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Abstract: In the paper, we propose a new method of constructing cooperative stochastic game in the
form of characteristic function when initially non-cooperative stochastic game is given. The set of
states and the set of actions for any player is finite. The construction of the characteristic function
is based on a calculation of the maximin values of zero-sum games between a coalition and its
anti-coalition for each state of the game. The proposed characteristic function has some advantages
in comparison with previously defined characteristic functions for stochastic games. In particular,
the advantages include computation simplicity and strong subgame consistency of the core calculated
with the values of the new characteristic function.
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1. Introduction

When a non-cooperative game is initially defined, the problem of construction of a cooperative
version of the game is actual if players start acting as a unique coalition to maximize their joint payoff
or minimize joint costs. The classical approach is to define cooperative game in a form of characteristic
function that assigns the value for any coalition of players. Subsequently, based on this function one
can calculate the imputation of the joint payoff allocating it among players. The component of the
imputations may vary if we calculate them based on different characteristic functions. Therefore,
the way of defining this function is important and it has influence on the players’ payoffs in cooperative
game. Moreover, some approaches to define characteristic function make it impossible to apply
in dynamic or differential games because of computational difficulties. Additionally, the way of
constructing characteristic function also influences on the consistency properties of cooperative
solutions that are realized in dynamics.

The choice of the approach on how to define characteristic function also depends on the
background of the considered problem if it arises from an applied area. The existence and uniqueness
issues are also actual when one chooses the way of constructing characteristic function. There exist
different approaches that can be applied to stochastic game. The so-called maxmin and minmax
approaches define the value of the function for coalition S as maxmin and minmax payoff of
coalition S in zero-sum game against coalition of all left-out players [1,2]. Another approach is
proposed in [3,4] when the value of coalition S is defined as its payoff in the Nash equilibrium in the
non-cooperative game between coalition S and left-out players acting individually. The calculation
of characteristic function in two-step procedure is proposed in [5], in which the authors first find an
n-player non-cooperative equilibrium and then allow coalition S to optimize its payoff, assuming
that left-out players use their Nash equilibrium actions found at the first step. The properties of
this function are examined in [6,7]. Another two-stage approach for defining characteristic function
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is proposed in [8], in which the strategies maximizing total payoff of the players are first found.
Subsequently, these strategies are used by the players from coalition S, while the out-coalition players
use the strategies minimizing the total payoff of players from S. The joint payoff of players from the
coalition equals the value of characteristic function for this coalition.

The new simplified method of constructing characteristic function in multistage games is
introduced in [9]. They examine the properties of this function and proved that the corresponding core
is strongly subgame-consistent in multistage game. This property cannot be proved in general case
when the characteristic function is constructed with the classical approaches, like maxmin or minmax.

In the paper, we adopt the method of constructing the characteristic function proposed in [9]
to stochastic games. Based on the values of the characteristic function, one can determine the core.
Moreover, the core satisfies the strong subgame consistency property, which is a refinement of subgame
consistency on the case of set-valued cooperative solutions. The problem of subgame consistency is
originally examined for differential games in [10,11]. The construction of a special payment scheme,
called imputation distribution procedure (see [11]), allows for coping with the problem of time
inconsistency of cooperative solutions. This problem is described for stochastic games in [12–14] in
the case of unique-valued cooperative solutions. The node-consistent core is constructed in dynamic
games played over event trees in [15]. The strong subgame consistency of the set-valued cooperative
solution, like the core, guarantees players to obtain, in total, the solution from initially defined core.
It means that, in any intermediate time period, the solution is the sum of obtained payments up to
the current period, and the core elements of subgame starting from the next time period. The strong
subgame consistency condition is proposed in [16]. The subcore satisfying strong subgame property is
constructed for multistage games in [17]. The problem of subgame consistency is actual for different
classes of dynamic and differential games and it is examined in [18] for stochastic games with finite
duration, in [19] for differential games with finite time horizon, in [20] for multistage games. In the
paper, we construct characteristic function for stochastic game in a special way and calculate the
core while using the values of this function. The core satisfies strong subgame consistency property.
To prove this result, we define the imputation distribution procedure, which determines the payments
to the players in any state realized in the game process.

The rest of the paper is organized, as follows. We describe the model of stochastic games in
Section 2.1. In Section 2.2, we define the new approximated characteristic function for stage games,
and then extend this approach to the case of stochastic game in Section 2.3. We formulate the definition
of the imputation distribution procedure for stochastic games and describe the idea of strongly
subgame consistency of the core in Section 3. We briefly conclude in Section 4.

2. Cooperative Stochastic Games

2.1. Model

Consider a non-cooperative stochastic game G given by

G =

N, Ω, {Γ(ω)}ω∈Ω, π0,
{

p(ω′′|ω′, aω′)
}

ω′ ,ω′′∈Ω
aω′∈∏i∈N Aω′

i

, δ

 , (1)

where

• N = {1, . . . , n} is the set of players.
• Ω = {ω1, . . . , ωk} is the finite set of states.
• Γ(ω) is the game in normal form associated with state ω. The set of players N is common for any

state ω. Let Aω
i be a finite set of actions of player i ∈ N in state ω, aω

i ∈ Aω
i be an action of player

i ∈ N in this state; Kω
i : ∏j∈N Aω

j → R be a payoff function of player i in state ω.
• p(·|ω, aω) : Ω × Aω → ∆(Ω) is a transition function from state ω when action profile

aω ∈ ∏j∈N Aω
j is realized, where ∆(Ω) is a probability distribution over set Ω.
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• π0 = (πω1
0 , . . . , π

ωk
0 ) is an initial state distribution.

• δ ∈ (0, 1) is a common discount factor.

Denote by Gω the subgame of G starting from state ω defined by (1) with π0, such that πω
0 = 1

and πω′
0 = 0 for any state ω′ 6= ω.

We assume that, in stochastic game G, the set of any player’s strategies Hi is stationary.
The stationary strategy of player i is ηi assigning action (maybe mixed) ai ∈ ∆(Aω

i ) to any state
ω. The vector (η1, . . . , ηn) ∈ ∏j∈N Hj is a stationary strategy profile in stochastic game G. It is obvious
that a stationary strategy ηi of player i ∈ N in game G is the stationary strategy of this player in any
subgame Gω.

By the payoff of player i, we assume the expected payoff in stochastic subgame Gω given by

Eω
i (η) = Kω

i (aω) + δ ∑
ω′∈Ω

p(ω′|ω, aω)Eω′
i (η). (2)

where η ∈ H = ∏j∈N Hj is a stationary strategy profile such that η(ω) = aω ∈ ∏j∈N Aω
j . We rewrite

Equation (2) in a vector form and obtain

Ei(η) = Ki(a) + δΠ(η)Ei(η), (3)

where Ei(η) = (Eω1
i (η), . . . , Eωk

i (η))′, Ki(a) = (Kω1
i (aω1), . . . , Kωk

i (aωk ))′. A matrix of transition
probabilities is formed in the following way

Π(η) =


p(ω1|ω1, aω1) . . . p(ωk|ω1, aω1)

p(ω1|ω2, aω2) . . . p(ωk|ω2, aω2)

. . . . . . . . .
p(ω1|ωk, aωk ) . . . p(ωk|ωk, aωk )

 (4)

in which each row contains transition probabilities from a corresponding state.
Equation (3) implies the explicit formula to calculate the expected payoff of player i when the

stationary strategy profile η is realized:

Ei(η) = (Ik − δΠ(η))−1 Ki(a),

where Ik is an identity matrix of size k× k. Inverted matrix (Ik − δΠ(η))−1 always exists for discount
factor δ ∈ (0, 1).

Taking into account the probability distribution π0, we calculate the expected payoff in game G, as

Ēi(η) = π0Ei(η) = π0 (Ik − δΠ(η))−1 Ki(a). (5)

If players cooperate, they find the cooperative strategy profile η∗ maximizing the total expected
payoff, which is

η∗ = arg max
η∈H

∑
i∈N

Ēi(η).

We should notice that η∗ is a pure stationary strategy profile. The profile η∗ is
such that η∗i (ω) = aω∗

i ∈ Aω
i , ω ∈ Ω. We also assume that the profile η∗ is such that

maxη∈H ∑i∈N Eω
i (η) = ∑i∈N Eω

i (η
∗) for any state ω ∈ Ω, which means that the cooperative strategy

profile maximizes the total payoff of the players independently of which state is initial. This assumption
is usually satisfied for most stochastic games.

To define cooperative game when the non-cooperative stochastic game is given, we use the
classical approach and define it in the form of characteristic function v : 2N → R1 whose values
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estimate the "power" of any coalition or the subset of players. In [21], the characteristic function value
for coalition S in subgame starting at any state ω is defined in as maxmin value, which is

vω(S) = val Gω
S , (6)

where Gω
S is a zero-sum stochastic subgame starting at state ω, in which coalition S is a maximizing

player, coalition N\S is a minimizing player. Existence of the value of game Gω
S for stochastic games is

proved in [22].

2.2. Approximated Characteristic Function for State Games

Before we define a characteristic function in a new form, we need to make additional calculations.
First, we consider state games and propose a scheme of calculation of the approximated characteristic
function values for any state. Define characteristic function for a state ω ∈ Ω or one-shot game Γ(ω)

given in normal form while using the maxmin approach:

v(ω, S) = max
aS∈∏

j∈S
Aω

j

min
aN\S∈ ∏

j∈N\S
Aω

j
∑
i∈S

Kω
i (aω

S , aω
N\S), (7)

where maxmin in (7) is found in pure strategies.
Let C(ω) be a non-empty core in the game defined in state ω using c.f. (7), which is

C(ω) =
{
(α1(ω), . . . , αn(ω)) : ∑

i∈S
αi(ω) > v(ω, S), ∀S ⊂ N, ∑

i∈N
αi(ω) = v(ω, N)

}
(8)

Remark 1. We assume that conditions under which the core C(ω) exists for any state ω are satisfied. The core
C(ω) is non-empty if and only if for any function ψ : 2N \∅ → [0, 1], where ∑S∈2N :S3i ψ(S) = 1 for any
i ∈ N, condition (see [23,24])

∑
S∈2N\∅

ψ(S)v(ω, S) ≤ v(ω, N) (9)

holds. Characteristic function v(ω, S) is defined by (7). We refer to the book [25] for further discussion of
non-emptiness of the core.

Second, for any coalition S ⊆ N define maximal value of characteristic function (7) over set Ω:

ŵ(S) = max
ω∈Ω

v(ω, S), (10)

which is the maximal value that coalition S can obtain in state games.
The next step is to define the approximated value of the characteristic function for any state in the

following way. Let for any state ω ∈ Ω the approximated characteristic function w(ω, S) be given as

w(ω, S) =

 ∑
i∈S

Kω
i (aω∗), if S = N,

ŵ(S), if S 6= N.
(11)

In Equation (11), the summarized payoff of the players adopting cooperative action profile aω∗ is
assigned to the grand coalition. The approximated (maximal possible value over all possible states)
values of characteristic function ŵ(S) given by (10) are assigned to any coalition S different from N.
Denote the core constructed with the values of characteristic function (11) as D(ω) and assume that it
is non-empty for any state ω,

D(ω) =
{
(α1(ω), . . . , αn(ω)) : ∑

i∈S
αi(ω) > w(ω, S), ∀S ⊂ N, ∑

i∈N
αi(ω) = w(ω, N)

}
. (12)
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Lemma 1. Let for any coalition S ⊂ N, S 6= N, the inequality ŵ(S) < min
ω∈Ω

v(ω, N) hold. If condition

∑
i∈N

Kω
i (aω∗) = max

aω∈ ∏
j∈N

Aω
j

∑
i∈N

Kω
i (aω), (13)

is true, and the core D(ω) is non-empty for any ω, and then D(ω) ⊂ C(ω).

Proof. If there exists coalition S ⊂ N, S 6= N, such that ŵ(S) > min
ω∈Ω

v(ω, N), then the core D(ω) is

empty. Assuming the non-emptiness of the core D(ω), we consider any imputation α(ω) ∈ D(ω).
If condition (13) is true, it means that ∑

i∈N
αi(ω) = v(ω, N) = w(ω, N).

Subsequently, for any coalition S ⊂ N, we have ∑
i∈S

αi(ω) > w(ω, S) = ŵ(S) = max
ω∈Ω

v(ω, S) >

v(ω, S), which proves that α(ω) ∈ C(ω).

Remark 2. Condition (13) states that the maximal total payoff of the players in state ω coincides with their
payoff if players adopt actions prescribed by the cooperative strategy profile. It may not be satisfied in general
case in dynamic games. If condition (13) is not true, the main result of the paper can be proved, but it requires a
modification in the method of characteristic function definition. We leave this case for future research.

Remark 3. We assume that the approximated core D(ω) is non-empty for any ω. The conditions under which
it is non-empty are similar to the ones given in Remark 1, but in Equation (9) characteristic function w(ω, S)
given by (11) is used. If the conditions of Lemma 1 are satisfied, then D(ω) ⊂ C(ω), and non-emptiness of
approximated core D(ω) implies non-emptiness of core C(ω).

Example 1. Consider three-player stochastic game with two states (ω1 and ω2). The sets of actions of player
1, 2, and 3 in state ω1 (ω2) are {a1, a2}, {b1, b2} and {c1, c2} ({α1, α2}, {ζ1, ζ2}, {γ1, γ2}), respectively.
The payoff functions are given by the following matrices:

• in state ω1:

c1 :

b1 b2( )
a1 (10, 10, 8) (0, 15, 0)
a2 (15, 0, 0) (5, 5, 5)

c2 :

b1 b2( )
a1 (0, 0, 15) (2, 4, 4)
a2 (4, 4, 2) (0, 0, 0)

• in state ω2:

γ1 :

ζ1 ζ2( )
α1 (2, 1, 1) (4, 0, 2)
α2 (0, 4, 2) (7, 5, 3)

γ2 :

ζ1 ζ2( )
α1 (2, 3, 0) (4, 2, 4)
α2 (3, 4, 3) (7, 5, 7)

Player 1 chooses a row, player 2 chooses a column and player 3 chooses a matrix.

The transition probabilities are written in the matrices:

• for state ω1:

c1 :

b1 b2( )
a1 (0.5, 0.5) (0, 1)
a2 (0, 1) (0, 1)

c2 :

b1 b2( )
a1 (0, 1) (0.5, 0.5)
a2 (0.5, 0.5) (1, 0)
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• for state ω2:

γ1 :

ζ1 ζ2( )
α1 (0, 1) (1, 0)
α2 (1, 0) (1, 0)

γ2 :

ζ1 ζ2( )
α1 (0.2, 0.8) (0, 1)
α2 (0, 1) (1, 0)

The first (second) element in any entry of the matrix is the probability of transition from the particular
state and action profile to state ω1 (state ω2). One can easily notice that the probabilistic transitions are
defined in state ω1 when players choose action profiles (a1, b1, c1), (a2, b1, c2) and (a1, b2, c2), and in state
ω2 when players choose action profiles (α1, ζ1, γ2). All other transitions are deterministic.

The discount factor equals 0.9.
Cooperative strategy profile η∗ = (η∗1 , η∗2 , η∗3 ) is such that

η∗1 = (a1, α2), η∗2 = (b1, ζ2), η∗2 = (c1, γ2), (14)

which prescribes any player to choose the first action in state ω1 and the second action in state ω2. The cooperative
strategy profile defines a Markov chain with the structure that is depicted in Figure 1.

Figure 1. The transition probabilities defined by cooperative strategy profile η∗.

The players’ payoffs are (10, 10, 8) in state ω1 and (7, 5, 7) in state ω2. We obtain that the maximal total
payoff of the players in state games coincide with the payoff that players get in states implementing cooperative
strategy profile η∗. However, Theorem 1 is also true for the case when this condition is not satisfied.

First, we calculate the characteristic function v(ω, S) by Equation (7) and its approximation w(ω, S)
by (11) for state games. The values of these functions are represented in Table 1.

Table 1. Values of characteristic function v and approximated characteristic function w for states ω1 and ω2.

S {1, 2, 3} {1, 2} {1, 3} {2, 3} {1} {2} {3}
v(ω1, S) 28 8 10 10 0 0 0
v(ω2, S) 19 12 6 8 2 1 1
w(ω1, S) 28 12 10 10 2 1 1
w(ω2, S) 19 12 10 10 2 1 1

The cores of state games C(ω) and D(ω) calculated with values of functions v(ω, S) and w(ω, S) by
Formulae (8) and (12) are non-empty for any ω and represented on Figures 2 and 3 for ω1 and ω2 respectively.
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(8,0,20)

(0,0,28)

(0,8,20)

(18,0,10)

(28,0,0)

(18,10,0) (10,18,0)

(0,28,0)

(0,18,10)

(11,1,16) (2,10,16)

(2,18,8)

(18,1,9)

(18,9,1) (9,18,1)

Figure 2. The core C(ω1) (gray region) and approximated core D(ω1) (blue region inside gray region)
for ω1 state game.

(17,1,1)
(11,7,1) (9,9,1) (6,12,1)

(2,16,1)

(2,10,7)(3,9,7)(9,3,7)(11,1,7)

(2,1,16)

(2,12,5)

Figure 3. The core C(ω2) (gray region) and approximated core D(ω2) (blue region inside gray region)
for ω2 state game.

2.3. New Approximated Characteristic Function for Stochastic Games

We propose a new method of determining characteristic function for stochastic games based on
the values of approximated characteristic function defined in states and given by Formula (11).

We assume that coalition S at any state of the game may obtain ŵ(S) as maximum. Accordingly,
this value is the maximal value that the coalition can get, regardless of the state that currently
appears. If we summarize this value over infinite horizon with discount factor δ, we can calculate the
approximation or the upper bound of the payoff that coalition S can get in stochastic subgame starting
from state ω, which is

w̄(ω, S) =


ŵ(S) + δŵ(S) + . . . =

1
1− δ

ŵ(S), if S ⊂ N, S 6= N,

∑
i∈N

Eω
i (η

∗), if S = N.
(15)
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One should notice that, according to Equation (15), we save the value of characteristic function
for grand coalition without approximation. The reason is that, when we define the allocation of a joint
payoff, the players should redistribute the value that they obtain using cooperative strategy profile,
but not the approximated one. The cooperative stochastic subgame is defined by the set of players
N and function (15). In the following, we omit the set of players and refer the cooperative stochastic
subgame as w̄(ω, S) given by (15).

Let D̄(ω) be the core calculated with the values of function (15), i.e.,

D̄(ω) =
{
(α1(ω), . . . , αn(ω)) : ∑

i∈S
αi(ω) > w̄(ω, S), ∀S ⊂ N, ∑

i∈N
αi(ω) = w̄(ω, N)

}
. (16)

Let D̄(ω) be non-empty for any ω ∈ Ω. We can compare the core D̄(ω) constructed with the
values of approximated function (15) and the core defined with the values of characteristic function
defined with the classical approach. For any subgame Gω , we define characteristic function using the
maxmin approach:

v̄(ω, S) = max
ηS∈∏

j∈S
Hj

min
ηN\S∈ ∏

j∈N\S
Hj

∑
i∈S

Eω
i (ηS, ηN\S). (17)

Let C̄(ω) be a non-empty core of subgame Gω constructed with the values of function (17).

Lemma 2. Let for any coalition S ⊂ N, S 6= N the inequality

ŵ(S) < min
ω∈Ω

v(ω, N) (18)

hold, and D̄(ω) is non-empty for any ω, then D̄(ω) ⊂ C̄(ω).

Proof. If ŵ(S) < min
ω∈Ω

v(ω, N) is not satisfied, then the core D̄(ω) is empty by construction. Consider

any imputation ᾱ(ω) ∈ D̄(ω) and prove that it belongs to the set C̄(ω).
First, ∑

i∈N
ᾱi(ω) = w̄(ω, N) = ∑

i∈N
Eω

i (η
∗) = v̄(ω, N).

Second, we prove that ∑
i∈S

ᾱi(ω) > v̄(ω, S) taking into account that ∑
i∈S

ᾱi(ω) > w̄(ω, S) for any

S 6= N. We prove that w̄(ω, S) > v̄(ω, S).
By definition, we have

v̄(ω, S) = max
ηS

min
ηN\S

∑
i∈S

Eω
i (ηS, ηN\S),

and we write the functional equation for the right-hand side of this equality and obtain the following

max
ηS

min
ηN\S

∑
i∈S

Eω
i (ηS, ηN\S) = max

ηS
min
ηN\S

{
∑
i∈S

Kω
i (aω

S , aω
N\S) + δp(ω, aω) ∑

i∈S
Ei(ηS, ηN\S)

}
,

where p(ω, aω) is a vector
(

p(ω′|ω, aω) : ω′ ∈ Ω
)
.

Let profile (ηS, ηN\S) be such that maxmin is reached at this profile, we can write the functional
equation, as follows:

∑
i∈S

Eω
i (ηS, ηN\S) = (Ik − δΠ(ηS, ηN\S))

−1 ∑
i∈S

Ki(aS, aN\S) 6
1

1− δ
max
ω∈Ω

max
aS

min
aN\S

∑
i∈S

Kω
i (aω

S , aω
N\S)

=
1

1− δ
max
ω∈Ω

v(ω, S) = w̄(ω, S).

In the last inequality, we use the property of stochastic matrices, i.e., the sum of the elements in
any row of matrix (Ik − δΠ(ηS, ηN\S))

−1 equal 1/(1− δ), because Π(ηS, ηN\S) is a stochastic matrix.
The lemma is proved.
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Remark 4. We assume non-emptiness of the approximated core D̄(ω) in stochastic game with any initial state
ω. If condition (18) in Lemma 2 is satisfied, the non-emptiness of the approximated cores D(ω) for any ω implies
the non-emptiness of approximated core D̄(ω). It follows from definition of characteristic function w̄(ω, S) and
formula (10). Moreover, the non-emptiness of approximated core D̄(ω) implies non-emptiness of core C̄(ω).

Example 2. (continuation of Example 1) We continue calculations for stochastic game described in Example 1.
Define characteristic function v̄ by (17) and approximated characteristic function w̄ by (15). The values of these
functions are given in Table 2.

Table 2. Values of characteristic function v̄ and approximated characteristic function w̄ for stochastic
game starting from states ω1 and ω2.

S {1, 2, 3} {1, 2} {1, 3} {2, 3} {1} {2} {3}
v̄(ω1, S) 252.07 92.41 62.01 64.00 9.47 9.00 9.00
v̄(ω2, S) 245.86 95.17 77.87 60.00 10.52 10.00 10.00
w̄(ω1, S) 252.07 120.00 100.00 100.00 20.00 10.00 10.00
w̄(ω2, S) 245.86 120.00 100.00 100.00 20.00 10.00 10.00

The cores C̄(ω) and D̄(ω) constructed with the values of functions v̄ and w̄, respectively, are non-empty
and depicted on Figures 4 and 5 for initial states ω1 and ω2, respectively. One can notice that D̄(ω) ⊂ C̄(ω)

for any ω.

(234.07, 9.00, 9.00)

(188.07, 9.00, 55.00)

(20.00, 100.00, 132.07)

(9.47, 82.94, 159.66)

(152.07, 10.00, 90.00)

(9.47, 9.00, 233.60)

(110.00, 10.00, 132.07)

(20.00, 152.07, 80.00)

(9.47, 190.06, 52.54)

(9.47, 233.60, 9.00)

(53.01, 190.06, 9.00)

(90.00, 152.07, 10.00)(152.07, 90.00, 10.00)

(188.07, 55.00, 9.00)

(83.41, 9.00, 159.66)

Figure 4. The core C̄(ω) (gray region) and approximated core D̄(ω) (blue region inside gray region) in
stochastic game with ω1 initial state.

The approximated core D̄(ω1) is defined as the set

D̄(ω1) =
{
(ᾱ1, ᾱ2, ᾱ3) :ᾱ1 + ᾱ2 + ᾱ3 = 252.07, ᾱ1 + ᾱ2 > 120.00, ᾱ1 + ᾱ3 > 100.00,

ᾱ2 + ᾱ3 > 100.00, ᾱ1 > 20.00, ᾱ2 > 10.00, ᾱ3 > 10.00
}

.

The approximated core D̄(ω2) is defined as the set

D̄(ω2) =
{
(ᾱ1, ᾱ2, ᾱ3) :ᾱ1 + ᾱ2 + ᾱ3 = 245.86, ᾱ1 + ᾱ2 > 120.00, ᾱ1 + ᾱ3 > 100.00,

ᾱ2 + ᾱ3 > 100.00, ᾱ1 > 20.00, ᾱ2 > 10.00, ᾱ3 > 10.00
}

.
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(225.86, 10.00, 10.00)

(185.86, 10.00, 50.00)

(145.86, 10.00, 90.00)

(110.10, 10.00, 125.86)

(85.17, 10.00, 150.69)

(10.52, 10.00, 225.34)

(10.52, 84.65, 150.69)

(20.00, 100.00, 125.86)

(20.00, 145.86, 80.00)

(10.52, 167.99, 67.35)

(10.52, 225.34, 10.00)

(67.87, 167.99, 10.00)(185.86, 50.00, 10.00)

(145.86, 90.00, 10.00) (90.00, 145.86, 10.00)

Figure 5. The core C̄(ω2) (gray region) and approximated core D̄(ω2) (blue region inside gray region)
in stochastic game with ω2 initial state.

3. Strongly Subgame-Consistent Core in Stochastic Games

3.1. Imputation Distribution Procedure

In cooperation, players follow the cooperative strategy profile η∗ and then agree on the core as
a cooperative solution of the game or the set of possible imputations of the joint payoff in the game.
We assume that the core for any subgame Gω is calculated based on function (15), which is D̄(ω).
Consider an imputation ᾱ(ω) ∈ D̄(ω). Obviously, if the players are paid step by step according to
initially given payoff functions Kω

i , i ∈ N, we cannot guarantee that they will get the components
of imputation ᾱ(ω) as an expected payoff in subgame Gω. Therefore, we define the scheme of state
payments that, in total, will give the players to obtain the components of imputation ᾱ(ω).

Definition 1. [10,11] We call the collection of vectors (βi : i ∈ N), where βi = (βi(ω1), . . . , βi(ωk)), βi(ω)

is a payment to player i in state ω in cooperative stochastic game, an imputation distribution procedure (IDP) of
imputation ᾱ(ω) ∈ D̄(ω) if

1. ∑
i∈N

βi(ω) = ∑
i∈N

Kω
i (aω∗) for any ω ∈ Ω;

2. ᾱi(ω) = Bω
i , where Bω

i is the expected discounted sum of payments to player i in stochastic subgame
starting from state ω, according to procedure β.

The expected sum of payments to player i made according to IDP can be calculated by formula
(see [14]):

Bω
i = π0(I− δΠ(η∗))−1βi,

where π0 is such that πω
0 = 1 and πω′

0 = 0 for any ω′ 6= ω.

Remark 5. The IDP determined in Definition 1 for an imputation ᾱ(ω) ∈ D̄(ω) may be non-unique.

In the following section, we describe a property of the imputations from the core and
corresponding IDP, which allows to narrow the set of IDP.

3.2. Strongly Subgame-Consistent Core

We formulate the property of strongly subgame consistency of the core and propose sufficient
conditions of strongly subgame consistency of the core in stochastic games with characteristic
function (15). We suppose that the cores of stochastic game G and any subgame Gω, ω ∈ Ω,
are non-empty.
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In cooperation, players agree on the joint implementation of cooperative strategy profile η∗

and expect to obtain the components of the imputation belonging to the core D̄(ω) in the subgame
stating from ω. Reaching an intermediate state ω ∈ Ω, Player i chooses action aω∗

i prescribed by
cooperative strategy profile η∗ and gets payoff Kω

i (aω∗). If the players recalculate the solution in the
current subgame and find solution of cooperative subgame Gω , we would assume that the cooperative
solution is chosen from the core D̄(ω). It would be reasonable to require that the payoff received
by a player in state ω summarized with the expected sum of any imputations from the cores D̄(ω′),
ω′ ∈ Ω, following state ω, would be an imputation from the core D̄(ω). If this property holds for any
intermediate state ω ∈ Ω, then the core of cooperative stochastic game with characteristic function (15)
is strongly subgame-consistent.

To determine a strongly subgame-consistent core, we need to define the so-called expected core at
state ω, i.e., we define the set of expected imputations belonging to the cores, which are cooperative
solutions of the following subgames. We determine the expected core of state ω ∈ Ω, as follows:

ED̄(ω) =
{

δ ∑
ω∈Ω

p(ω′|ω, aω∗)ᾱ(ω′), ᾱ(ω′) ∈ D̄(ω′)
}

.

Definition 2. We call the core D̄(ω) strongly subgame consistent solution of cooperative stochastic game with
approximated characteristic function w̄(ω, S) starting from state ω if for any imputation ᾱ(ω) ∈ D̄(ω) there
exists an IDP β = (βi : i ∈ N), where βi = (βi(ω) : ω ∈ Ω), satisfying condition:

β⊕ ED̄ ⊂ D̄, (19)

where ED̄ is the vector (ED̄(ω1), . . . , ED̄(ωk))
′ of expected cores for states ω1, . . . , ωk respectively, D̄ is a

vector with elements which are sets, i.e., D̄ = (D̄(ω1), . . . , D̄(ωk))
′.

Remark 6. The inclusion (19) is written in a vector form. To explain it, we write the first row of vector
inclusion (19):

β(ω1)⊕ ED̄(ω1) ⊂ D̄(ω1)

where β(ω1) ∈ Rn, ED̄(ω1) ⊂ Rn, D̄(ω1) ⊂ Rn. The operation a⊕ C, where a ∈ Rn and C is a set in Rn,
is defined as the set {a + c, for all c ∈ C}.

Theorem 1. The core D̄(ω), if it exists, is strongly subgame-consistent.

Proof. Following Definition 2 we need to prove that there exists an IDP of the elements from the core
D̄(ω) defined in (16) satisfying two properties from Definition 1, such that inclusion (19) is true.

Let for any imputation ᾱi(ω) ∈ D̄(ω), the IDP is calculated as

βi = (Ik − δΠ(η∗))ᾱi, (20)

where βi = (βi(ω1), . . . , βi(ωk))
′ and ᾱi = (ᾱi(ω1), . . . , ᾱi(ωk))

′.
First, we prove that β, defined in (20), satisfies properties 1 and 2 in Definition 1.

1. Find the sum of βi over the set of players, we obtain

∑
i∈N

βi = (Ik − δΠ(η∗)) ∑
i∈N

ᾱi = (Ik − δΠ(η∗))(v̄(ω1, N), . . . , v̄(ωk, N))′

= (Ik − δΠ(η∗))(Ik − δΠ(η∗))−1 ∑
i∈N

Ki(a∗) = ∑
i∈N

Ki(a∗),

or for any ω ∈ Ω the equality ∑i∈N βi(ω) = ∑i∈N Kω
i (aω∗) is true.
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2. We prove that ᾱi(ω) = Bω
i or in vector form ᾱi = Bi, where Bi = (Bi(ω1), . . . , Bi(ωk))

′. We have

Bi = (Ik − δΠ(η∗))−1βi = (Ik − δΠ(η∗))−1(Ik − δΠ(η∗))ᾱi = ᾱi.

Therefore, the payment vector βi, i ∈ N, is the distribution procedure of imputation ᾱi.
Now, we prove that inclusion (19) holds. Let βi be given by Equation (20),

there ᾱi = (ᾱi(ω1), . . . , ᾱi(ωk))
′ and ᾱi(ωj) ∈ D̄(ωj) for any j = 1, . . . , k. Consider the sum

β(ω) + ε(ω), where ε(ω) is any vector from the expected core ED̄(ω). Substituting expressions
of βi from Equation (20) and element of the expected core into the sum, we get

β + ε = (Ik − δΠ(η∗))ᾱ + δΠ(η∗)ᾱ = ᾱ ∈ D̄,

which proves the theorem.

Theorem 1 gives the method of construction of payment scheme of any element from the core D̄
defined by (16) while using values of function (15).

Example 3. (continuation of Example 1 and 2) We demonstrate how to define IDP using a method from the
proof of Theorem 1. Let for ω1 and ω2 the core imputations ᾱ(ω1) = (100.00, 100.00, 52.07) ∈ D̄(ω1) and
ᾱ(ω2) = (50.00, 95.86, 100.00) ∈ D̄(ω2) be chosen. To calculate IDP by Formula (20), we need to define
matrix Π(η∗), which is

Π(η∗) =

(
0.5 0.5
0 1

)
for cooperative strategy profile η∗ determined by (14).

Using formula (20) with ᾱ1 = (100.00, 50.00), ᾱ2 = (100.00, 95.86), ᾱ3 = (52.07, 100.00), we obtain

β1 = (32.50,−40.00),

β2 = (11.86, 5.86),

β3 = (−16.36, 53.14),

where the first component of vector βi is the payment to player i in state ω1 and the second component is the
payment in state ω2. We can easily check that collection of vectors (βi : i ∈ N) satisfies conditions from
Definition 1 of IDP.

The approximated cores D̄(ω1) and D̄(ω2) are strongly subgame-consistent, which is proved in Theorem 1.

Remark 7. The new method of construction of the characteristic function or the so-called approximated
characteristic function proposed in the paper allows not only to find the strongly subgame-consistent subset of
the core, but also simplifies calculations. In the example, each player has two actions in any state. Therefore,
he has four pure stationary strategies in a stochastic game, and there are 64 strategy profiles in the game.
The calculations of maxmin payoff of a coalition in such games is a complicated computational problem. The new
approach allows for avoiding these calculations using the values of approximated characteristic function defined
in state games to determine the function for a stochastic game.

4. Conclusions

We have proposed a new method of constructing the characteristic function in stochastic
games. The method simplifies calculations in comparison with the previously introduced approaches.
An additional advantage of the method is that the core calculated with the values of this
characteristic function satisfies strongly subgame consistency. This property positively characterizes
the realization of the imputations from the core in a dynamic game process. The property of strongly
subgame consistency is applied for set-valued cooperative solutions, like the core. We can briefly
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characterize the possible directions for future research in this area. We can also consider additional
simplifications in characteristic function definitions, which allow not only to keep the strong subgame
consistency properties of the core, but also to reduce the number of calculations defining cooperative
stochastic game.
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