,
whereas the off-diagonal entries of Q0 represent the transition rates of {ξ(t), t ≥ 0} without arrivals.
We assume Q1 non-zero and {ξ(t), t ≥ 0} irreducible. Denote by 1 a column vector of ones and by 0
a row vector of zeros of appropriate length. The row vector q of the stationary state probabilities of
{ξ(t), t ≥ 0} is determined as the unique solution to the global balance equations qQ = 0, q1 = 1.
The mean rate of the MAP is given by

λ3 = qQ11. (11)

We assume that jobs are served according to the Egalitarian Processor Sharing (EPS) discipline [43],
however, each class s job demands no less than as and no more than bs of system capacity, 0 < as ≤ bs ≤
C. Jobs’ lengths, that is, the holding times when served by exactly one unit of capacity, are assumed to
be exponentially distributed with parameters µs, s ∈ S. An accepted job is served with a variable rate
until its remaining length is zero and leaves the system thereafter. The service rate of a class s job varies
with the numbers of jobs of each class currently on service, n = (n1, n2, n3), and is determined by the
allocated data rate xs(n), which is found as the solution to the optimization problem (3)–(6). In what
follows the notations xs(n), xs(n1, . . . , nS) and x(n1,...,nS)

s are equivalent. Finally, jobs are accepted and
preempted according to the rules detailed in Section 3.2.

4.2. Stationary State Distribution

Denote by ns(t) the number of class s jobs on service at time t ≥ 0, s ∈ S. The stochastic behavior
of the system can be represented by the four-dimensional CTMC {ψ(t) = (n1(t), n2(t), n3(t), ξ(t)), t ≥
0} over the state space

Ψ = {(n, k) : n ∈ Ω, k = 1, 2, . . . , K}, (12)
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where Ω is given by (1). Now, order the states of {ψ(t), t ≥ 0} lexicographically and let A represent
its infinitesimal generator. We express A as

A = Ã + H, (13)

where Ã represents an infinitesimal generator of {ψ(t), t ≥ 0} without preemption and H contains
the preemption rates. Let L = bC/a1c denote the maximum number of class 1 jobs on service
simultaneously. We also introduce a notation for the maximum number of class 2 jobs when l class 1
jobs are on service and, similarly, for the maximum number of class 3 jobs when l class 1 jobs and m
class 2 jobs are on service:

M(l) =
⌊

C− la1

a2

⌋
, l = 0, 1, . . . , L, (14)

N(l, m) =

⌊
C− la1 −ma2

a3

⌋
, l = 0, 1, . . . , L, m = 0, 1, . . . , M(l). (15)

Then, Ã is a block tridiagonal matrix of the form

Ã =



D0 Λ0

M1 D1 Λ1 0
M2

. . . . . .

. . . DL−1 ΛL−1

0 ML DL


. (16)

The blocks located at the intersection of the ith block row and jth block column are block matrices
of block size

(
∑

M(i−1)
m=0 (N(i− 1, m) + 1)

)
×
(

∑
M(j−1)
m=0 (N(j− 1, m) + 1)

)
composed of square matrices

of order K. The diagonal blocks of Ã are also block tridiagonal:

Dl =



∆l,0 Γl,0

Bl,1 ∆l,1 Γl,1 0
Bl,2

. . . . . .

. . . ∆l,M(l)−1 Γl,M(l)−1

0 Bl,M(l) ∆l,M(l)


, l = 0, . . . , L. (17)

Here, the blocks located at the intersection of the ith block row and jth block column are block
matrices of K-block size (N(l, i− 1) + 1)× (N(l, j− 1) + 1).

Let us introduce subspaces Ãs = {n ∈ Ω : (n + es)a ≤ C}, s ∈ S, containing the states in which
class s jobs are accepted directly (without preemption), and the indicator function

χA(n) =

{
1, n ∈ A,
0, n /∈ A,

n ∈ NS, A ⊆ NS.
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The diagonal blocks of Dl are block tridiagonal and for l = 0, . . . , L and m = 0, . . . , M(l) are of
the form

∆l,m =



Fl,m,0 Q1

x(l,m,1)
3 µ3I Fl,m,1 Q1 0

2x(l,m,2)
3 µ3I

. . . . . .

. . . Fl,m,N(l,m)−1 Q1

0 N(l, m)x(l,m,N(l,m))
3 µ3I Fl,m,N(l,m)


, (18)

where

Fn1,n2,n3 =

Q0 −
(

λ1χÃ1
(n) + λ2χÃ2

(n) + ∑s∈S nsxs(n)µs

)
I, n3 < N(n1, n2),

Q−
(

λ1χÃ1
(n) + λ2χÃ2

(n) + ∑s∈S nsxs(n)µs

)
I, n3 = N(n1, n2).

Super- and subdiagonal blocks of Dl are rectangular K-block matrices of the form

Γl,m =


λ2I 0

. . .
0 λ2I
0 . . . 0

 , l = 0, . . . , L, m = 0, . . . , M(l)− 1, (19)

Bl,m =


mx(l,m,0)

2 µ2I 0

mx(l,m,1)
2 µ2I 0

. . .
...

0 mx(l,m,N(l,m))
2 µ2I 0

 ,
l = 0, . . . , L,
m = 1, . . . , M(l).

(20)

Finally, super- and subdiagonal blocks of Ã are block diagonal rectangular matrices of the form

Λl =


Λl,0 0

. . .
0 Λl,M(l+1)
0 . . . 0

 , Λl,m =

[
diag(λ1I)

0

]
,

l = 0, . . . , L− 1,
m = 0, . . . , M(l + 1).

(21)

Ml =


Ml,0 0 0

. . .
...

0 Ml,M(l) 0

 , (22)

Ml,m =


lx(l,m,0)

1 µ1I 0

lx(l,m,1)
1 µ1I 0

. . .
...

0 lx(l,m,N(l,m))
1 µ1I 0

 ,
l = 1, . . . , L,
m = 0, . . . , M(l).

(23)

The structure of H depends on the weights ws(n), s ∈ S, therefore we propose to construct it
using a general recursive algorithm. We introduce subspaces of states in which an arriving class s job
is accepted via preemption of jobs of other classes:

Hs = {n ∈ Ω : (n + es)a > C, ns + 1 ≤ Gs, C− g(n) ≥ as}, s ∈ S. (24)
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Here, the first condition means that the arriving job cannot be accepted directly, the condition
ns + 1 ≤ Gs provides to the arriving job priority over possible “violators”, while the last condition
assures that in the system there are “violators” preemption of which will permit to vacate enough
resources for the arriving job to be accepted. Note that the subspace of all states in which a class s job
is accepted equals As = Ãs ∪Hs, and hence the subspace of all states in which an arriving class s job
is lost is Bs = Ω \ As. The number of state n ∈ Ω in lexicographical order is given by

i(n) =
n1−1

∑
l=0

M(l)

∑
m=0

(N(l, m) + 1) +
n2−1

∑
m=0

(N(n1, m) + 1) + n3 + 1. (25)

Now, the preemption rate matrix H =
(

Hi,j
)
, where Hi,j are square blocks of order K, i, j =

1, . . . , |Ω|, can be obtained via Algorithm 2. Note that in Algorithm 2 the “violators” having the same
weight are preempted with equal probability. Note also that in step 1 of the algorithm Ã can be used
for initialization instead of 0, in which case the algorithm will produce the infinitesimal generator A.
However, the preemption rate matrix H will be used to compute performance measures in Section 4.3,
so we prefer to construct it separately.

Algorithm 2: Construction of the preemption rate matrix H
Input: Hs, s ∈ S

Output: H
1 H := 0 // initialization
2 foreach s ∈ S do
3 foreach n ∈Hs do
4 α := as − (C− na) // amount of resources to find
5 PREEMPTION(s, n, n, α, 1)

6 procedure PREEMPTION(s, n, n̂, α, p):
7 if α ≤ 0 // resources are found
8 then
9 if s 6= 3 then

10 Hi(n),i(n̂+es) := Hi(n),i(n̂+es) + pλsI
11 Hi(n),i(n) := Hi(n),i(n) − pλsI
12 else
13 Hi(n),i(n̂+es) := Hi(n),i(n̂+es) + pQ1

14 Hi(n),i(n) := Hi(n),i(n) − pQ1

15 else
16 R := {r ∈ S : n̂r > Gr, wr(n̂r) = min

j∈S
wj(n̂j)} // candidates for preemption

17 foreach r ∈ R do
18 PREEMPTION(s, n, n̂− er, α− ar, p 1

|R|)

Since under our assumptions {ψ(t), t ≥ 0} is irreducible and its state space Ψ is finite,
the stationary distribution of {ψ(t), t ≥ 0} exists. Let us write it in vector form in accordance with the
partitioning (16) of Ã into blocks: p = (p0, p1, . . . , pL), where pl = (pl,0, pl,1, . . . , pl,M(l)), l = 0, . . . , L,
pl,m = (pl,m,0, pl,m,1, . . . , pl,m,N(l,m)), m = 0, . . . , M(l), and pl,m,n = (pl,m,n,1, pl,m,n,2, . . . , pl,m,n,K),
n = 0, . . . , N(l, m). Vector p satisfies the global balance equations

pA = 0, p1 = 1. (26)
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We note that while Ã is block-tridiagonal, adding H may disrupt this structure, since the positions
of non-zero entries in H depend on the ratios among as, Gs and ws(ns). This makes it difficult to apply
special block-matrix methods for solving the global balance equations, such as in References [38,44].
However, A is sparse, which allows for the use of sparse linear systems’ routines such as UMFPACK.

4.3. Performance Measures

Using the stationary state distribution of the system, we can easily obtain a number of its
performance measures. In particular, for s ∈ S, the mean number of jobs in service, which represents
the mean number of users in a slice, is given by

N̄s = ∑
n∈Ω

nspn1,n2,n3 1 =
L

∑
n1=0

M(n1)

∑
n2=0

N(n1,n2)

∑
n3=0

nspn1,n2,n3 1. (27)

The average user data rate in slice s corresponds to the capacity occupied by one class s job when
class s jobs are present in the system:

x̄s =

∑
n∈Ω:ns>0

xs(n)pn1,n2,n3 1

∑
n∈Ω:ns>0

pn1,n2,n3 1
. (28)

The average capacity of slice s is given by

C̄s = ∑
n∈Ω

nsxs(n)pn1,n2,n3 1. (29)

The blocking probability in slice s, that is, the probability that a slice s user will not receive full
service, corresponds to the loss probability of a class s job, which is the sum of the probability for the
job to be lost at arrival and the probability to be preempted: Bs = Barr

s + Bpr
s . The loss probabilities

upon arrival are given by
Barr

s = ∑
n∈Bs

pn1,n2,n3 1, s = 1, 2, (30)

Barr
3 =

1
λ3

∑
n∈B3

pn1,n2,n3 Q11. (31)

To obtain the preemption probabilities we make use of the fact that all the transition rates related
to preemption are combined in matrix H:

Bpr
s =

1
λs

∑
n∈Ω

pn1,n2,n3 ∑
n̂∈Ω:ns>n̂s

(ns − n̂s)Hi(n),i(n̂)1, s ∈ S. (32)

Note that Bpr
s represents the probability for any incoming slice s user to be preempted, while the

probability for an accepted user to be preempted is

Ps =
Bpr

s
1− Barr

s
, s ∈ S. (33)

Besides, the total blocking probability can be also found via the arrival and departure rates:

Bs =
λs − µsC̄s

λs
, s ∈ S. (34)
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The overall blocking probability in the system is given by

B =
∑s∈S Bsλs

∑s∈S λs
. (35)

Finally, Little’s Law provides the expression for the average user session duration (job holding
time) making use of N̄s and Barr

s :

Ts =
N̄s

λs(1− Barr
s )

, s ∈ S. (36)

5. Numerical Results

Suppose that three slices are instantiated at a base station of capacity 40 Mbps. Each slice provides
a service that implies transferring files of size 2.5 MB on average with rates no less than 2 Mbps for slice
1 and no less than 1 Mbps for slices 2 and 3. We model this scenario using the service system presented
in Section 4 with the following parameter values: S = {1, 2, 3}, C = 40, a = (2, 1, 1)T , bs = C and
µs = 0.05, s ∈ S. Additionally, we set λs = 0.55 for all s ∈ S and specify the MAP of slice 3 by

Q0 =

[
−0.143625 0.023625

1 −5.55

]
, Q1 =

[
0.02 0.1
0.15 4.4

]
. (37)

The MAP has been chosen so that its fundamental rate equals that of the other two arrival
processes, but the variance of the interarrival time is substantially higher—20.875 vs. 3.306.

To obtain the numerical results presented in this section, we used UMFPACK routines for solving
the global balance equations (26), while the optimization problem (3)–(5) was solved for n ∈ Ω1 such
that S0(n) = ∅ using the Gradient Projection Method via Algorithm 3.

First, we set the booked capacity shares of the slices equal to each other, γs = γ, s ∈ S, and vary
γ from 0 to 1 with step 0.025 (which yields overbooking for γ > 1/3). The charts in Figures 1–3
permit to compare the proposed slicing scheme with the CS and CP policies in terms of blocking
probabilities (Figure 1) average user data rate (Figure 2) and average user session duration (Figure 3).
Indeed, γ = 1 corresponds to CS with max–min resource allocation and first-come, first served (FCFS)
discipline, since all the weights equal 1 and there are no preemptive priorities among slices. Such CS
provides high resource utilization and max–min fair resource allocation to users but no slice isolation.
The values of the performance measures under CS are not explicitly indicated in Figures 1–3; they can
be found on the corresponding curves for the slicing policy for γ = 1. The respective performance
measures under CP such that the capacity of each slice is fixed and equals exactly C/3 are shown by
dashed lines. These values were obtained separately for each slice via the CTMC model of Section 4
with the rates of the arrival processes corresponding to the other two slices set to zero and the system’s
capacity set to C/3. Note that CP provides perfect slice isolation but may result in poor utilization
and fairness.

The zigzag shape of the curves is due to the fact that, as we have stated in Section 2, γs is not
used in the slicing scheme directly but through parameter Gs via the relation Gs =

⌊
Cγs
as

⌋
, s ∈ S.

As γ grows from 0 to 1, G1 increases by 1 at γ = 0.05n, n = 1, 2, . . . , 20, while G2,3 increase by 1 at
γ = 0.025n, n = 1, 2, . . . , 40. In particular, this explains that the average user data rate in slice 2 is
higher than that in slice 1 for small γ > 0 (see Figure 2). Indeed, for γ = 0.025 we have G1 = 0 and
G2,3 = 1, which gives advantage to slices 2 and 3 over slice 1 in resource allocation. This advantage is
slightly compensated at γ = 0.05, since here G1 increases to 1, while G2,3 = 2, but becomes important
again at γ = 0.075 since G1 is still 1 while G2,3 = 3.

Overall, we can see that the proposed slicing scheme leads to a much better network performance
compared to the CP policy (static slicing) not only in terms of the blocking probability (which are
almost by one order of magnitude greater under CP for all slices), but also when considering average
data rate (which are roughly half as large under CP) and average session duration (factors depending
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on the slices due to their different characteristics). A higher blocking probability in slice 1 compared
to slice 2 under CP or CS is due to a higher minimum data rate in slice 1, while an even higher
blocking probability in slice 3 stem from the MAP parameters. As expected, the difference in the
arrival processes’ characteristics between slices 1 and 2, on the one side, and slice 3, on the other side,
clearly determine the behavior of the curves, with γ = 1/3 being an obvious turning point. Figures 1–3
demonstrate that the slicing policy protects slices 1 and 2 from the irregular slice 3 traffic—for smaller
γ through resource allocation, and for larger γ also through resource preemption. Indeed, for γ = 0
there is no preemption of resources, but the more users a slice has the less capacity per user it receives.
Interestingly, the overall blocking probability for γ = 0 is slightly lower than for γ = 1.

Algorithm 3: Numerical solution of (3)–(5) using the Gradient Projection Method

Input: n ∈ Ω1 : S0(n) = ∅, some small δ0 > 0
Output: solution x to problem (3)–(5)

1 xs :=
Cws

nw
, s ∈ S // the stationary point

2 if x /∈P then
3 Choose x̂ ∈P such that nx̂ = C // for example, the point of intersection with

the diagonal of P connecting (a1, . . . , aS) and (b1, . . . , bS)

4 Π := n // the matrix of constraints to be projected on

5 P := I− 1
nnT nTn // the initial projection matrix

6 repeat
7 d := P∇ f (x̂)
8 x := x̂ + d
9 if x /∈P then

10 Find the constraint xi = hi that was violated first when moving from x̂ toward x
// here, hi equals either ai or bi

11 x := (xi = hi) ∩ X̂X
12 if Π has less than S− 1 rows then
13 Append Π with ei
14 else
15 Replace the last row of Π with ei

16 P := I−ΠT(ΠΠT)−1Π // the projection matrix updated

17 δ := ‖x̂− x‖
18 x̂ := x
19 until δ < δ0

20 return x

While Figures 1–3 give insight into the functioning of the proposed slicing scheme, Figures 4–6
illustrate how the scheme can be used to accommodate slices with different traffic characteristics and
balance their performance. Here, the booked capacity share of slice 3, γ3, is plotted along the abscissa,
while the booked capacities of slices 1 and 2 are determined as γ2 = 1−γ3

3 , γ1 = 2γ2 for fully booked
capacity (solid lines) and as γ2 = 1.1−γ3

3 , γ1 = 2γ2 for 10% overbooking (dashed lines). Figures 4–6
show, respectively, the blocking probabilities, average user data rates the average user session duration
as functions of γ3. As one can see from Figure 4, by varying γs it is possible to protect some slices
from the others to a different extent as well as to bring the blocking probability in each slice to the
base-station average level. Note that the overall blocking probability is, again, slightly higher on
average in the case of overbooking.
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Figure 1. The blocking probabilities vs. the booked capacity shares γs = γ, s ∈ S (solid lines—slicing,
dashed lines—complete partitioning (CP)). The blocking probabilities under CP for slices 1 and 3 are
not plotted due to high values and equal, respectively, 7.5 % and 16.9 %. Note that the complete sharing
(CS) values coincide with that under slicing for γ = 1 and are not shown explicitly.
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Figure 2. The average user data rates vs. the booked capacity shares γs = γ, s ∈ S (solid lines—slicing,
dashed lines—CP). Note that the CS values coincide with that under slicing for γ = 1 and are not
shown explicitly.
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Figure 3. The average session duration vs. the booked capacity shares γs = γ, s ∈ S (solid
lines—slicing, dashed lines—CP). Note that the CS values coincide with that under slicing for γ = 1
and are not shown explicitly.



Mathematics 2020, 8, 1177 16 of 19

Slice	1	(PP,	a1=2)
Slice	2	(PP,	a2=1)
Slice	3	(MAP,	a3=1)
Overall	(B)

B
lo
ck
in
g	
p
ro
b
ab

ili
ty
	B

s,	
B
,	%

0

0.5

1

1.5

2

2.5

3

γ3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4. The blocking probabilities vs. γ3; γ2 = α−γ3
3 , γ1 = 2γ2 (solid lines—α = 1, dashed

lines—α = 1.1).
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Figure 5. The average data rates x̄s vs. γ3; γ2 = α−γ3
3 , γ1 = 2γ2 (solid lines—α = 1, dashed

lines—α = 1.1).
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Figure 6. The average session duration Ts vs. γ3; γ2 = α−γ3
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6. Discussion

The paper addresses the problem of inter-slice resource allocation in a shared capacity
infrastructure among slices with different QoS and SLA requirements. A flexible and customizable
resource slicing scheme, which leads to efficient resource usage, fairness and performance isolation of
slices, is proposed along with an analytical CTMC model for its performance evaluation.

We assume each slice homogeneous in terms of traffic characteristics and QoS requirements and
assign to it three parameters—non-zero minimum and maximum data rates per user and the booked
number of users. While the former two parameters reflect the QoS requirements, the latter corresponds
to the number of slice users for whom the capacity is booked, although not reserved in the strict sense,
meaning that it may still be allocated to another slice if not used up. As long as the number of users
in each slice remains within the booked threshold, all users are treated equally, which implies FCFS
admission and fair (e.g., max–min fair) resource allocation. However, if the number of users in some
slice goes above the threshold, the slice gets penalized—first, by way of resource allocation (it gets
“squeezed”) and then, if capacity is insufficient, by way of admission control through assignment of
a lower preemptive priority. Thus, slice performance isolation is provided to slices as long as their
number of users remains below a preset threshold, yet a larger number of users may receive service if
the overall capacity and workload in other slices permit.

The slicing policy is formulated as a combination of a convex programming problem for resource
allocation and an admission control policy with resource preemption. It is formalized in a way to
allow for session-level modeling. We make use of the Markov process theory and develop a multi-class
service system with state-dependent preemptive priorities, in which job service rates are found as the
solution to the optimization problem. The MAP is used for one class of jobs to represent a slice which
workload is less regular than the one represented by a Poisson process. We apply matrix-analytic
methods to obtain the stationary distribution of the CTMC representing the system and use it to derive
expressions for performance measures.

The numerical results provided in Section 5 give an insight into the performance of the proposed
slicing policy, namely in comparison with CS and CP. Also, an algorithm for solving the optimization
problem based upon the Gradient Projection Method is suggested. The numerical results show
the capability of the proposed slicing scheme to accommodate heterogeneous traffic and provide
performance isolation of slices while maintaining resource utilization at the CS level, thus clearly
outperforming CP. The scheme is highly flexible and customizable, and further research is hence
needed in order to provide a clear guidance as to its parametrization and the choice of utility/weight
functions. Moreover, future work will be aimed at extending the slicing policy to allow for slice
prioritization and leaving the admission control to the discretion of slice tenants.
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