
mathematics

Article

On the Dual and Inverse Problems of Scheduling
Jobs to Minimize the Maximum Penalty

Alexander A. Lazarev 1 , Nikolay Pravdivets 1,* and Frank Werner 2

1 Institute of Control Sciences, 117997 Moscow, Russia; jobmath@mail.ru
2 Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, 39106 Magdeburg, Germany;

frank.werner@ovgu.de
* Correspondence: pravdivets@ipu.ru; Tel.: +7-495-334-87-51

Received:11 June 2020; Accepted: 6 July 2020; Published: 10 July 2020
����������
�������

Abstract: In this paper, we consider the single-machine scheduling problem with given release dates
and the objective to minimize the maximum penalty which is NP-hard in the strong sense. For this
problem, we introduce a dual and an inverse problem and show that both these problems can be
solved in polynomial time. Since the dual problem gives a lower bound on the optimal objective
function value of the original problem, we use the optimal function value of a sub-problem of the
dual problem in a branch and bound algorithm for the original single-machine scheduling problem.
We present some initial computational results for instances with up to 20 jobs.
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1. Introduction

We consider single-machine scheduling problems, where a set of n jobs N = {1, 2, . . . , n} has
to be processed on a single machine starting at time τ. For each job j, a release date rj, a processing
time pj and a due date dj are given. Many scheduling problems require the minimization of some
maximum term. Denote by Cj the completion time of job j, then the minimization of the makespan
(i.e., the maximum completion time of the jobs)

Cmax = max
j=1,...,n

Cj,

or the minimization of maximum lateness

Lmax = max
j=1,...,n

{Cj − dj}

are well-known examples of such an optimization criterion.
In this paper, we consider two related problems of such a min-max problem, namely a dual

problem as well as an inverse problem of the single-machine scheduling problem with given release
dates and minimizing the maximum penalty. While the original problem 1|rj|Lmax is NP-hard in the
strong sense [1], we prove that both the dual and inverse problems of this problem can be solved in
polynomial time.

Due to the NP-hardness of the problem 1|rj|Lmax, several branch and bound algorithms have
been developed and special cases of the problem have been considered, see e.g., [2–9]. In [9], it has
been shown that if the release dates for all jobs are from the interval [dj− pj− A, dj− A] for all jobs and
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some constant A, the problem can be solved in O(n log n) time if no machine idle times are allowed
and in O(n2 log n) time if machine idle times are allowed. Another important special case of this
problem has been considered in [10]. In that paper, it is shown that for naturally bounded job data,
the problem can be polynomially solved. More precisely, a polynomial time solution of the variant
is given when the maximal job processing time and the differences between the job release dates are
bounded by a constant. The binary search procedure presented in this work determines an optimal
solution in O(n2 log n log pmax) or O(dmaxn log n log pmax) time, where pmax is the maximal processing
time and dmax is the maximal due date.

In [11], some computational experiences and applications for the more general case with additional
precedence constraints are reported. Their algorithm turned out to be superior to earlier algorithms.
Some applications to job shop scheduling are also discussed. A more recent branch and bound
algorithm for this single-machine problem with release dates and precedence constraints has been
given in [12]. This algorithm uses four heuristics for finding initial upper bounds and a variable
neighborhood search procedure. It solved most considered instances within one minute of CPU time.
Several approximation schemes for four variants of the problem with additional non-availability or
deadline constraints have been derived in [13]. An approximation algorithm for this single-machine
problem with additional workload dependent maintenance duration has been presented in [14].
This algorithm is even optimal for some special cases of the problem. A hybrid metaheuristic search
algorithm for the single-machine problem with given release dates and precedence constraints has
been developed in [15]. Computational tests have been made using own instance sets with 100 jobs
and instances from [12] with up to 1000 jobs. The hybridization of the elektromagnetism algorithm
with tabu search leads to a tradeoff between diversification and intensification strategies. The metric
approach is another recent possibility for solving the problem 1|rj|Lmax approximately with guaranteed
maximal error, see e.g., [16]. The introduced metric delivers an upper bound on the absolute error of
the objective function value. Taking a given instance of some problem and using the introduced metric,
the nearest instance is determined for which a polynomial or pseudo-polynomial algorithm is known.
Then a schedule is constructed for this instance and applied to the original instance.

There have been also considered problems with several optimization criteria. In [17], the
single-machine problem with the primary criterion of minimizing maximum lateness and the secondary
criterion of minimizing the maximum job completion time has been investigated. The author gives
dominance properties and conditions when the Pareto-optimal set can be found in polynomial time.
The derived properties allow extension of the basic framework to exponential implicit enumeration
schemes and polynomial approximation algorithms. The problem of finding the Pareto-optimal set for
two criteria in the case when there are constraints on the source data have been considered in [18,19].
In [18], the idea of the dual approach is considered in detail, but there is no sufficient experimental
study of the effectiveness of this approach. Lazarev et al. [20] considered the problem of minimizing
maximum lateness and the makespan in the case of equal processing times and proposed a polynomial
time approach for finding the Pareto-optimal set of feasible solutions. They presented two approaches,
the efficiency of which depends on the number of jobs and the accuracy of the input-output parameters.

The dual and inverse problems considered in this paper are maximization problems. In the
literature, there exist some works on other single-machine maximization problems, usually under the
assumption of no inserted idle times between the processing of jobs on the machine. Maximization
problems in single-machine problems were considered e.g., in [21,22]. The complexity and some
algorithms for single-machine total tardiness maximization problems have been discussed in [23].
In [24], a pseudo-polynomial algorithm for the single-machine total tardiness maximization problem
has been transformed by a graphical algorithm into a polynomial one.

The remainder of this paper is as follows. In Section 2, we introduce the dual problem of the
single-machine problem, where the maximum penalty term of a job should be minimized. Section 3
considers an inverse problem, where the minimum of the penalty terms should be maximized.
The solution of this dual problem is embedded into a branch and bound algorithm for the original



Mathematics 2020, 8, 1131 3 of 15

problem. Some computational results for this branch and bound algorithm are given in Section 4. The
paper finishes with some concluding remarks.

2. The Dual Problem

Let us consider the general formulation of the NP-hard problem of minimizing the maximum
penalty or cost ϕmax for a set of jobs on a single machine, i.e., problem 1 | rj | ϕmax. The machine
cannot process more than one job of the set N = {1, . . . , n} at a moment. Preemptions of the processing
of a job are prohibited. Let ϕjk (Cjk (π)) denote the penalty for job j ∈ N if it is processed as the k-th job
in the sequence π = (j1, j2, . . . , jk, . . . , jn). We assume that all ϕjk (Cjk (π)), k = 1, 2, . . . , n, are arbitrary
non-decreasing penalty functions.

By µ∗ we denote the optimal value of the objective function:

µ∗ = min
π∈Π(N)

max
k=1,...,n

ϕjk (Cjk (π)), (1)

where Π(N) = {π1, π2, . . . , πn!} denotes the set of all permutations (schedules) of the jobs of the set N.
In the scheduling literature, many special cases of the following general dual problem are

considered. One wishes to find an optimal job sequence π∗ and the corresponding objective function
value ν∗ such that

ν∗ = max
k=1,...,n

min
π∈Π(N)

ϕjk (Cjk (π)). (2)

For convenience, we introduce a notation that takes into account the position of the job in the
schedule. Let a schedule (job sequence) π ∈ Π(N) be given by π = (j1, j2, . . . , jn). For the job, which is
processed as the k-th job in the sequence, k = 1, 2, . . . , n, under a schedule π, we denote:

νk = min
π∈Π(N)

ϕjk (Cjk (π)), k = 1, 2, . . . , n. (3)

Obviously,
ν∗ = max

k=1,...,n
νk. (4)

Lemma 1 ([25]). Let ϕj(t), j = 1, 2, . . . , n, be arbitrary non-decreasing penalty functions in the problem
1 | rj | ϕmax. Then we have νn ≥ νk for all k = 1, 2, . . . , n, i.e., ν∗ = νn.

Proof. Suppose that there exists a number k, k < n, such that νk > νn. Assume that πn = (j1, j2, . . . , jn)
is a schedule for which the value νn is obtained. Then we consider the schedule

π = (jn−k+1, jn−k+2, . . . , jn, j1, j2, . . . , jn−k).

Please note that under the schedule π, the job jn will be carried out as the k-th job in the sequence.
Since Cjn(πn) ≥ Cjn(π), we have

νn = ϕjn(Cjn(πn)) ≥ ϕjn(Cjn(π)) ≥ νk.

Due to the assumption νk > νn, we obtain the inequality

νk > νn ≥ νk

which is a contradiction. The lemma has been proved.
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Thus, the solution of the dual problem 1|rj|φmax is reduced to the problem of finding the value νn.
We enumerate all jobs in order of non-decreasing release dates: ri1 ≤ ri2 ≤ · · · ≤ rin . Due to

νn = min
π∈Π(N)

ϕjn(Cjn(π)),

we will put each of the jobs j of the set N onto the last (i.e., the n-th) position. The other n− 1 jobs of
the set N \ {j} are arranged in their original order starting at time τ. This gives the earliest completion
time of processing the jobs from the set N \ {j}. This procedure is formally summarized in Algorithm 1.
The input data of Algorithm 1 is the pair (N, τ), where τ is used to calculate Cj.

Algorithm 1: Solution of the dual problem of the problem 1 | rj | ϕmax

1. Construct the schedule πr = (i1, i2, . . . , in), in which all jobs are sequenced according to
non-decreasing release dates: ri1 ≤ ri2 ≤ · · · ≤ rin .

2. For k = 1, 2, . . . , n, find the value ϕik (Cik (πk)) for the schedule πk = (πr \ ik, ik).
3. Find the value ν∗ = min

k=1,...,n
ϕik (Cik (πk)) and the job ik, which gives the value ν∗.

The complexity of Algorithm 1 can be estimated as follows. We need O(n log n) operations to
construct the schedule πr. We need O(n) operations to find each of the n values ϕik (Cik (πk)). Therefore,
to determine the value ν∗ and the corresponding job ik, for which the value ν∗ is obtained, no more
than O(n2) operations are required.

Theorem 1 ([25]). Let ϕj(t), j = 1, 2, . . . , n, be arbitrary non-decreasing penalty functions for the problem
1 | rj | ϕmax. Then the inequality µ∗ ≥ ν∗ holds.

Proof. Suppose the opposite, i.e., there exists an instance of the problem 1 | rj | ϕmax, for which
the inequality µ∗ < ν∗ holds. Let π∗ = (j1, j2, . . . , jn) be an optimal schedule for this instance.
Then we have

ϕjn(Cjn(π
∗)) ≤ µ∗ < ν∗,

which contradicts equality (3):
ν∗ = νn = min

π∈Π(N)
ϕjn(Cjn(π)).

The theorem has been proved.

The obtained estimate can be efficiently used in constructing schemes of a branch and bound
method for solving the problem 1 | rj | ϕmax, and for estimating the error of approximate solutions
when the branch and bound algorithm stops without finding an optimal solution.

We denote by {N′, τ′, ν′, π′, B′} the sub-problem of processing the jobs of the set N′ ⊆ N from
time τ′ ≥ τ on according to some partial sequence π′ for the jobs of the set N \ N′, where ν′ is the
lower bound obtained by solving the dual problem of this instance, τ′ = Cmax(π′, τ) is the start time
of the planning horizon for the jobs from the set B′, which is equal to the makespan value for the
sequence π′, and τ is the time when the machine is ready to process the jobs from the set N. B′ is the
set of jobs that cannot be placed on the corresponding first position of the schedule.

The subsequent Algorithm 2 implements one of the possible schemes of the branch and bound
method using the solution of the dual problem. The branching in Algorithm 2 is carried out as a result
of dividing the current sub-instance into two instances: put the job f (the job with the smallest due
date from the set of jobs ready for processing) at the next position in the schedule and prohibit the
inclusion of the job f at the next position in the schedule (by increasing the possible start time of job f ).
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Denote
rj(τ) = max{rj, τ}, r(N, τ) = min

j∈N
rj(τ).

Let |N| > 1. We choose a job f = f (N, τ) from the set N such that

f (N, τ) = arg min
j∈N\B

{
dj | rj(τ) = r(N, τ)

}
.

If N = {i}, then f (N, τ) = i for all τ. Here B is a set of jobs that cannot be placed on the current
first position. Denote by π∗ the currently best schedule constructed for all jobs.

We note that a deeper comparative discussion of the characteristics of the particular search
strategies can be found in [26,27].

Algorithm 2: Solution of the problem 1 | rj | Lmax by the branch and bound method based on
the solution of the dual problem

1. Initial step
Let π∗ = ∅. The list of instances contains the original instance {N, τ, ν, ∅, ∅}, where ν is
a lower bound on the optimal objective function value obtained by solving the dual
problem of this instance.

2. Main step

(a) From the list of instances, select an instance {N′, τ′, ν′, π′, B′} with a minimal lower
bound ν′.

(b) Find the job f = f (N′, τ′) from the set N′ \ B′ with the smallest due date from the
number of jobs ready for processing at time τ′.

(c) Replace the instance {N′, τ′, ν′, π′, B′} by the two instances {N1, τ1, ν1, π1, B1} and
{N2, τ2, ν2, π2, B2} in the list of instances, where:

- N1 = N′ \ { f }, τ1 = max{r f , τ′}+ p f , B1 = ∅, π1 = (π′, f ), ν1 is a lower
bound obtained by solving the dual problem of this instance by Algorithm 3;

- N2 = N′, τ2 = τ′, B2 = B′ ∪ { f }, π2 = π′, ν2 is a lower bound obtained by
solving the dual problem of this instance by Algorithm 3.

(d) If, after completing this step of the algorithm, we obtain {π1} = N, that is, all jobs
are ordered, then π∗ = arg min{Lmax(π1, τ), Lmax(π∗, τ)}.

(e) Exclude all instances {N′, τ′, ν′, π′, B′}, for which ν′ ≥ Lmax(π∗, τ).

3. Termination step
If the list of instances is empty, STOP, otherwise repeat the main step 2.

To find the value ν in step 2(c), we need to modify Algorithm 1 taking into account a list B of jobs
that cannot be placed on the current position. The input data of Algorithm 3 is the triplet (N, τ, B),
where τ is used to calculate Cj.
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Algorithm 3: Modification of the solution algorithm for the dual problem of the problem
1 | rj | ϕmax with respect to a list of jobs that cannot be on the first position

1. Construct the schedule πr = (i1, i2, . . . , in), in which all jobs are sequenced according to
non-decreasing release dates: ri1 ≤ ri2 ≤ · · · ≤ rin .

2. For k = 1, 2, . . . , n, if N \ (B ∪ {ik}) 6= ∅, find a job

il = arg min
j∈N\(B∪{ik})

rj

and construct the schedule πk = (il , πr \ {il , ik}, ik).
Find the value ϕik (Cik (πk)).
If N \ (B ∪ {ik}) = ∅, then we assume Cik = +∞.

3. Find the value ν∗ = min
k=1,...,n

ϕik (Cik (πk)) and the job ik, which gives the value ν∗.

It is easy to see that this algorithm can be used to solve the more general problem 1 | rj | ϕmax.
In addition, if the algorithm is stopped without an empty list of instances due to a time limit, the current
schedule π∗ can be taken as an approximate solution of the problem.

Hence, although the original problem 1 | rj | ϕmax is NP-hard in the strong sense (recall that
problem 1 | rj | Lmax is NP–hard in the strong sense), the dual problem turned out to be
polynomially solvable.

If precedence relations are specified between the jobs by an acyclic graph G, then the dual problem
of the problem 1 | rj, prec | ϕmax can also be solved in a similar way. Since the argumentation is similar,
we skip the details. Here, the core is to solve the problem 1 | rj, prec | Cmax. Jobs without successors
according to the precedence graph G will be put one-by-one to the last positions in the job sequence.
Thus, the dual problem of the problem 1 | rj, prec | ϕmax is also polynomially solvable.

For problems with m > 1 machines, e.g., problem Pm | rj, prec | ϕmax, the core consists of solving
the dual problem, which is the partition problem. This dual problem is NP–hard in the ordinary sense.

Thus, although in mathematical programming the original and dual problems have usually the
same complexity status, it turned out that the dual problems of the scheduling problems considered
in this paper have a lower complexity than the original problems. This interesting fact should be
investigated further in more detail also for other scheduling problems.

3. The Inverse Problem of the Maximum Lateness Problem

The inverse problem of the NP-hard problem of minimizing maximum lateness 1 | rj | Lmax

consists of finding a schedule π, which reaches the maximum minimal lateness and finding the value

λ∗ = max
π∈Π(N)

min
k=1,...,n

Ljk (Cjk (π)). (5)

Please note that for this problem, inserted idle times of the machine are prohibited.
This problem was solved only for the case of simultaneous availability of the set N for processing,

i.e., rj = 0, for all j ∈ N in [28]. We consider the general case of the problem 1 | rj | max Lmin.

Lemma 2. There exists an optimal schedule π = (i1, . . . , in) for the problem 1 | rj | max Lmin, for which

dik − pik ≤ dik+1
− pik+1

, k = 2, 3, . . . , n− 1, (6)

and
λ∗ = min

k=1,...,n
Lik (Cik (π)).
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Proof. Assume that at least one of inequalities (6) is not satisfied for an optimal schedule π′ =

(j1, . . . , jn) and let
λ∗ = min

k=1,...,n
Lik (Cik (π

′)).

In what follows, the proof will consist of two stages, which can be repeated several times.
Step 1. If there are no machine idle times in the schedule π′, then go to step 2. Let there be idle

times according to schedule π′, and consider the last of them:

Cjk < rjk+1
and rjm ≤ Cjm−1 , m = k + 2, . . . , n.

Construct the schedule π′′ = (jk+1, j1, . . . , jk, jk+2, . . . , jn). Since

Cj(π
′′) ≥ Cj(π

′) for all j ∈ N,

the value of the minimal lateness will not decrease. There will be no idle time under the schedule π′′,
and the optimal value λ∗ will be saved. Set π′ := π′′ and go to step 2.

Step 2. If the schedule π′ meets the conditions of Lemma 2, the proof is completed. If there exist
two jobs jl , jl+1, for which

djl − pjl > djl+1
− pjl+1

,

then exchange the jobs jl , jl+1 which yields the schedule

π′′ = (j1, . . . , jl−1, jl+1, jl , jl+2, . . . , jn).

As there are no machine idle times under the schedule π′, we have

rjl ≤ Cjl−1
(π′).

There are the following possible cases:
(1) Let rjl+1

≤ Cjl−1
(π′). Obviously, in this case we have

Cjk (π
′) = Cjk (π

′′), k = 1, 2, . . . , l − 1, l + 2, . . . , n. (7)

According to the assumptions, inequality

Cjl−1
(π′) + pjl + pjl+1

− djl+1
> Cjl−1

(π′) + pjl − djl . (8)

holds. Moreover, we have

Cjl−1
(π′) + pjl+1

− djl+1
> Cjl−1

(π′) + pjl − djl ; (9)

Cjl−1
(π′) + pjl+1

− djl > Cjl−1
(π′) + pjl − djl . (10)

Formulas (7)–(10) show that the maximal lateness is not reduced. Set π′ := π′′ and repeat step 2.
(2) Let rjl+1

> Cjl−1
(π′). In this case, we have

Cjk (π
′′) = Cjk (π

′), k = 1, 2, . . . , l − 1, (11)

Cjk (π
′′) > Cjk (π

′), k = l + 2, . . . , n. (12)

According to the assumptions, we have

Cjl+1
(π′′)− djl+1

> Cjl (π
′)− djl ; (13)

Cjl (π
′′)− djl > Cjl+1

(π′)− djl+1
. (14)
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Formulas (8) and (11)–(14) show that the maximal lateness is not reduced. Set π′ := π′′ and go to
step 1.

In a finite number of steps, we construct an optimal schedule satisfying the conditions of the
lemma. The lemma has been proved.

Algorithm 4 constructs n schedules, one of which is satisfying the conditions of the lemma.

Algorithm 4: Solution of the inverse problem 1 | rj | max Lmin

1. Enumerate all jobs of the set N according to d1 − p1 ≤ d2 − p2 ≤ · · · ≤ dn − pn.
2. For k = 1, 2, . . . , n do:

(a) construct the schedule πk = (k, 1, . . . , k− 1, k + 1, . . . , n) and
(b) determine λk = min

j=1,...,n
Lj(Cj(πk)).

3. Calculate λ∗ = max
k=1,...,n

λk.

O(n log n) operations are needed for renumbering the jobs of the set N. O(n) operations are
needed for constructing the schedule πk and calculating the value λk, k = 1, . . . , n. Thus, no more than
O(n2) operations are needed to find the value λ∗.

The objective function value of a solution of the problem of maximizing minimal lateness 1 | rj |
max Lmin is a lower bound on the optimal objective function value for the original problem 1 | rj | Lmax.

Theorem 2 ([18]). For the optimal function values of the problem 1 | rj | Lmax and the corresponding inverse
problem 1 | rj | max Lmin, the inequality µ∗ ≥ λ∗ holds.

Proof. Denote by π′ and π′′ optimal schedules for the problems 1 | rj | Lmax and 1 | rj | max Lmin,
respectively. There exist jobs k′, k′′ ∈ N, for which the following inequalities hold:

µ∗ = Ck′(π
′)− dk′ ≥ Cj(π

′)− dj for all j ∈ N; (15)

Cj(π
′′)− dj ≥ Ck′′(π

′′)− dk′′ = λ∗ for all j ∈ N. (16)

Please note that jobs k′ and k′′ can be identical. Let π′′ = (j1, . . . , jn). Obviously, the following
inequality is satisfied for job j1:

Cj1(π
′)− dj1 ≥ Cj1(π

′′)− dj1 . (17)

According to inequalities (15)–(17), we get

µ∗ = Ck′(π
′)− dk′ ≥ Cj1(π

′)− dj1 ≥ Cj1(π
′′)− dj1 ≥ Ck′′(π

′′)− dk′′ = λ∗,

i.e., µ∗ ≥ λ∗. The theorem has been proved.

4. Computational Results

In this section, we present some results of the numerical experiments carried out on randomly
generated test instances. The numerical experiments were carried out on a PC Intel R© CoreTM i5-4210U
CPU @ 1.70GHz, 4 cores; 8 GB DDR4 RAM.

Various methods of generating test instances for different types of scheduling problems are
described in [29]. For the problem 1|rj|Lmax with n jobs, the authors suggest the following
generation scheme:
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• r0 = 0 and ri = ri−1 + Xi, where Xi ∼ exp(λ), for i = 1, ..., n;
• pi ∼ N(µ, σ) for i = 1, . . . , n, truncated below a known lower bound;
• di = ri + kE[pi] for i = 1, . . . , n, where k ≥ 1.

The authors suggest that λ, µ, σ and k are generation parameters that can be fixed by the user.
Applying this generation scheme, we generate release dates which are independent from the processing
times, while the due dates correlate with the processing times, as it usually happens in real problems.
We set

λ =
1

100
, µ = 100, σ = 40, k = 1

and generated 15 instances for each n ∈ {3, 4, ..., 20}. The results are shown in Table 1, where the
number of branching points are given for each of the 15 instances for any value of n.

Table 1. Number of branching points in Algorithm 2 for the test instances generated according to [29].

n
Number of the Instance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 4 2 2 2 2 2 2 2 2 2 2 4 2 2 2

4 3 3 3 3 3 3 3 3 3 5 4 3 3 3 3

5 9 4 4 25 4 4 31 4 4 8 4 4 4 4 18

6 5 5 64 227 161 13 7 5 5 5 5 5 84 15 5

7 6 25 16 6 6 6 31 147 310 34 35 6 172 6 222

8 7 234 33 7 7 23 7 391 7 7 7 7 194 7 7

9 1271 8 1847 8 3786 2934 8 8 62 8 8 721 8 208 8

10 9 690 9 9 66 114 9 9 9 9 9 9 3944 6584 9

11 10 13,098 10 5071 10 13,992 11 10 6081 773 591 303 10 3772 10

12 11 22,736 11 11 35,910 57,407 32,798 11 139 164,613 11 11 166 11 207,119

13 12 12 213,433 1109 * 12 183 227 794,567 12 * 12 30,946 * 12

14 13 13 458 * 5933 21,774 4394 13 13 13 * 32,246 * 13 *

15 2293 14 * * * * 14 * 14 14 * * 14 14 *

16 15 * 15 * 15 * 15 * 15 * * * 172,876 15 *

17 * 16 16 * 16 * 16 16 16 16 * 9128 * 16 16

18 17 * * 17 * * 17 17 17 17 * * * * *

19 * 18 18 * * * * * 4999 18 18 * * 18 18

20 * 19 2103 * * 19 20 19 19 19 19 19 19 19 *

An asterisk (*) in Table 1 means that the solution could not be found within 15 min. According to
this table, a large part of the instances can be solved with several branching points not greater than the
number of jobs. However, some instances appeared to be hard and required a much larger number of
branching points. It can be observed that these hard instances generated according to [29] display a
rather different solution behavior and need very different numbers of branching points for their exact
solution. This interesting phenomenon deserves further detailed investigations which are planned as
future work by the authors.

Next, we consider an instance of the problem as a point in the 3n-dimensional space, where each
value of ri, pi, di represents one of the dimensions. We consider the vector from the zero point to the
point of the instance. The complexity of an instance is defined by the direction of the vector, but not
by its length. Therefore, to explore the complexity of different instances, we can take points on the
surface of the 3n-dimensional cube. For the processing times and the release dates, we consider only
non-negative values. As a result, we obtain points on the quarter of the surface of the 3n-dimensional
cube with ri ≥ 0 and pi ≥ 0. Let the size of the cube be 100. We generated 300,000 points on the
surface for problems with 4, 5, 6, 7, 8 and 9 jobs (i.e., in the 12-, 15-, 18-, 21, 24, 27-dimensional spaces,
respectively). All instances have been solved, and we counted the number of iterations (i.e., branching
points) for each problem instance. The results are shown in Figure 1 for the instances with 4 jobs,



Mathematics 2020, 8, 1131 10 of 15

in Figure 2 for the instances with 5 jobs, in Figure 3 for the instances with 6 jobs, in Figure 4 for the
instances with 7 jobs, in Figure 5 for the instances with 8 jobs and in Figure 6 for the instances with 9 jobs.
At the y-axis, the numbers are given how often a particular number of branching points (Figure 1) or an
interval for the number of branching points (Figures 2–6) has occurred among the 300,000 instances for
each number n of jobs. For example, in Figure 1, one can see that among the 300,000 solved instances
with 5 jobs, there were 72,897 instances with 3 branching points, 16,131 instances with 4 branching
points, 29,342 instances with 5 branching points, and so on. It can be observed that the maximal
number of 20 branching points was reached for 1294 instances, which is approximately equal to 0.4% of
all instances. In Figure 2, the numbers of branching points are grouped in intervals of 5 in each column,
i.e., there were 86 026 instances with several branching points between 0 and 4 (actually 4, because
it is the minimum possible number of branching points for instances with 5 jobs), 28,566 instances
with several branching points between 5 and 9, etc. For instances with 5 jobs, the maximum number
of branching points was 93, and it was reached for only 33 instances. As it can be seen in the figures,
most of instances can be solved by a small number of branches. For a larger number of jobs, one can
detect a smaller number of hard instances with a large number of branching points. Thus, for the
instances with 9 jobs, among the 300,000 solved instances, there were only two instances with several
branching points more than 180,000: one with 184,868, and the other with 191,887.
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Figure 1. Number of branching points for the instances with 4 jobs.
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Figure 2. Number of branching points for the instances with 5 jobs.
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Figure 6. Number of branching points for the instances with 9 jobs.

5. Conclusions

For solving the NP-hard problem 1 | rj | ϕmax for arbitrary non-decreasing penalty functions,
an algorithm has been proposed which implements the branch and bound method. For each
sub-instance to be considered, a lower bound on the optimal function value is determined using
a solution of the dual problem. The proposed algorithm for solving the dual problem can find a
solution in several operations not exceeding O(n2). The proposed algorithm can find an optimal
solution within a time limit of one second for about 98% of the instances for 8 jobs and for about 85%
of instances for 9 jobs. Although there are a few instances with a large number of branching points,
most instances can be solved very fast by the proposed algorithm. For the hard instances, the execution
of the algorithm can be interrupted at any moment, and the current objective function value with
the corresponding schedule π can be used as an approximate solution for the instance. However,
some generated instances appeared to be very hard. At the moment, we cannot explain this interesting
phenomenon. It requires deep additional investigations which are planned in the future.

In addition to the dual problem, the inverse problem has also been solved for the lateness
objective function. The algorithm for solving the inverse problem has a complexity of O(n2) operations.
However, in the problem of minimizing maximum lateness, one tries to ‘equalize’ the lateness while
minimizing the maximum, in the inverse problem the lateness values are ‘equalized’ due to the
maximization of the minimum provided that inserted machine idle times are prohibited.
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