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Abstract: Slow velocity fluid flow problems in small diameter channels have many important
applications in science and industry. Many researchers have modeled the flow through renal tubule,
hollow fiber dialyzer and flat plate dialyzer using Navier Stokes equations with suitable simplifying
assumptions and boundary conditions. The aim of this article is to investigate the hydrodynamical
aspects of steady, axisymmetric and slow flow of a general second-order Rivlin-Ericksen fluid in a
porous-walled circular tube with constant wall permeability. The governing compatibility equation
have been derived and solved analytically for the stream function by applying Langlois recursive
approach for slow viscoelastic flows. Analytical expressions for velocity components, pressure,
volume flow rate, fractional reabsorption, wall shear stress and stream function have been obtained
correct to third order. The effects of wall Reynolds number and certain non-Newtonian parameters
have been studied and presented graphically. The obtained analytical expressions are in agreement
with the existing solutions in literature if non-Newtonian parameters approach to zero. The solutions
obtained in this article may be considered as a generalization to the existing work. The results
indicate that there is a significant dependence of the flow variables on the wall Reynolds number and
non-Newtonian parameters.

Keywords: stokes flow; second-order fluid; porous pipe; recursive approach method

1. Introduction

The problem of finding the dynamics of fluid flow through a small diameter cylindrical tube
with porous walls is being of much interest among the researchers and scientists for last few decades
because of its application in many physical and physiological processes. Such flows occur in hollow
fiber dialyzer, flat plate dialyzer, renal tubule and in desalination processes with reverse osmosis.
Under the conditions when walls are permeable or semipermeable, classical Poiseuille’s law is not
appropriate to predict the pressure and flow relationship and therefore a modified kind of Poiseuille’s
law will work.

A considerable contribution in the study of hydrodynamics of flow of Glomerular Filtrate in
renal tubule was made by Macey [1]. He solved Stokes equations by assuming reabsorption as a
linear function of longitudinal length of the tubule. Macey showed that if reabsorption is uniform
then the solution resembles with the Poiseiulle’s law. Kelman [2] showed that the bulk flow passing
through a cross section of the tubule at any point is decreasing exponentially in major flow direction.
Considering Kelman’s findings, Macey [3] showed that under such conditions reabsorption rate can
also be taken decaying exponentially. Another quantitative description of the fluid motion in a small
diameter porous tube is given by Palat et al. [4] after Macey. They assumed that the fluid loss through
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reabsorbing walls is linear function of pressure gradient across the walls. After this, many attempts are
made to contribute in the study of slow viscous fluid flow through renal tubule [5–8]. Recently Kashan
et al. [9] generalized the work of Reference [4] for the slip conditions used by Beavers and Joseph [10].
More recently, Kashan [11] studied the creeping motion of Newtonian fluid in a rectangular duct with
porous walls with application to flat plat dialyzer.

On the other hand, a purely mathematical analysis confined only to two dimensional steady-state
laminar flow through a rectangular channel with porous walls was carried out by A. S. Berman [12].
He observed that the velocity profile in such case is slightly flattered near the center and slightly
steeper near the walls of the channel. He also observed that the pressure drop is significantly less
due to wall porosity. After Berman, considerable efforts are made to extend the Berman’s work by
Yuan [13], Sellars [14] and Donogh [15]. These workers obtained perturbation solutions under certain
conditions on absorption. All of the literature discussed up-to this stage is only confined to the
steady-state laminar flow of a Newtonian fluid through a circular pipe with uniform porosity at the
walls. Narasimhan [16] considered the flow of a slightly non-Newtonian fluid through a porous pipe
by adding a second order term in the constitutive relationship of classical hydrodynamics. He obtained
a perturbation solution for velocity field and mean pressure drop.

Besides all this work on modeling the flow and reabsorption in a human kidney, there is a great
effort devoted in mathematical modeling of the blood flow and solute transport in a hollow fiber
dialyzer and to examine the factors which affect the efficiency of a dialyzer, see References [17–20].
In these articles blood-side flow is modeled using Navier Stokes equations by assuming blood as a
Newtonian fluid.

Hameedullah et al. [21,22] have discussed special class of third grade fluid model having
application in journal bearing and slide bearing [23,24]. Hameedullah et al. [21] have studied the
plane steady flow of this special differential type fluid flowing through a porous slit having uniform
wall porosity. In this work they have made an assumption of neglecting the elastic parameter and
cross-viscosity parameter. Due to such simplifying assumption their model differs only slightly from
the classical Newtonian model, but the effects of some non-Newtonian parameters like cross-viscosity
and elastic parameters still remain unaddressed. Another subclass of differential type fluids is
second-order fluids [25]. Many researchers [26–30] have discussed interesting and challenging issues
associated to second-order and third-order fluids. As per our knowledge no attempt has yet been
made to study the slow, steady, axisymmetric flow of a generalized second-order fluid in a porous
walled tube. The equations led by this model are highly non-linear partial differential equations with
non-homogeneous boundary conditions. It is very difficult to obtain either analytical or numerical
solution to this type of equations. But at the same time it is important to obtain an analytical solution
not only because of the application aspects but also because of the mathematical understanding carried
by these equations. For some convenience the system of governing partial differential equations are
converted to a single partial differential equation governing the stream function, such equation is
known as compatibility equation. A perturbation technique named as recursive approach is used
by Langlois [31,32] to linearize the momentum equations of slow viscoelastic flows. In this article
a slightly modified recursive approach is applied to solve the governing compatibility equation.
The expressions for velocity components, stream function, pressure, mean pressure drop in major flow
direction, volume flow rate, wall shear stress, FR and leakage flux have been obtained and converted
to dimensionless formulation. The results are also discussed through graphs. We believe that the
developments made in this article will provide a useful understanding of the mechanism of flow
through permeable geometries in industry and also in sciences.

This article proceeds as; Section 2 describes the governing equations.Section 3 describes the
method of solution. Section 4 precisely describes the problem under consideration. Section 5 presents
the analytical solution found by applying Langlois Recursive Approach method. In Sections 6 and 7, the
obtained velocity components and pressure distribution respectively correct to third order are precisely
listed. In Section 8 dimensionless transformations are defined and various important quantities
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are obtained in dimensionless formulation. In Section 9 the results are discussed via graphical
representation. In Section 10 concluding remarks are given and main findings are listed.

2. Governing Equations

The basic equations governing the flow of incompressible second-order fluid neglecting thermal
effects are the following:

~∇ · ~V = 0, (1)

ρ
D~V
Dt

= ρ~f + ~∇ · T, (2)

where ρ is constant density of the fluid, ~f is net body force per unit mass, ~V is velocity field and
T is Cauchy stress tensor. The constitutive equation for second-order fluid is the following stress
deformation relationship proposed by Rivlin-Ericksen [25]:

T = −pI + µA1 + α1A2 + α2A2
1, (3)

where I is identity tensor, µ is dynamic viscosity, p is pressure, A1 and A2 are called Rivlin-Ericksen
tensors and α1 and α2 are fluid parameters called normal stress modulii. A1 and A2 are defined
as follows:

A1 = grad ~V + (grad ~V)T , (4)

A2 =
DA1

Dt
+
(

A1 grad ~V
)
+
(

A1 grad ~V
)T

, (5)

where the operator D
Dt is the material time derivative. Using (3) and (2) Dunn and Fosdick [33] have

derived the following field equation for an incomporessible second-order fluid which is independent
of coordinate system:

ρ
D~V
Dt

= ρ~f − ~∇p + µ∇2~V + α1

[
∂

∂t
∇2~V +∇2(~∇× ~V)× ~V

+ grad
{
~V · ∇2~V +

1
4
|A2

1|
}]

+ (α1 + α2)div(A2
1),

(6)

where ∇2 denotes Laplacian operator and |A2
1| = trace(A1AT

1 ). In case of unsteady flows through
tubes, cylindrical coordinates (r, θ, z) with velocity components ~V = (ur, uθ , uz) respectively are chosen
and due to axisymmetry uθ = 0 and ∂(.)

∂θ = 0. For the sake of simplicity it is further assumed that the
body forces are also absent. Thus in case of axisymmetric flows velocity field is:

~V =

[
ur(r, z, t), 0, uz(r, z, t)

]
. (7)

Using (7) continuity Equation (1) takes the form:

∂ur

∂r
+

ur

r
+

∂uz

∂z
= 0. (8)

The goal is to set the vector Equation (6) in component (r− z) form. Using above equations the
following expressions are obtained:

A1 = grad ~V + (grad ~V)T ,

=

 2 ∂ur
∂r 0 ∂uz

∂r + ∂ur
∂z

0 2 ur
r 0

∂uz
∂r + ∂ur

∂z 0 2 ∂ur
∂z

 , (9)
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|A2
1| = trace(A1AT

1 ) = 4(
∂ur

∂r
)2 + 2(

∂uz

∂r
+

∂ur

∂z
)2 + 4(

∂uz

∂z
)2 + 4

u2
r

r2 , (10)

D~V
Dt

=
[

∂ur
∂t + ur

∂ur
∂r + uz

∂ur
∂z 0 ∂uz

∂t + ur
∂uz
∂r + uz

∂uz
∂z

]
, (11)

∇2~V =
[
∇2ur − ur

r2 0 ∇2uz

]
, (12)

~V ·∇2~V =
[
ur(∇2ur − ur

r2 ) 0 uz∇2uz

]
, (13)

~∇× ~V =
[
0 −Ω 0

]
, Ω =

∂uz

∂r
− ∂ur

∂z
, (14)

∇2(~∇× ~V)× ~V = (∇2Ω− Ω
r2 )
[
−uz ur

]
, (15)

grad p =
[

∂p
∂r 0 ∂p

∂z

]
, (16)

where∇2~V is a vector function being Laplacian of a vector function whereas∇2ur and∇2uz are scalar
functions being Laplacian of scalar functions. Using Equations (9)–(16), (6) is written in component
form as:

r-component:

ρ

{
∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z

}
= −∂p

∂r
+ µ(∇2ur −

ur

r2 ) + α1

[
∂

∂t
(∇2ur −

ur

r2 )− uz(∇2Ω− Ω
r2 )

+
∂

∂r

{
ur(∇2ur −

ur

r2 ) + uz∇2uz +
1
4
|A2

1|
}]

+ (α1 + α2)div(A2
1)r,

(17)

z-component:

ρ

{
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z

}
= −∂p

∂z
+ µ(∇2uz) + α1

[
∂

∂t
(∇2uz) + ur(∇2Ω− Ω

r2 )

+
∂

∂z

{
ur(∇2ur −

ur

r2 ) + uz∇2uz +
1
4
|A2

1|
}]

+ (α1 + α2)div(A2
1)z.

(18)

The following relations are obtained:

div(A2
1)r =

∂

∂r
|A

2
1

2
|+ Ω2

r
+

2
r

∂

∂z
(urΩ),

div(A2
1)z =

∂

∂z
|A

2
1

2
| − 2

r
∂

∂r
(urΩ),

∇2ur =
ur

r2 −
∂Ω
∂z

,

∇2uz =
Ω
r
+

∂Ω
∂r

,

ur
∂ur

∂r
+ uz

∂ur

∂z
=

1
2

∂

∂r
(u2

r + u2
z)− uzΩ,

ur
∂uz

∂r
+ uz

∂uz

∂z
=

1
2

∂

∂z
(u2

r + u2
z) + urΩ.

Using the above results, Equations (17) and (18) take the following simplified form.
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r-component:

ρ

{
∂ur

∂t
− uzΩ

}
= −∂ p̂

∂r
− µ

∂Ω
∂z

+ α1

[
− ∂

∂t

(
∂Ω
∂z

)
− uz

(
∇2Ω− Ω

r2

) ]
+ (α1 + α2)

[
Ω2

r
+

2
r

∂

∂z
(urΩ)

]
,

(19)

z-component:

ρ

{
∂uz

∂t
+ urΩ

}
= −∂ p̂

∂z
+ µ

(
∂Ω
∂r

+
Ω
r

)
+ α1

[
∂

∂t

(
∂Ω
∂r

+
Ω
r

)
+ ur

(
∇2Ω− Ω

r2

) ]
− (α1 + α2)

2
r

∂

∂r
(urΩ),

(20)

where modified pressure p̂ is defined as:

p̂ = p +
ρ

2

(
u2

r + u2
z

)
− α1

(
ur

∂Ω
∂z

+ uz∇2uz

)
− 3α1 + 2α2

4
|A2

1|. (21)

Stream function ψ is defined for 2D and 3D incompressible (divergence-free) flows with
axisymmetry. The velocity components can be expressed as the derivatives of scalar stream function
as follows:

ur =
1
r

∂ψ

∂z
, uz = −

1
r

∂ψ

∂r
. (22)

Note that the continuity Equation (8) is identically satisfied and with the use of Equation (22)
vorticity function Ω can be expressed as:

Ω =
∂uz

∂r
− ∂ur

∂z
,

= −1
r

E2ψ, (23)

where E2 = ∂2

∂r2 − 1
r

∂
∂r +

∂2

∂z2 and using Equation (23) following results are obtained:

∇2Ω− Ω
r2 = −1

r
E4 (ψ) = −1

r
E2
(

E2 (ψ)
)

, (24)

∂Ω
∂r

+
Ω
r

= −1
r

∂

∂r

(
E2ψ

)
. (25)

Using these results and Equation (22) in Equations (19) and (20), the following is obtained:
r-component:

∂ p̂
∂r

+ ρ

{
1
r

∂2ψ

∂t∂z
− ∂ψ

∂r
E2ψ

r2

}
=

µ

r
∂

∂z

(
E2ψ

)
+

α1

r

[
∂2

∂t∂z

(
E2ψ

)
− 1

r
∂ψ

∂r
E4ψ

]
− 1

r
(α1 + α2)

[
2

∂

∂z

(
∂ψ

∂z
E2ψ

r2

)
−
(

E2ψ

r

)2 ]
,

(26)

z-component:

∂ p̂
∂z
− ρ

{
1
r

∂2ψ

∂t∂r
+

∂ψ

∂z
E2ψ

r2

}
= −µ

r
∂

∂r

(
E2ψ

)
− α1

r

[
∂2

∂t∂r

(
E2ψ

)
+

1
r

∂ψ

∂z
E4ψ

]
+

2
r
(α1 + α2)

∂

∂r

(
∂ψ

∂z
E2ψ

r2

)
.

(27)
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In order to obtain the compatibility equation pressure, terms will be eliminated. Differentiate
Equation (26) with respect to z and Equation (27) with respect to r and subtract the two equations
to obtain:

ρ

[
1
r

∂

∂t

(
E2ψ

)
−

∂(ψ, E2ψ

r2 )

∂ (r, z)

]
=

1
r

(
µ + α1

∂

∂t

)
E4ψ− α1

∂(ψ, E4ψ

r2 )

∂ (r, z)

− (α1 + α2)

r

[
2E2

(
∂ψ

∂z
E2ψ

r2

)
− ∂

∂z

(
E2ψ

r

)2 ]
,

(28)

where the compatibility relation ∂2 p̂
∂r∂z = ∂2 p̂

∂z∂r is used, the reason (28) is named as the compatibility
equation. For any functions f (r, z) and g(r, z) following notion have been adopted:

∂ ( f , g)
∂ (r, z)

=
∂ f
∂r

∂g
∂z
− ∂ f

∂z
∂g
∂r

.

3. Langlois Recursive Approach

To find an exact analytical solution to the system of nonlinear Equations (19), (20) and (8) is almost
impossible, therefore we seek for an approximate analytical solution. W. E. Langlois in 1963 proposed a
method [31] known as “Recursive Approach” which is best to solve the system of equations governing
the slow flow of steady state, incompressible Rivlin-Ericksen fluid analytically. He takes the flow field
as a perturbation of the state of rest and following is set:

ur =
∞

∑
i=1

εiuri = εur1 + ε2ur2 + ε3ur3 + · · ·, (29)

uz =
∞

∑
i=1

εiuzi = εuz1 + ε2uz2 + ε3uz3 + · · ·, (30)

and

p = p0 +
∞

∑
i=1

εi pi = p0 + εp1 + ε2 p2 + ε3 p3 + · · ·. (31)

These assumptions lead to the linear dynamic equations and boundary conditions for each of
the sets [uri , uzi , pi], i = 1, 2, 3, ..., so that [ur, uz, p] as given by (29)–(31) provides a solution to the
equations of motion with appropriate boundary conditions for an arbitrary Rivlin-Ericksen fluid.
The equations corresponding to [ur1 , uz1 , p1] are the same that govern the flow of a Newtonian fluid.
The equations corresponding to [ur2 , uz2 , p2] are similar except that they contain non-homogeneous
terms involving [ur1 , uz1 ]. Similarly the equations governing [ur3 , uz3 , p3] are similar but they contain
non-homogeneous terms which involve lower order solutions [uri , uzi ], i = 1, 2 and this continues
recursively. Hence at each stage it is required to solve a linear system of equations involving solutions
which are obtained of previous all stages.

4. Problem Description

Consider the steady, axisymmetric flow of a second-order incompressible fluid in a small diameter,
circular, cylindrical, porous-walled tube. It is assumed that the tube is uniformly porous so that the
radial velocity is to have constant value εU0 at the tube-wall, where ε is a small dimensionless
parameter. Clearly the assumption of uniform porosity does not imply the constant rate of absorption
but the developments made here will provide us with the useful insights and these will be helpful
in formulating much improved theory. Keeping the problem geometry in consideration cylindrical
coordinates (r, θ, z) are used with velocity components ~V = (ur, uθ , uz) respectively. With the additional
assumption of axisymmetry uθ = 0 and ∂(.)

∂θ = 0. Consider axis of the tube in z-direction. At any point
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of the flow field the velocity has the form (7) and following steady state compatibility, the equation is
obtained from (28):

E4ψ =
ρr
µ

∂(ψ, E2ψ

r2 )

∂ (z, r)
− α1r

µ

∂(ψ, E4ψ

r2 )

∂ (z, r)
+

(α1 + α2)

µ

[
2E2

(
∂ψ

∂z
E2ψ

r2

)
− ∂

∂z

(
E2ψ

r

)2 ]
, (32)

where stream function ψ is defined using (22) and E4(∗) = E2 (E2( ∗)). The boundary condition in
case of uniform porosity are given as:

uz (R, z) = 0, (33)

ur (R, z) = εU0, (34)
∂uz

∂r
(0, z) = 0, (35)

ur (0, z) = 0, (36)

εQ0 = 2π
∫ R

0
ruz (r, 0) dr. (37)

Using (22) above boundary conditions are expressed in terms of stream function ψ as follows:

∂ψ

∂r
(R, z) = 0, (38)

∂ψ

∂z
(R, z) = εRU0, (39)∣∣∣∣ ∂

∂r

(
1
r

∂ψ

∂r

) ∣∣∣∣
r=0

= 0, (40)∣∣∣∣1r ∂ψ

∂z

∣∣∣∣
r=0

= 0, (41)

∫ R

0

∣∣∣∣∂ψ

∂r

∣∣∣∣
z=0

dr = − εQ0

2π
. (42)

5. Problem Solution

It is assumed that, in some sense best defined a posteriori, the flow is slow enough and seeks the
solution ψ (r, z) of the highly nonlinear compatibility Equation (32) subject to boundary conditions (38)
to (42). With the approach of Langlois [31] the flow field is taken as perturbation of a state of rest.
Instead of using presumptions (29)–(31), the following is equivalently set:

ψ =
3

∑
i=1

εiψi = εψ1 + ε2ψ2 + ε3ψ3, (43)

and

p = p0 +
3

∑
i=1

εi pi = p0 + εp1 + ε2 p2 + ε3 p3, (44)

where ε is a small dimensionless parameter. This leads to the compatibility equations and boundary
conditions for ψi (r, z) , i = 1, 2, 3 so that ψ (r, z) as given by (43) provides a solution to the compatibility
Equation (32). The equation for ψ1 corresponds exactly to the compatibility equation governing the
flow of Newtonian fluid and is solved subject to the given non-homogeneous boundary conditions.
The equation for ψ2 contains the non-homogeneous term involving ψ1 and the equation for ψ3 contains
the non-homogeneous terms involving both ψ1 and ψ2 and are solved subject to corresponding
homogeneous boundary conditions. Using (43) in (32), the following is obtained:
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E4

(
3

∑
i=1

εiψi

)
=

ρr
µ

∂(
(

∑3
i=1 εiψi

)
,

E2(∑3
i=1 εiψi)
r2 )

∂ (z, r)
− α1r

µ

∂(
(

∑3
i=1 εiψi

)
,

E4(∑3
i=1 εiψi)
r2 )

∂ (z, r)

+
(α1 + α2)

µ

[
2E2

∂
(

∑3
i=1 εiψi

)
∂z

E2
(

∑3
i=1 εiψi

)
r2


− ∂

∂z

E2
(

∑3
i=1 εiψi

)
r

2 ]
.

(45)

5.1. First Order System and the Solution

Equating terms involving εi, i = 1 from Equation (45), the following homogeneous equation
is obtained:

E4ψ1 = 0, (46)

and using (43) in Equations (38)–(42) the corresponding boundary conditions are obtained in terms of
ψ1 as below:

∂ψ1

∂r
(R, z) = 0, (47)

∂ψ1

∂z
(R, z) = RU0, (48)∣∣∣∣ ∂

∂r

(
1
r

∂ψ1

∂r

) ∣∣∣∣
r=0

= 0, (49)∣∣∣∣1r ∂ψ1

∂z

∣∣∣∣
r=0

= 0, (50)

∫ R

0

∣∣∣∣∂ψ1

∂r

∣∣∣∣
z=0

dr = −Q0

2π
. (51)

The reverse solution is obtained for ψ1 by assuming the form of the stream function a priori.
Boundary conditions (47) to (51) suggest the following form:

ψ1 (r, z) = z F1 (r) + G1 (r) . (52)

With this assumption, (46) reduces to:

z H2 F1 (r) + H2 G1 (r) = 0, (53)

where H = ∂2

∂r2 − 1
r

∂
∂r and H2(∗) = H(H(∗)). (53) is true if F1 and G1 satisfy the differential equations:

H2 F1 (r) = 0, (54)

H2 G1 (r) = 0. (55)

On substituting assumed form of stream function (52) the boundary conditions (47) to (51)
reduce to:

F1
′(R) = 0, G1

′(R) = 0, F1(R) = RU0, (56)

F1(0) = 0,
∣∣∣∣r F1

′′(r)− F1
′(r)
∣∣∣∣
r=0

= 0,
∣∣∣∣r G1

′′(r)−G1
′(r)
∣∣∣∣
r=0

= 0, (57)

G1(R) = −Q0

2π
, (58)
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where ψ1(0, 0) = 0 is taken conventionally and therefore G1(0) = 0. The solution to the Equations (54)
and (55) subject to conditions (56) to (58) is obtained as:

F1 (r) = RU0

{
2
( r

R

)2
−
( r

R

)4
}

, (59)

G1 (r) = −Q0

2π

{
2
( r

R

)2
−
( r

R

)4
}

. (60)

On substituting these expressions in (52), the following is obtained:

ψ1 (r, z) =
(

RU0z− Q0

2π

){
2
( r

R

)2
−
( r

R

)4
}

. (61)

5.2. Second Order System and the Solution

Equating terms involving εi, i = 2 from Equation (45) and Equations (38)–(42) the following non
homogeneous partial differential equation governing the second order solution and the associated
homogeneous boundary conditions are obtained. Non homogeneous terms in the equation contain the
first order solution ψ1.

E4ψ2 =
ρr
µ

{
∂ψ1

∂z
∂

∂r

(
E2ψ1

r2

)
− ∂ψ1

∂r
∂

∂z

(
E2ψ1

r2

)}
− α1r

µ

{
∂ψ1

∂z
∂

∂r

(
E4ψ1

r2

)
− ∂ψ1

∂r
∂

∂z

(
E4ψ1

r2

)}
+

(α1 + α2)

µ

{
2E2

(
∂ψ1

∂z
E2ψ1

r2

)
− ∂

∂z

(
E2ψ1

r

)2 }
,

(62)

∂ψ2

∂r
(R, z) = 0, (63)

∂ψ2

∂z
(R, z) = 0, (64)∣∣∣∣ ∂

∂r

(
1
r

∂ψ2

∂r

) ∣∣∣∣
r=0

= 0, (65)∣∣∣∣1r ∂ψ2

∂z

∣∣∣∣
r=0

= 0, (66)

∫ R

0

∣∣∣∣∂ψ2

∂r

∣∣∣∣
z=0

dr = 0. (67)

Again a reverse solution is sought by assuming the stream function of the form ψ2 (r, z) =

z F2 (r) + G2 (r), a priori. On substituting this and obtained first order solution ψ1 in (62) following
is obtained:

z H2 F2 (r) + H2 G2 (r) = 32
ρU0

µR3

(
RU0z− Q0

2π

){( r
R

)2
−
( r

R

)4
}

, (68)

where H = ∂2

∂r2 − 1
r

∂
∂r and H2(∗) = H(H(∗)). (68) is true if F2 and G2 satisfy the differential equations:

H2 F2 (r) = 32
ρU2

0
µR2

{( r
R

)2
−
( r

R

)4
}

, (69)

H2 G2 (r) = −16
ρU0Q0

πµR3

{( r
R

)2
−
( r

R

)4
}

. (70)
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On substituting the assumed form of the stream function for ψ2(r, z), boundary conditions (63)
to (67) reduce to:

F2
′(R) = 0, G2

′(R) = 0, F2(R) = 0, G2(R) = 0, (71)

F2(0) = 0,
∣∣∣∣r F2

′′(r)− F2
′(r)
∣∣∣∣
r=0

= 0,
∣∣∣∣r G2

′′(r)−G2
′(r)
∣∣∣∣
r=0

= 0. (72)

The solution to Equations (69) and (70) subject to conditions (71) and (72) is obtained as:

F2 (r) =
ρR2U2

0
36µ

{
4
( r

R

)2
− 9

( r
R

)4
+ 6

( r
R

)6
−
( r

R

)8
}

, (73)

G2 (r) = −ρRU0Q0

72µπ

{
4
( r

R

)2
− 9

( r
R

)4
+ 6

( r
R

)6
−
( r

R

)8
}

, (74)

and hence:

ψ2 (r, z) = z F2 (r) + G2 (r) ,

=
ρRU0

36µ

(
RU0z− Q0

2π

){
4
( r

R

)2
− 9

( r
R

)4
+ 6

( r
R

)6
−
( r

R

)8
}

. (75)

5.3. Third Order System and the Solution

Equating terms involving εi, i = 3 from Equation (45) and Equations (38)–(42) the following non
homogeneous partial differential equation governing the second order solution and the associated
homogeneous boundary conditions are obtained. Non homogeneous terms in the equation contain
both first and second order solutions ψ1 and ψ2 respectively.

E4ψ3 =
ρr
µ

{
∂ψ1

∂z
∂

∂r

(
E2ψ2

r2

)
− ∂ψ1

∂r
∂

∂z

(
E2ψ2

r2

)
+

∂ψ2

∂z
∂

∂r

(
E2ψ1

r2

)
− ∂ψ2

∂r
∂

∂z

(
E2ψ1

r2

)}
− α1r

µ

{
∂ψ1

∂z
∂

∂r

(
E4ψ2

r2

)
− ∂ψ1

∂r
∂

∂z

(
E4ψ2

r2

)
+

∂ψ2

∂z
∂

∂r

(
E4ψ1

r2

)
− ∂ψ2

∂r
∂

∂z

(
E4ψ1

r2

)}
+

(α1 + α2)

µ

{
2E2

(
∂ψ1

∂z
E2ψ2

r2 +
∂ψ2

∂z
E2ψ1

r2

)
− 2

∂

∂z

(
E2ψ1

r
E2ψ2

r

)}
,

(76)

and

∂ψ3

∂r
(R, z) = 0, (77)

∂ψ3

∂z
(R, z) = 0, (78)∣∣∣∣ ∂

∂r

(
1
r

∂ψ3

∂r

) ∣∣∣∣
r=0

= 0, (79)∣∣∣∣1r ∂ψ3

∂z

∣∣∣∣
r=0

= 0, (80)

∫ R

0

∣∣∣∣∂ψ3

∂r

∣∣∣∣
z=0

dr = 0. (81)
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Again a reverse solution is sought by assuming the stream function of the form ψ3 (r, z) =

z F3 (r) + G3 (r), a priori. On substituting this and the obtained first and second order solutions ψ1 and
ψ2 in (76) following is obtained:

H2 F3 (r) =
128ρα1U3

0
µ2R3

{
2
( r

R

)2
− 3

( r
R

)4
+

4
3

( r
R

)6
}

+
64ρα2U3

0
µ2R3

{
2
( r

R

)2
− 4

( r
R

)4
+

5
3

( r
R

)6
}

+
8ρ2U3

0
µ2R

{
11
9

( r
R

)2
− 2

( r
R

)4
+

4
3

( r
R

)6
− 2

9

( r
R

)8
}

,

(82)

H2 G3 (r) = −
64ρα1U2

0 Q0

µ2R4π

{
2
( r

R

)2
− 3

( r
R

)4
+

4
3

( r
R

)6
}

−
32ρα2U2

0 Q0

µ2R4π

{
2
( r

R

)2
− 4

( r
R

)4
+

5
3

( r
R

)6
}

−
4ρ2U2

0 Q0

µ2R2π

{
11
9

( r
R

)2
− 2

( r
R

)4
+

4
3

( r
R

)6
− 2

9

( r
R

)8
}

.

(83)

On substituting the assumed form of the stream function for ψ3(r, z), boundary conditions (77)
to (81) reduce to:

F3
′(R) = 0, G3

′(R) = 0, F3(R) = 0, G3(R) = 0, (84)

F3(0) = 0,
∣∣∣∣r F3

′′(r)− F3
′(r)
∣∣∣∣
r=0

= 0,
∣∣∣∣r G3

′′(r)−G3
′(r)
∣∣∣∣
r=0

= 0. (85)

The solution to the Equations (82) and (83) subject to conditions (84) and (85) is obtained as:

F3 (r) =
ρRα1U3

0
45µ2

{
36
( r

R

)2
− 83

( r
R

)4
+ 60

( r
R

)6
− 15

( r
R

)8
+ 2

( r
R

)10
}

+
ρRα2U3

0
36µ2

{
11
( r

R

)2
− 28

( r
R

)4
+ 24

( r
R

)6
− 8

( r
R

)8
+
( r

R

)10
}

+
ρ2R3U3

0
5400µ2

{
166

( r
R

)2
− 380

( r
R

)4
+ 275

( r
R

)6
− 75

( r
R

)8
+ 15

( r
R

)10
−
( r

R

)12
}

,

(86)

G3 (r) = −
ρα1U2

0 Q0

90µ2π

{
36
( r

R

)2
− 83

( r
R

)4
+ 60

( r
R

)6
− 15

( r
R

)8
+ 2

( r
R

)10
}

−
ρα2U2

0 Q0

72µ2π

{
11
( r

R

)2
− 28

( r
R

)4
+ 24

( r
R

)6
− 8

( r
R

)8
+
( r

R

)10
}

−
ρ2R2U2

0 Q0

10800µ2π

{
166

( r
R

)2
− 380

( r
R

)4
+ 275

( r
R

)6
− 75

( r
R

)8
+ 15

( r
R

)10
−
( r

R

)12
}

,

(87)

and hence the third order solution is obtained as:

ψ3 (r, z) =
(

RU0z− Q0

2π

)[
ρα1U2

0
45µ2

{
36
( r

R

)2
− 83

( r
R

)4
+ 60

( r
R

)6
− 15

( r
R

)8
+ 2

( r
R

)10
}

+
ρα2U2

0
36µ2

{
11
( r

R

)2
− 28

( r
R

)4
+ 24

( r
R

)6
− 8

( r
R

)8
+
( r

R

)10
}

+
ρ2R2U2

0
5400µ2

{
166

( r
R

)2
− 380

( r
R

)4
+ 275

( r
R

)6
− 75

( r
R

)8
+ 15

( r
R

)10
−
( r

R

)12
}]

.

(88)
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5.4. Expression for Stream Function Correct to Third Order

With the notations U∗ = εU0 and Q∗ = εQ0 and using (43), the third order approximate
expression for the stream function ψ(r, z) is written as:

ψ (r, z) =
(

RU∗z−
Q∗
2π

)[{
2
( r

R

)2
−
( r

R

)4
}

+
ρRU∗
36µ

{
4
( r

R

)2
− 9

( r
R

)4
+ 6

( r
R

)6
−
( r

R

)8
}

+
ρα1U2

∗
45µ2

{
36
( r

R

)2
− 83

( r
R

)4
+ 60

( r
R

)6
− 15

( r
R

)8
+ 2

( r
R

)10
}

+
ρα2U2

∗
36µ2

{
11
( r

R

)2
− 28

( r
R

)4
+ 24

( r
R

)6
− 8

( r
R

)8
+
( r

R

)10
}

+
ρ2R2U2

∗
5400µ2

{
166

( r
R

)2
− 380

( r
R

)4
+ 275

( r
R

)6
− 75

( r
R

)8
+ 15

( r
R

)10
−
( r

R

)12
}]

+ o
(

ε3
)

.

(89)

6. Velocity Components

6.1. First Order Velocity Terms

As ur1 = 1
r

∂ψ1
∂z , uz1 = − 1

r
∂ψ1
∂r , velocity components ur1 and uz1 are obtained as:

ur1 = U0

{
2
( r

R

)
−
( r

R

)3
}

, (90)

uz1 = − 4
R2

(
RU0z− Q0

2π

){
1−

( r
R

)2
}

. (91)

It is worth mentioning that these first order velocity components match exactly those obtained
by Macey [1] for the Newtonian fluid assuming uniform re-absorption rate, that is, by setting a1 = 0.
It is noted that (90) shows that first order radial velocity ur1 vanishes at axis of the tube and begins

to increase towards the wall, having the maximum value of 4
3

√
2
3 U0 within the tube at r =

√
2
3 R,

this property is directly evident from the continuity equation. It is also noted from (91) that first order
longitudinal velocity wr1 has same parabolic profile as in case of Poisseuille’s law.

6.2. Second Order Velocity Terms

As ur2 = 1
r

∂ψ2
∂z , uz2 = − 1

r
∂ψ2
∂r , second order velocity components ur2 and uz2 are obtained as:

ur2 =
ρRU2

0
36µ

{
4
( r

R

)
− 9

( r
R

)3
+ 6

( r
R

)5
−
( r

R

)7
}

, (92)

uz2 = − ρU0

9Rµ

(
RU0z− Q0

2π

){
2− 9

( r
R

)2
+ 9

( r
R

)4
− 2

( r
R

)6
}

. (93)
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6.3. Third Order Velocity Terms

As ur3 = 1
r

∂ψ3
∂z , uz3 = − 1

r
∂ψ3
∂r , third order velocity components ur3 and uz3 are obtained as:

ur3 =
ρα1U3

0
45µ2

{
36
( r

R

)
− 83

( r
R

)3
+ 60

( r
R

)5
− 15

( r
R

)7
+ 2

( r
R

)9
}

+
ρα2U3

0
36µ2

{
11
( r

R

)
− 28

( r
R

)3
+ 24

( r
R

)5
− 8

( r
R

)7
+
( r

R

)9
}

+
ρ2R2U3

0
5400µ2

{
166

( r
R

)
− 380

( r
R

)3
+ 275

( r
R

)5
− 75

( r
R

)7
+ 15

( r
R

)9
−
( r

R

)11
}

,

(94)

uz3 = − 1
R2

(
RU0z− Q0

2π

)[
ρα1U2

0
45µ2

{
72− 332

( r
R

)2
+ 360

( r
R

)4
− 120

( r
R

)6
+ 20

( r
R

)8
}

+
ρα2U2

0
36µ2

{
22− 112

( r
R

)2
+ 144

( r
R

)4
− 64

( r
R

)6
+ 10

( r
R

)8
}

+
ρ2R2U2

0
5400µ2

{
332− 1520

( r
R

)2
+ 1650

( r
R

)4
− 600

( r
R

)6
+ 150

( r
R

)8
− 12

( r
R

)10
}]

.

(95)

6.4. Expressions for Velocity Components Correct to Third Order

With the notations U∗ = εU0 and Q∗ = εQ0 and using the approach common with Langlois [31],
the third order approximate expression for the velocity components u and w is written. By adding
Equations (90), (92) and (94) following is obtained:

ur(r) = U∗

{
2
( r

R

)
−
( r

R

)3
}
+

ρRU2
∗

36µ

{
4
( r

R

)
− 9

( r
R

)3
+ 6

( r
R

)5
−
( r

R

)7
}

+
ρα1U3

∗
45µ2

{
36
( r

R

)
− 83

( r
R

)3
+ 60

( r
R

)5
− 15

( r
R

)7
+ 2

( r
R

)9
}

+
ρα2U3

∗
36µ2

{
11
( r

R

)
− 28

( r
R

)3
+ 24

( r
R

)5
− 8

( r
R

)7
+
( r

R

)9
}

+
ρ2R2U3

∗
5400µ2

{
166

( r
R

)
− 380

( r
R

)3
+ 275

( r
R

)5
− 75

( r
R

)7
+ 15

( r
R

)9
−
( r

R

)11
}

,

(96)

and similarly by adding Equations (91), (93) and (95), the following is obtained:

uz(r, z) =
(

RU∗z−
Q∗
2π

)[
− 4

R2

{
1−

( r
R

)2
}
− ρU∗

9Rµ

{
2− 9

( r
R

)2
+ 9

( r
R

)4
− 2

( r
R

)6
}

− ρα1U2
∗

45R2µ2

{
72− 332

( r
R

)2
+ 360

( r
R

)4
− 120

( r
R

)6
+ 20

( r
R

)8
}

− ρα2U2
∗

36R2µ2

{
22− 112

( r
R

)2
+ 144

( r
R

)4
− 64

( r
R

)6
+ 10

( r
R

)8
}

− ρ2U2
∗

5400µ2

{
332− 1520

( r
R

)2
+ 1650

( r
R

)4
− 600

( r
R

)6
+ 150

( r
R

)8
− 12

( r
R

)10
}]

.

(97)

It has not escaped our notice that the last four terms in above expression of axial velocity vanish if the
inertial terms in the momentum Equations (17) and (18) are neglected.
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7. Pressure Distribution

7.1. First Order Characteristic Pressure Terms and Pressure Drop

In Equations (26) and (27) with ∂(∗)
∂t = 0 and using (43) and (44) the equations governing first

order pressure p̂1 are obtained as follows:

∂ p̂1

∂r
=

µ

r
∂

∂z

(
E2ψ1

)
, (98)

∂ p̂1

∂z
= −µ

r
∂

∂r

(
E2ψ1

)
. (99)

On substituting (61) it is found that:

∂ p̂1

∂r
= −8µU0r

R3 , (100)

∂ p̂1

∂z
=

16µ

R4

(
U0Rz− Q0

2π

)
. (101)

On integrating (100) with respect to r it is found that:

p̂1(r, z) = −4µU0

R3 r2 + A(z), (102)

where A(z) is arbitrary function of z. On differentiating (102) with respect to z, ∂ p̂1
∂z = A′(z) and in

comparison with (101) we get:

A′ (z) =
16µ

R4

(
U0Rz− Q0

2π

)
,

A (z) =
16µ

R4

(
U0Rz2

2
− Q0

2π
z
)
+ L. (103)

On substituting (103) into (102), first order pressure distribution is obtained as follows:

p̂1(r, z) = −4µU0

R

( r
R

)2
+

16µ

R4

(
U0Rz2

2
− Q0

2π
z
)
+ L, (104)

and using (21) first order hydrostatic pressure is p1 = p̂1. It is added here ,as commented earlier, that
the set [ur1 , uz1 , p1] is the solution to corresponding Newtonian flow. For this subsection our discussion
is confined to the first order solutions (Newtonian case) only and define volume flow rate Q(z) and
the mean flow Q(z) between points 0 and z as:

Q(z) = 2π
∫ R

0
ruz1 (r, z) dr, (105)

Q(z) =
1
z

∫ z

0
Q(β)dβ. (106)

Using (91) in these definitions it is found that:

Q(z) = Q0 − 2πRU0, (107)

Q(z) = Q0 − πRU0z, (108)

and hence
p1 = −4µU0

R

( r
R

)2
− 8

µ

πR4 Q(z)z + L. (109)
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We are seeking for the average pressure drop. Define the mean pressure taken over any cross
section of the tube as:

p1z =
1
A

∫∫
A

p1(r, z) dA, (110)

where A is area of cross section of the tube. On substituting (109) and initial condition Q(0) = Q0 the
mean pressure drop along the tube is obtained as:

p10 − p1z = 8
µ

πR4 (Q0 − 2πRU0z) z,

= 8
µ

πR4 Q(z)z,
(111)

which is similar to the Hagen-Poiseulle’s equation.

7.2. Second Order Characteristic Pressure Terms

Again in Equations (26) and (27) with ∂(∗)
∂t = 0 and using (43) and (44) the equations governing

second order pressure p̂2 are obtained as follows:

∂ p̂2

∂r
= ρ

∂ψ1

∂r
E2ψ1

r2 +
µ

r
∂

∂z

(
E2ψ2

)
− α1

r2
∂ψ1

∂r
E4ψ1

− (α1 + α1)

r

{
2

∂

∂z

(
∂ψ1

∂z
E2ψ1

r2

)
−
(

E2ψ1

r

)2 }
,

(112)

∂ p̂2

∂z
= ρ

∂ψ1

∂z
E2ψ1

r2 − µ

r
∂

∂r

(
E2ψ2

)
− α1

r2
∂ψ1

∂z
E4ψ1

+ 2
(α1 + α1)

r
∂

∂r

(
∂ψ1

∂z
E2ψ1

r2

)
.

(113)

On substituting (61) and (75) and then integration gives expression for second order pressure as:

p̂2(r, z) = 4
U0

R3

(
U0Rz2

2
− Q0

2π
z
){

ρ

(
1− 8

( r
R

)2
+ 4

( r
R

)4
)
− 16

R2 (α1 + α2)

(
1−

( r
R

)2
)}

+ U2
0

{
ρ

(
−
( r

R

)2
+
( r

R

)4
− 2

9

( r
R

)6
)
+

4
R2 (α1 + α2)

(
4
( r

R

)2
−
( r

R

)4
)}

+
2Q2

0
π2R4

{
ρ

(
−2
( r

R

)2
+
( r

R

)4
)
+

4
R2 (α1 + α2)

( r
R

)2
}
+ M.

(114)

7.3. Third Order Characteristic Pressure Terms

Again in Equations (26) and (27) with ∂(∗)
∂t = 0 and using (43) and (44) the equations governing

third order pressure p̂3 are obtained as follows:

∂ p̂3

∂r
= ρ

(
∂ψ1

∂r
E2ψ2

r2 +
∂ψ2

∂r
E2ψ1

r2

)
+

µ

r
∂

∂z

(
E2ψ3

)
− α1

r2

(
∂ψ1

∂r
E4ψ2 +

∂ψ2

∂r
E4ψ1

)
− (α1 + α1)

r

{
2

∂

∂z

(
∂ψ1

∂z
E2ψ2

r2 +
∂ψ2

∂z
E2ψ1

r2

)
− 2(E2ψ1)(E2ψ2)

r2

}
,

(115)

∂ p̂3

∂z
= ρ

(
∂ψ1

∂z
E2ψ2

r2 +
∂ψ2

∂z
E2ψ1

r2

)
− µ

r
∂

∂r

(
E2ψ3

)
− α1

r2

(
∂ψ1

∂z
E4ψ2 +

∂ψ2

∂z
E4ψ1

)
+ 2

(α1 + α1)

r
∂

∂r

(
∂ψ1

∂z
E2ψ2

r2 +
∂ψ2

∂z
E2ψ1

r2

)
.

(116)
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On substituting (61), (75) and (88) in above, then integration gives expression for third order
pressure as:

p̂3 =
ρU2

0
µR2

(
U0Rz2

2
− Q0

2π
z
){

ρ

(
152
135
− 88

9

( r
R

)2
+ 16

( r
R

)4
− 88

9

( r
R

)6
+

16
9

( r
R

)8
)

+
α1

R2

(
448
45
− 96

( r
R

)2
+ 96

( r
R

)4
− 320

9

( r
R

)6
)

− α2

R2

(
64
9
− 32

( r
R

)2
+ 32

( r
R

)4
− 64

9

( r
R

)6
)}

ρU3
0 R

µ

{
ρ

(
− 38

135

( r
R

)2
+

11
36

( r
R

)4
− 1

9

( r
R

)6
+

1
36

( r
R

)8
− 1

450

( r
R

)10
)

+
α1

R2

(
−112

45

( r
R

)2
+ 2

( r
R

)4
+

1
18

( r
R

)8
)

− α2

R2

(
−16

9

( r
R

)2
+ 2

( r
R

)4
− 8

9

( r
R

)6
+

1
9

( r
R

)8
)}

ρU0Q2
0

π2µR3

{
ρ

(
−11

9

( r
R

)2
+

2
9

( r
R

)4
− 11

9

( r
R

)6
+

2
9

( r
R

)8
)

+
α1

R2

(
−12

( r
R

)2
+ 12

( r
R

)4
− 40

9

( r
R

)6
)

− α2

R2

(
−4
( r

R

)2
+ 4

( r
R

)4
− 8

9

( r
R

)6
)}

+ N.

(117)

It is worth to mention that all the terms contributing in third order characteristic pressure may vanish
if the inertial terms in governing Equations (17) and (18) are neglected.

7.4. Characteristic Pressure Correct to Third Order

With the notations U∗ = εU0 and Q∗ = εQ0, and using the approach common with Langlois [31],
the third order approximate expression for modified pressure p̂ is written. With the expressions (104),
(114) and (117) in hand the expression for characteristic pressure correct to third order is obtained in
Appendix A.

8. Various Important Expressions in Dimensionless Form

After doing a dimension analysis of the solution obtained in Section 4, in particular for Equations (96)
and (97) the following dimensionless quantities are defined:

ζ =
z
L

, γ =
r
R

, Ur(γ) =
πR2

Q∗
ur(r), Uz(γ, ζ) =

πR2

Q∗
uz(r, z), (118)

τ′w(ζ) =
πR3

µQ∗
τw, Q′(ζ) =

Q(z)
Q∗

, Ψ(γ, ζ) =
π

Q∗
ψ(r, z), P(γ, ζ) =

ρR4

µ2L2 p(r, z), (119)

WRE =
ρRU∗

µ
, NRE =

2ρQ∗
πµR

, λ1 =
α1

ρR2 , λ2 =
α2

ρR2 , δ =
R
L

, (120)

where λ1 is known dimensionless elastic parameter, λ2 is known as dimensionless cross-viscosity
parameter, WRE is wall porosity parameter which is named as wall Reynolds number and NRE is
known as inlet flow Reynolds number.
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8.1. Velocity Components

Using the above transformations in Equations (96) and (97) dimensionless velocity components
are obtained as:

Ur(γ) = 2
WRE
NRE

{
2γ− γ3 +

WRE
36

(
4γ− 9γ3 + 6γ5 − γ7

)

+
λ1W2

RE
45

(
36γ− 83γ3 + 60γ5 − 15γ7 + 2γ9

)
+

λ2W2
RE

36

(
11γ− 28γ3 + 24γ5 − 8γ7 + γ9

)
+

W2
RE

5400

(
166γ− 380γ3 + 275γ5 − 75γ7 + 15γ9 − γ11

)}
,

(121)

Uz(γ, ζ) =
1
2

(
1− 4

δ

WRE
NRE

ζ

){
4
(

1− γ2
)
+

WRE
9

(
2− 9γ2 + 9γ4 − 2γ6

)

+
λ1W2

RE
45

(
72− 332γ2 + 360γ4 − 120γ6 + 20γ8

)
+

λ2W2
RE

36

(
22− 112γ2 + 144γ4 − 64γ6 + 10γ8

)
+

W2
RE

5400

(
332− 1520γ2 + 1650γ4 − 600γ6 + 150γ8 − 12γ10

)}
.

(122)

8.2. Volume Flow Rate

As volume flow rate is defined as:

Q(z) = 2π
∫ R

0
ruz (r, z) dr, (123)

or in terms of dimensionless variables given in (118)–(120) and making use of Equation (122) this can
be expressed as:

Q′(ζ) = 2
∫ 1

0
γUz (γ, ζ) dγ,

=
Q∗ − 2πRU∗ζL

Q∗
.

(124)

In terms of the dimensionless parameters defined in (118)–(120), the volume flow rate can be
further simplified to the following expression:

Q′(ζ) = 1− 4
δ

WRE
NRE

ζ. (125)

At this point it is worth mentioning that this expression of volume flow rate is independent of
non-Newtonian parameters λ1 and λ2. In fact, if it is compared with the Newtonian case under same
conditions [1,16], the same expression is obtained, which is surprising. Note that for no reverse flow
Q′(ζ) ≥ 0 at ζ = 1, this implies that the parameters WRE, NRE and δ should satisfy the following
inequality if reverse flow is avoided near the exit of the tube.

WRE ≤
δNRE

4
. (126)
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Using Equation (124) axial velocity given in Equation (122) can be written in a more convenient
form as:

Uz(γ, ζ) =
Q′(ζ)

2

{
4
(

1− γ2
)
+

WRE
9

(
2− 9γ2 + 9γ4 − 2γ6

)

+
λ1W2

RE
45

(
72− 332γ2 + 360γ4 − 120γ6 + 20γ8

)
+

λ2W2
RE

36

(
22− 112γ2 + 144γ4 − 64γ6 + 10γ8

)
+

W2
RE

5400

(
332− 1520γ2 + 1650γ4 − 600γ6 + 150γ8 − 12γ10

)}
.

(127)

8.3. Wall Shear Stress

As wall shear stress is defined as:

τw = −µ
∂uz

∂r

∣∣∣∣
r=R

, (128)

or in terms of dimensionless variables given in (118)–(120) and making use of Equation (122) this can
be expressed as:

τ′w = −
∣∣∣∣∂Uz

∂γ

∣∣∣∣
γ=1

.

τ′w =

(
1− 4

WRE
δNRE

ζ

)(
4− 1

3
WRE −

12
5

λ1W2
RE −

2
3

λ2W2
RE

)
− 26

135
W2

RE. (129)

8.4. Fractional Rabsorption

As fractional reabsorption in a tube of length L is defined as:

FR =
Q(0)−Q(L)

Q(0)
,

or in terms of dimensionless variables given in (118)–(120) the following simple linear relationship
between FR and wall Reynolds number WRE is obtained:

FR = 4
WRE
δNRE

. (130)

8.5. Leakage Flux

As leakage flux is defined as:

q = −∂Q(z)
∂z

,

q′ = −∂Q′(ζ)
∂ζ

,

q′ = −4
WRE
δNRE

, (131)

where q′ = Lq/Q∗ is dimensionless leakage flux.
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8.6. Mean Pressure Drop

The expression for hydrostatic pressure p can be readily obtained from (21) by plugging in the
obtained third order expression for characteristic pressure p̂ given in Appendix A. Mean pressure at
any z is defined as:

pz =
1
A

∫∫
A

p(r, z)dA,

where A is the area of cross section of the tube. Mean pressure drop ∆P = p0 − pz is computed and
expressed in terms of dimensionless parameters as:

∆P =
9752
4725

ζ

(
4725
2438

+

(
λ1

3 +

(
3293
1219

λ2 +
407

9752

)
λ1

2 +

(
-

26603
21064320

+
164725
1053216

λ2

+
29805
19504

λ2
2
)

λ1 +
1135

22896
λ2

2 +
2445
9752

λ2
3 +

28243
14042880

λ2 −
297221

5560980480

)
WRE

5

+

(
685

2438
λ1

2 +

(
33

39008
+

35
53

λ2

)
λ1 +

240
1219

λ2
2 − 3271

8425728
+

2835
156032

λ2

)
WRE

4

−
(

605
117024

+
35
368

λ1

)
WRE

3 −
(

2205
1219

λ1 +
385
4876

)
WRE

2

+

(
− 14175

9752
+

4725
1219

λ2

)
WRE

)(
NREδ− 2WREζ

)
.

(132)

Note that the mean pressure drop in major flow direction depends much upon WRE and non-Newtonian
elastic and cross-viscosity parameters. The behavior of ∆P will be further investigated using
graphical approach.

8.7. Stream Function

Using transformation (118)–(120) in Equation (89) the following dimensionless expression for
stream function correct to third order is obtained:

Ψ(γ, ζ) = −Q′(ζ)
2

{
2γ2 − γ4 +

WRE
36

(
4γ2 − 9γ4 + 6γ6 − γ8

)
+

λ1W2
RE

45

(
36γ2 − 83γ4 + 60γ6 − 15γ8 + 2γ10

)
+

λ2W2
RE

36

(
11γ2 − 28γ4 + 24γ6 − 8γ8 + γ10

)
+

W2
RE

5400

(
166γ2 − 380γ4 + 275γ6 − 75γ8 + 15γ10 − γ12

)
.

(133)

9. Graphical Results and Discussion

In order to understand the flow behavior and its dependence on parameters like porosity
parameter WRE and non-Newtonian parameters λ1 and λ2 here the graphical representation is given
to the expressions obtained in Section 8. Arbitrary values of some basic parameters are assumed in
Table 1. Using these values it is found that δ = 1.6× 10−3 and NRE = 3.2× 10−2. Inequality (126) can
now be used to set a range of values for wall Reynolds number WRE so that to avoid any reverse flow.
One can easily find that WRE ≤ 1.28× 10−5. On the basis of this analysis set WRE ∈ [0.5, 1.5]× 10−5 for
graphical representation. The values of elastic parameter α1 and cross-viscosity α2 are assumed to be
of the order 10−1, therefore values of dimensionless elastic parameter λ1 and cross-viscosity parameter
λ2 are taken in the range [0.2, 1.2]× 106.
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Table 1. Assumed values of dimensions of the tube and some basic flow parameters.

Quantity Symbol Value

Length of the Tube L 0.67 cm
Radius of the Tube R 1.08× 10−3 cm

Inlet Volume Flow Rate Q∗ 4.02−7 cm3/s
Dynamic Viscosity µ 7.37× 10−3 dyn·s/cm2

The non-dimensionalization of the variables reduces the number of parameters and makes the
graphical representation of the physical quantities more convenient. The axial velocity profile W for
different values of wall Reynolds number at three cross sections, ζ = 0.1 (beginning), ζ = 0.5 (middle)
and ζ = 0.9 (end) of the tube is shown in the Figures 1–3 respectively. It may be noted that the values
of wall permeability parameter WRE have significant effect on the magnitude of the axial velocity
in the middle and the end of the tube, however it has negligible influence in the beginning of the
tube. It is found that the magnitude of axial velocity component decreases if the magnitude of the
suction WRE increases. The reverse flow effect is observed when WRE assumes the threshold value
WRE = 1.28× 10−5, see Figure 3. Furthermore the variation in non-Newtonian parameters λ1 and λ2

does not show any significant change in the axial velocity profile.

Figure 1. Behavior of Uz(γ, ζ) with γ at ζ = 0.1 for different values of WRE.

Figure 2. Behavior of Uz(γ, ζ) with γ at ζ = 0.5 for different values of WRE.
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Figure 3. Behavior of Uz(γ, ζ) with γ at ζ = 0.9 for different values of WRE.

It is interesting to note that the expression (125) of the dimensionless volume flow rate Q′ is
independent of the elastic parameter λ1 and cross-viscosity parameter λ2. It can be noted that this
expression matches exactly with the special cases present in References [1,16]. Behavior of the volume
flow rate with wall Reynolds number given in the Figure 4 which shows that volume flow rate
decreases with increase of WRE. Wall shear stress τ′ also decreases in the major flow direction and the
role of WRE is to diminish it further, see Figure 5.

Figure 4. Behavior of Q’(ζ) with ζ for different values of WRE.

Figure 5. Behavior of τw’ with ζ for different values of WRE.
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The relationship between mean pressure drop in longitudinal direction and WRE is given in
Figure 6. Pressure drop increases with the increase value of wall Reynolds number. It can also be
observed the elastic parameter λ1 does not bring significant variation in pressure drop, however small
changes in cross-viscosity parameter λ2 bring significant changes in mean pressure drop (Figure 7).

In the Figures 8–11 stream-lines are depicted for different values of WRE. Far away from the
inlet of the tube there can be a point where flow rate becomes zero—stagnation point, beyond which
the pressure starts to increase downstream and the fluid moves in −z direction. This phenomena is
called reverse flow, which can be seen clearly in Figure 11. The relationship between wall permeability
parameter WRE and FR is shown in Table 2.

Table 2. Variation in fractional reabsorption FR with wall Reynolds number WRE for NRE = 3.2× 10−2.

WRE 0.5× 10−5 0.7× 10−5 0.9× 10−5 1.1× 10−5 1.3× 10−5 1.5× 10−5

FR 0.3906 0.5468 0.7032 0.8592 1.016 1.172

Figure 6. Behavior of ∆P with ζ for different values of WRE.

Figure 7. Behavior of ∆P with ζ for different values of λ2.
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Figure 8. Stream lines for WRE = 0.5× 10−5.

Figure 9. Stream lines for WRE = 0.9× 10−5.

Figure 10. Stream lines for WRE = 1.3× 10−5.

Expression of radial velocity (121) is independent of ζ and it attains maximum somewhere within
the tube as shown in Figure 12. Using Newton Raphson method it is found that Ur(γ) is maximum at
γ ≈ 0.8164914227 and this critical point is independent of the wall Reynolds number WRE. However in
Figure 12 the radial velocity profile can be seen to have a direct relationship with wall Reynolds number.
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Figure 11. Stream lines for WRE = 1.5× 10−5.

Figure 12. Behavior of Ur(γ) with γ for different values of WRE.

10. Conclusions

The foremost objective of this article was to investigate the effects of wall porosity parameter
WRE and non-Newtonian parameters λ1 and λ2 on the variables of slow flow of a second order
Rivlin-Ericksen fluid in a small diameter permeable tube. Although earlier work done by Macey [1]
and Narasimhan [16] might be suitable for such flow problems, current study presents a more general
analysis and results obtained by Macey and Narasimhan can be considered as special cases of solutions
obtained here. Moreover our solution can be used in mathematical modeling of hollow fiber dialyzer
when coupled with convection diffusion equation, in bio-sciences as well as in industry.

Emphasizing on the effects of wall porosity parameter WRE, elastic parameter λ1 and
cross-viscosity parameter λ2 following conclusions are drawn:

• If the elastic parameter λ1 = 0, the results obtained by Narasimhan [16] are achieved.
• If λ1 = λ2 = 0, the results obtained by Macey [1] are achieved.
• Elastic parameter λ1 does not bring any significant change in any of the flow variables in case of

slow flow with small amount of cross flow.
• The magnitude of axial velocity component Uz decreases if the magnitude of suction WRE increases.

Reverse flow is observed when wall porosity parameter assumes value threshold value of WRE =

1.28× 10−5.
• Volume flow rate is found to be independent of both the elastic parameter λ1 and the

cross-viscosity parameter λ2.
• Volume flow rate and wall shear stress decrease in major flow direction if WRE increases.
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• Mean pressure drop in major flow direction increases with the increase of the value of wall
Reynolds number WRE. It is also observed that elastic parameter λ1 does not bring significant
change in pressure drop, however pressure drop increases with increase of cross-viscosity
parameter λ2.

• Fractional reabsorption (FR) also increases with increase of WRE, this relationship is given in
Table 2.

• The radial velocity component Ur is independent of ζ and attains maximum at γ = 0.81649144227.
The magnitude of radial velocity component increases with increase of WRE.
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Abbreviations

The following abbreviations and/or symbols are used in this manuscript:

α1 Elastic parameter
α2 Cross-viscosity parameter
δ Ratio of radius to length
γ Dimensionless coordinate of tube’s transversal axis, r

R
λ1 Dimensionless elastic parameter
λ2 Dimensionless cross viscosity parameter
Ψ Dimensionless stream function
ψ Stream function
τw Wall shear stress
τ′w Dimensionless wall shear stress
θ Coordinate of tube’s azimuthal axis
ζ Dimensionless coordinate of tube’s longitudinal axis, z

L
∆P Mean pressure drop in major flow direction in the tube at point ζ

p̂ Characteristic pressure in the tube at point (r, z)
FR Fractional reabsorption
L Length of the tube
NRE Inlet flow Reynolds number
P Dimensionless pressure in the tube at point (ζ, γ)

p Pressure in the tube at point (r, z)
Q Volume flow rate at any point z
Q′ Dimensionless volume flow rate at any point ζ

Q∗ Inlet volume flow rate
q leakage flux
q′ Dimensionless leakage flux
R Radius of the tube
r Coordinate of tube’s transversal axis
Ur Dimensionless fluid velocity along r-direction
Ur Dimensionless fluid velocity along r-direction
Uz Dimensionless fluid velocity along z-direction
uz Fluid velocity along z-direction
U∗ Cross flow radial velocity at wall of the pipe
WRE Wall Reynolds number
z Coordinate of tube’s longitudinal axis
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Appendix A. Expression of Characteristic Pressure Correct to Third Order

The obtained expression of the characteristic pressure correct to third order is given below:

p̂ = −4µU∗
R

( r
R

)2
+

16µ

R4

(
U∗Rz2

2
− Q∗

2π
z
)

+ 4
U∗
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(
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2π
z
){

ρ

(
1− 8
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R
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R
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+
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+ K + o(ε3),

(A1)

where K = εL + ε2M + ε3N is a constant.

References

1. Macey, R.I. Pressure flow patterns in a cylinder with reabsorbing walls. Bull. Math. Biophys. 1963, 25, 1–9.
[CrossRef]

2. Kelman, R.B. A theoretical note on exponential flow in the proximal part of the mammalian nephron.
Bull. Math. Biophys. 1962, 24, 303–317. [CrossRef] [PubMed]

3. Macey, R.I. Hydrodynamics in the renal tubule. Bull. Math. Biophys. 1965, 27, 117–124. [CrossRef]
4. Palatt, P.J.; Sackin, H.; Tanner, R.I. A hydrodynamic model of a permeable tubule. J. Theor. Biol. 1974, 44,

287–303. [CrossRef]
5. Pozrikidis, C. Stokes flow through permeable tubule. Arch. Appl. Mech. 2010, 80, 323–333. [CrossRef]
6. Naqvi, S.; Haroon, T.; Siddiqui, A.M.; Sohail, A. Analysis of Stokes flow through periodic permeable tubules.

Alex. Eng. J. 2017, 56, 105–113.
7. Shreenivas, K.R.; Achala, L.N. Two dimensional flow in renal tubules with linear model. Adv. Appl.

Math. Biosci. 2011, 2, 47–59.
8. Siddiqui, A.M.; Haroon, T.; Shahzad, A. Hydrodynamics of viscous fluid through porous slit with linear

absorption. Appl. Math. Mech.-Eng. Ed. 2016, 37, 361–378. [CrossRef]
9. Kashan, M.; Iqbal, Z.; Siddiqui, A.M. Slip effects on the flow of Newtonian fluid in renal tubule. J. Comput.

Theor. Nanosci. 2015, 12, 4319.

http://dx.doi.org/10.1007/BF02477766
http://dx.doi.org/10.1007/BF02477961
http://www.ncbi.nlm.nih.gov/pubmed/14455049
http://dx.doi.org/10.1007/BF02498766
http://dx.doi.org/10.1016/0022-5193(74)90161-1
http://dx.doi.org/10.1007/s00419-009-0319-9
http://dx.doi.org/10.1007/s10483-016-2032-6


Mathematics 2020, 8, 1170 27 of 27

10. Beavers, G.S.; Joseph, D.D. Boundary conditions at a naturally permeable wall. J. Fluid Mech. 1967, 30,
197–207.

11. Kashan, M.; Lu, D.; Gorji, M.R. Hydrodynamical study of flow in a permeable channel: Application to flat
plate dialyzer. Int. J. Hydrog. Energy 2019, 44, 17041–14047.

12. Berman, A.S. Laminar flow in channels with porous walls. J. Appl. Phys. 1953, 24, 1232–1235.
13. Yuan, S.W. Further investigation of laminar flow in channels with porous walls. J. Appl. Phys. 1956, 27,

267–269. [CrossRef]
14. Sellars, J.R. Laminar flow in channels with porous walls at high suction Reynolds numbers. J. Appl. Phys.

1955, 26, 489–490.
15. Donoughe, P.L. Analysis of Laminar Incompressible Flow in Semiporous Channels; NACA-TN-3759; 1956.

Available online: https://ntrs.nasa.gov/search.jsp?R=19930084695 (accessed on 16 July 2020).
16. Narasimhan, M.N.L. Laminar non-Newtonian flow in a porous pipe. Appl. Sci. Res. 1961, 10, 393–409.
17. Annan, K. Mathematical modeling for hollow fiber dialyzer: Blood and HCO3-dialysate flow characterstics.

Int. J. Pure Appl. Math. 2012, 79, 425–452.
18. Oxarango, L.; Schmitz, P.; Quintard, M. Laminar flow in channels with wall suction or injection: A new

model to study multi-channel filtration systems. Chem. Eng. Sci. 2004, 59, 1039–1051. [CrossRef]
19. Yu, J.; Chitalia, V.C.; Akintewe, O.O.; Edwards, A.; Wong, J.Y. Determinants of hemodialysis performance:

Modeling fluid and solute transport in hollow-fiber dialyzers. Regen. Eng. Transl. Med. 2019. [CrossRef]
20. Moussy, Y.; Snider, A.D. Laminar flow over pipes with injection and suction through the porous wall at

Reynolds number. J. Membr. Sci. 2009, 327, 104–107.
21. Ullah, H.; Sun, H.; Siddiqui, A.M.; Haroon, T. Creeping flow analysis of slightly non-Newtonian fluid in a

uniformly porous slit. J. Appl. Anal. Comput. 2019, 9, 140–158.
22. Ullah, H.; Siddiqui, A.M.; Sun, H.; Haroon, T. Slip effects on creeping flow of slightly non-Newtonian fluid

in a uniformly porous slit. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 412.
23. Kacou, A.; Rajagopal, K.R.; Szeri, A.Z. A thermodynamical analysis of journal bearings lubricated by a

non-Newtonian fluid. J. Tribol. 1988, 110, 414–420.
24. Ng, C.W. Saibel, Nonlinear viscosity effects in slider bearing lubrication. ASME J. Fluid. Eng. 1974, 56,

191–252.
25. Rivlin, R.S.; Ericksen, J.L. Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 1955, 4,

523–532. [CrossRef]
26. Sinha, A. MHD flow and heat transfer of a third order fluid in a porous channel with stretching wall:

Application to hemodynamics. Alex. Eng. J. 2015, 54, 1243–1252. [CrossRef]
27. Leal, L.G. The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech. 1975, 69,

305–337. [CrossRef]
28. Imran, A.; Rana, M.A.; Siddiqui, A.M.; Shoaib, M. Flow of second grade fluid in a scraped surface heat

exchanger. J. Food Process Eng. 2017, 40, e12393.
29. Tai, C.W.; Wang, S.; Narasimhan, V. Cross-stream migration of non-spherical particles in a second-order

fluid—Theories of particle dynamics in arbitrary quadratic flows. J. Fluid Mech. 20202, 895. [CrossRef]
30. Siddiqui, A.M.; Haroon, T.; Bano, Z. Steady 2-D flow of a second grade fluid in a symmetrical diverging

channel of varying width. Appl. Math. Sci. 2014, 8, 4675–4691. [CrossRef]
31. Langlois, W.E. A recursive approach to the theory of slow, steady-state viscoelastic flow. Trans. Soc. Rheol.

1963, 7, 75–99. [CrossRef]
32. Langlois, W.E. The recursive theory of slow viscoelastic flow applied to three basic problems of hydrodynamics.

Trans. Soc. Rheol. 1964, 8, 33–60. [CrossRef]
33. Fosdick, R.L.; Dunn, J.E. Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of

second grade. Arch. Ration. Mech. Anal. 1974, 56, 191–252.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.1722355
https://ntrs.nasa.gov/search.jsp?R=19930084695
http://dx.doi.org/10.1016/j.ces.2003.10.027
http://dx.doi.org/10.1007/s40883-019-00135-0
http://dx.doi.org/10.1512/iumj.1955.4.54011
http://dx.doi.org/10.1016/j.aej.2015.06.004
http://dx.doi.org/10.1017/S0022112075001450
http://dx.doi.org/10.1017/jfm.2020.300
http://dx.doi.org/10.12988/ams.2014.44302
http://dx.doi.org/10.1122/1.548946
http://dx.doi.org/10.1122/1.548968
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Governing Equations
	Langlois Recursive Approach
	Problem Description
	Problem Solution
	First Order System and the Solution
	Second Order System and the Solution
	Third Order System and the Solution
	Expression for Stream Function Correct to Third Order

	Velocity Components
	First Order Velocity Terms
	Second Order Velocity Terms
	Third Order Velocity Terms
	Expressions for Velocity Components Correct to Third Order

	Pressure Distribution
	First Order Characteristic Pressure Terms and Pressure Drop
	Second Order Characteristic Pressure Terms
	Third Order Characteristic Pressure Terms
	Characteristic Pressure Correct to Third Order 

	Various Important Expressions in Dimensionless Form
	Velocity Components
	Volume Flow Rate
	Wall Shear Stress
	Fractional Rabsorption
	Leakage Flux
	Mean Pressure Drop
	Stream Function

	Graphical Results and Discussion
	Conclusions
	Expression of Characteristic Pressure Correct to Third Order
	References

