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Abstract: It is shown that if we exclude the existence of nontrivial small solutions, then a linear
autonomous functional differential equation has a nontrivial nonnegative solution if and only if it
has a nonnegative eigenfunction.
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1. Introduction

Let Rn be the n-dimensional space of real column vectors with any norm | · |. Given r > 0,
let C = C([−r, 0],Rn) denote the Banach space of continuous functions from [−r, 0] into Rn with
the supremum norm ‖φ‖ = sup−r≤θ≤0 |φ(θ)| for φ ∈ C.

Consider the linear autonomous retarded functional differential equation

x′(t) = L(xt), (1)

where L : C → Rn is a bounded linear functional and xt ∈ C is defined by xt(θ) = x(t + θ) for
θ ∈ [−r, 0]. According to the Riesz representation theorem, L has the form

L(φ) =
∫ 0

−r
d[η(θ)]φ(θ), φ ∈ C, (2)

where η : [−r, 0] → Rn×n is a matrix function of bounded variation normalized such that η is left
continuous on (−r, 0) and η(0) = 0. Equation (1) includes as a special case the differential equation
with a single delay

x′(t) = Ax(t) + Bx(t− r), (3)

where A, B ∈ Rn×n. By a solution of (1), we mean a function x : [−r, ∞)→ Rn which is continuous on
[−r, ∞), differentiable on (0, ∞), and satisfies (1) for t > 0. It is well-known [1] that, for every φ ∈ C,
Equation (1) has a unique solution with initial value x0 = φ.

The characteristic equation of Equation (1) has the form

det ∆(z) = 0, ∆(z) = zI −
∫ 0

−r
ezθdη(θ), (4)

where z ∈ C is a complex variable and I is the n× n identity matrix.
A solution x = (x1, . . . , xn)T : [−r, ∞)→ Rn of (1) is called oscillatory if all coordinate functions

x1, . . . , xn have arbitrarily large zeros. Otherwise, x is called nonoscillatory. As usual, the superscript T
indicates the transpose. If Equation (4) has a real root µ ∈ R, then there exists v ∈ Rn \ {0} such
that ∆(µ)v = 0 and hence the corresponding eigensolution x(t) = eµtv is a nonoscillatory solution
of (1). Thus, the existence of a real root of Equation (4) is sufficient for the existence of a nonoscillatory
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solution of (1). One of the key results in the oscillation theory of functional differential equations [2]
states that the existence of a real root of Equation (4) is not only sufficient, but also necessary for
the existence of a nonoscillatory solution of (1).

Theorem 1. ([3], Theorem 4.1) Equation (1) has a nonoscillatory solution if and only if Equation (4) has a
real root.

The aim of this paper is to give a similar characterization for the existence of a nontrivial
nonnegative solution of Equation (1). A solution x = (x1, . . . , xn)T : [−r, ∞) → Rn of (1) is
called nonnegative if all coordinate functions x1, . . . , xn are nonnegative on [−r, ∞), or, equivalently,
x(t) ∈ Rn

+ for t ≥ −r, where Rn
+ is the nonnegative orthant, the set of those vectors in Rn which have

nonnegative components. If there exist µ ∈ R and v ∈ Rn
+ \ {0} such that ∆(µ)v = 0, then x(t) = eµtv

is evidently a nontrivial nonnegative solution of Equation (1). Therefore it is natural to ask whether
the existence of µ ∈ R and v ∈ Rn

+ \ {0} such that ∆(µ)v = 0 is necessary for the existence of a
nontrivial nonnegative solution of (1). The following simple example shows that the answer in general
is negative.

Consider the two-dimensional system

x′1(t) = x2(t− 1),

x′2(t) = −x1(t),
(5)

a special case of Equation (3), where

A =

(
0 0
−1 0

)
, B =

(
0 1
0 0

)

and r = 1. The characteristic matrix is given by

∆(z) =

(
z −e−z

1 z

)
.

In this case, there exist no µ ∈ R and v ∈ R2
+ \ {0} such that ∆(µ)v = 0. Otherwise, we obtain

0 = det ∆(µ) = µ2 + e−µ > 0, a contradiction. On the other hand, Equation (5) has the nontrivial
nonnegative solution x = (x1, x2)

T : [−1, ∞)→ R2 given by

x1(t) =

{
t2 for t ∈ [−1, 0]

0 for t ∈ (0, ∞)
and x2(t) = 0 for t ∈ [−1, ∞).

Note that the above nontrivial nonnegative solution x is a small solution in the sense of
the following definition [1]. A solution x of Equation (1) is called a small solution if

lim
t→∞

x(t)ekt = 0 for every k ∈ R.

The zero solution is always a small solution. The question is whether there exist initial conditions
φ 6= 0 which generate small solutions. Such solutions are called nontrivial small solutions. A linear
autonomous ordinary differential equation cannot have a nontrivial small solution. The existence
of nontrivial small solutions of Equation (1) is a consequence of the fact that the phase space C
is infinite dimensional. As shown in ([1], Chap. 7, Corollary 8.1), Equation (1) has no nontrivial
small solutions if and only if the exponential type of the characteristic function det ∆ is equal to nr,
or, equivalently, the system of eigenfunctions and generalized eigenfunctions of the generator of
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Equation (1) is complete. As a corollary, we have that Equation (3) has no nontrivial small solutions if
and only if det B 6= 0.

In this paper, we will show that if we exclude the existence of nontrivial small solutions,
then the “natural” sufficient condition ∆(µ)v = 0 for some µ ∈ R and v ∈ Rn

+ \ {0} is necessary for
the existence of a nontrivial nonnegative solution of Equation (1).

The main result and its proof are given in Section 2. In Section 3, we briefly mention some results
which are relevant to our study.

2. Main Result

Our main result is the following theorem.

Theorem 2. Suppose that Equation (1) has no nontrivial small solutions. Then Equation (1) has a nontrivial
nonnegative solution if and only if there exist µ ∈ R and v ∈ Rn

+ \ {0} such that ∆(µ)v = 0.

Before we present the proof of Theorem 2, we recall some facts from the decomposition theory
of linear autonomous functional differential equations given in ([1], Chap. 7) and we establish two
preliminary results.

It is known that Equation (1) generates in C a strongly continuous semigroup (T(t))t≥0, where
T(t) : C → C is a bounded linear operator, the so-called solution operator, defined by T(t)φ = xt(φ)

for t ≥ 0 and φ ∈ C, xt(φ) being the unique solution of (1) with initial value x0 = φ. The infinitesimal
generator A : D(A)→ C of this semigroup is defined by

Aφ = lim
t→0+

1
t
[T(t)φ− φ] (6)

whenever the limit exists in C. It is known that

D(A) = { φ ∈ C | φ′ ∈ C, φ′(0) = L(φ) } and Aφ = φ′. (7)

The spectrum σ(A) of the linear operator A : D(A) → C is a point spectrum and it consists of
the roots of Equation (4). In each strip α ≤ |z| ≤ β, where −∞ < α < β < ∞, Equation (4) has only a
finite number of roots. Furthermore, if Λ is a finite set of characteristic roots, then C is decomposed
by Λ into a direct sum

C = PΛ ⊕QΛ, (8)

where PΛ is the (realified) generalized eigenspace of A associated with Λ and QΛ is the complementary
subspace of C such that T(t)QΛ ⊂ QΛ for t ≥ 0. Thus, each φ ∈ C can be written uniquely as

φ = φPΛ + φQΛ , where φPΛ ∈ PΛ and φQΛ ∈ QΛ. (9)

From now on, let C+ denote the set of nonnegative functions in C, i.e.,

C+ = { φ ∈ C | φ(θ) ∈ Rn
+ for all θ ∈ [−r, 0] }.

The following lemma will play an important role in the proof of Theorem 2.

Lemma 1. Suppose that Equation (1) has no nontrivial small solutions. If x is a nontrivial nonnegative solution
of Equation (1), then its Lyapunov exponent µ given by

µ = µ(x) = lim sup
t→∞

ln ‖xt‖
t

(10)
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is finite, and if we let
Λ0 = { z ∈ C | det ∆(z) = 0, Re z = µ }, (11)

then there exists ψ ∈ PΛ0 ∩ C+ such that

‖ψ‖ = 1 and xt(ψ) = T(t)ψ ∈ PΛ0 ∩ C+ for all t ≥ 0, (12)

where PΛ0 is the generalized eigenspace of the infinitesimal generator A associated with Λ0.

Proof. Let x = x(φ) be a nontrivial nonnegative solution of Equation (1) with initial value x0 = φ ∈ C+

and Lyapunov exponent µ = µ(x). Then xt(φ) = T(t)φ ∈ C+ for all t ≥ 0. By the assumptions,
x cannot be a small solution and hence µ is finite (see [1], Chap. 7, Theorem 6.1). Define

Λ = { z ∈ C | det ∆(z) = 0, Re z ≥ µ } (13)

so that C = PΛ ⊕QΛ. The generalized eigenspace PΛ can be further decomposed into the direct sum
PΛ = PΛ0 ⊕ PΛ1 with Λ0 as in (11) and

Λ1 = { z ∈ C | det ∆(z) = 0, Re z > µ }. (14)

Thus, writing Q = QΛ, P = PΛ, P0 = PΛ0 and P1 = PΛ1 for brevity, we have that C = P0 ⊕ P1 ⊕Q
and hence

xt(φ) = xP0
t (φ) + xP1

t (φ) + xQ
t (φ) = T(t)φP0 + T(t)φP1 + T(t)φQ for t ≥ 0, (15)

where φP0 ∈ P0, φP1 ∈ P1 and φQ ∈ Q. All three subspaces P0, P1 and Q are invariant under
the solution semigroup. The generalized eigenspaces P0 and P1 are finite-dimensional and the solutions
starting from P0 and P1 can be extended backward to all t < 0. As a consequence, on P0 and P1

the solution semigroup can be extended to a group. It is known that for every ε > 0 there exists
K = K(ε) > 0 such that the following exponential estimates hold:

‖T(t)φQ‖ ≤ Ke(µ−ε)t‖φQ‖, t ≥ 0,

‖T(t)φP0‖ ≤ K(1 + |t|)m−1eµt‖φP0‖, t ∈ (−∞, ∞),

‖T(t)φP1‖ ≤ Ke(µ+ε)t‖φP1‖, t ≤ 0,

(16)

where m is the maximum of the ascents of the characteristic roots from Λ0 (see ([1], Sec. 7.6) and ([4],
Equations (3.16) and (3.17))). Replacing φP1 with T(t)φP1 , t ≥ 0, in the last inequality and using
the group property T(−t)T(t) = T(0) = I on P1, we find that

‖T(t)φP1‖ ≥ K−1e(µ+ε)t‖φP1‖, t ≥ 0. (17)

This implies that φP1 = 0. Otherwise, the last inequality, combined with (15) and the previous
exponential estimates, would imply that µ = µ(x) ≥ µ + ε, a contradiction. We claim that
φP0 6= 0. Otherwise, by virtue of (15), we have that xt(φ) = T(t)φQ for t ≥ 0, which, together with
the exponential estimate on Q, implies that µ = µ(x) ≤ µ− ε, a contradiction. From the exponential
estimate on P0, we find that

‖T(t)φP0‖ ≥ K−1(1 + t)1−meµt‖φP0‖, t ≥ 0. (18)

Since φP0 6= 0, this, together with the exponential estimate on Q, implies that

‖xQ
t (φ)‖

‖xP0
t (φ)‖

=
‖T(t)φQ‖
‖T(t)φP0‖ −→ 0 as t→ ∞.
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Hence
‖xt(φ)‖
‖xP0

t (φ)‖
=
‖xP0

t (φ) + xQ
t (φ)‖

‖xP0
t ‖

−→ 1 as t→ ∞

and
‖xQ

t (φ)‖
‖xt(φ)‖

−→ 0 as t→ ∞.

In particular,
‖xP0

n (φ)‖
‖xn(φ)‖

−→ 1 as n→ ∞.

Thus, {‖xn(φ)‖−1xP0
n (φ)}∞

n=1 is a bounded sequence in the finite-dimensional and hence closed
subspace P0 of C. Therefore there exist ψ ∈ P0 with ‖ψ‖ = 1 and a sequence nk → ∞ such that

xP0
nk (φ)

‖xnk (φ)‖
−→ ψ as k→ ∞.

It remains to show that ψ has the desired properties. Since ψ ∈ P0 and P0 is invariant
under the solution semigroup, we have that xt(ψ) = T(t)ψ ∈ P0 for t ≥ 0. As shown before,
xQ

t (φ) = o(‖xt(φ)‖) as t→ ∞. Hence

xnk (φ)

‖xnk (φ)‖
=

xP0
nk (φ)

‖xnk (φ)‖
+

xQ
nk (φ)

‖xnk (φ)‖
−→ ψ as k→ ∞.

From this, using the nonnegativity of x(φ), the continuity and the semigroup property of T(t),
we find that

T(t)ψ = lim
k→∞

T(t)xnk (φ)

‖xnk (φ)‖
= lim

k→∞

T(t)T(nk)(φ)

‖xnk (φ)‖
= lim

k→∞

T(t + nk)(φ)

‖xnk (φ)‖
= lim

k→∞

xt+nk (φ)

‖xnk (φ)‖
∈ C+

for all t ≥ 0.

Let X be a real Banach space. A subset K ⊂ X is called a cone if the following three conditions hold:

(i) K is a nonempty, convex and closed subset of X,
(ii) tK ⊂ K for all t ≥ 0, where tK = {tx | x ∈ K},
(iii) K ∩ (−K) = {0}, where −K = {−x | x ∈ K}.

In the proof of Theorem 2, we will need the following result which gives a necessary and sufficient
condition for the existence of a nontrivial orbit of a linear invertible map M : X → X which lies
in a given cone K. By an orbit starting from x ∈ X, we mean the sequence of iterates {Mm(x)}∞

m=0.
As usual, M0 = I, the identity on X.

Lemma 2. Let K be a cone in a finite-dimensional real Banach space X. Suppose that M : X → X is a linear
invertible operator. Then M has an orbit belonging to K \ {0} if and only if M has a positive eigenvalue with an
eigenvector in K.

In the special case X = Rn, Lemma 2 was proved in ([5], Theorem 3). Here we give a different
argument which is valid in general finite-dimensional Banach spaces.

Proof of Lemma 2. If v ∈ K is an eigenvector of M corresponding to a positive eigenvalue ρ,
then Mm(v) = ρmv ∈ K \ {0}. Thus, the orbit starting from v belongs to K \ {0}.
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Now suppose that M has an orbit starting from y ∈ X which lies in K \ {0}. In particular,
y = M0(y) ∈ K \ {0}. Without loss of generality, we may (and do) assume that ‖y‖ = 1. Otherwise,
we replace y with ‖y‖−1y and use the cone property (ii). Let

S = { x ∈ K | ‖x‖ ≤ 1 and Mm(x) ∈ K for all m = 0, 1, . . . }.

Evidently, S is a convex closed subset of X and y ∈ S. Define an operator F : S→ X by

F(x) =
(1− ‖x‖)y + ‖x‖M(x)
‖(1− ‖x‖)y + ‖x‖M(x)‖ for x ∈ S.

The cone property (iii), the fact that y 6= 0 and the invertibility of M imply that F is
well-defined. Evidently, F is continuous on S. The definition of S and the cone properties (i) and (ii)
imply that F(S) ⊂ S. By Brouwer’s fixed point theorem, there exists v ∈ S such that F(v) = v.
Since ‖v‖ = ‖F(v)‖ = 1, it follows that

v = F(v) =
M(v)
‖M(v)‖ .

Hence M(v) = ρv, where ρ = ‖M(v)‖. Since v 6= 0 and M is invertible, we have that M(v) 6= 0
and hence ρ = ‖M(v)‖ > 0. Thus, ρ is a positive eigenvalue of M and v ∈ K is a corresponding
eigenvector.

Now we can give a proof of Theorem 2 which follows similar lines as the proof of a Perron type
theorem for positive solutions of a perturbed system of nonautonomous linear functional differential
equations in [6].

Proof of Theorem 2. As noted before, if there exist µ ∈ R and v ∈ Rn
+ \ {0} such that ∆(µ)v = 0,

then x(t) = eµtv is a nontrivial nonnegative solution of (1).
Now suppose that Equation (1) has a nontrivial nonnegative solution x. By Lemma 1,

the Lyapunov exponent µ = µ(x) is finite. Let Λ0 be the spectral set defined by (11). As noted
before, the associated generalized eigenspace P0 = PΛ0 of (1) is finite-dimensional and invariant under
the solution semigroup (T(t))t≥0 with infinitesimal generator A given by (7). Since P0 ⊂ D(A) is
finite-dimensional, it is a closed subspace of C and therefore we can define the subspace semigroup
(T0(t))t≥0 on P0 by T0(t) = T(t)|P0 , the restriction of T(t) to P0 ([7], Paragraph I.5.12). Its generator
is A0 = A|P0 with domain D(A0) = P0 ([7], Paragraph II.2.3) and σ(A0) = Λ0. Since dim P0 < ∞,
the generator A0 : P0 → P0 is bounded and therefore T0(t) = etA0 for t ≥ 0 ([8], Chap. I, Sec. 1.1).
According to the spectral mapping theorem [8], we have that

σ(T0(t)) = etσ(A0) = { ezt | z ∈ Λ0 }, t ≥ 0. (19)

Define K = P0 ∩ C+. By Lemma 1, there exists ψ ∈ K \ {0} such that T0(t)ψ ∈ K for all t ≥ 0.
Since 0 /∈ σ(T0(t)), we have that T0(t) : P0 → P0 is invertible for t ≥ 0. Hence

T0(t)ψ ∈ K \ {0}, t ≥ 0. (20)

Evidently, K is a cone in P0. Let {tk}∞
k=1 be a sequence of positive numbers such that tk → 0

as k→ ∞. For every fixed k, consider the linear operator M = T0(tk) in P0. By the semigroup property,
we have that Mm = T0(mtk) for m = 0, 1, 2, . . . . This, together with (20), implies that M has an orbit
which belongs to K \ {0}. By the application of Lemma 2, we conclude that M = T0(tk) has a positive
eigenvalue ρk with an eigenvector ψk ∈ K. Without loss of generality, we may assume that ‖ψk‖ = 1.
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Otherwise, we replace ψk with ‖ψk‖−1ψk which belongs to K by the cone property (ii). By virtue of (19),
ρk = eztk for some characteristic root z with Re z = µ. From this, using the positivity of ρk, we find that

ρk = |ρk| = |eztk | = etk Re z = eµtk .

Hence
T0(tk)ψk = eµtk ψk, ψk ∈ K, ‖ψk‖ = 1 (21)

for k = 1, 2, . . . . Since {ψk}∞
k=1 is a bounded sequence in the finite-dimension Banach space P0, there

exists a subsequence {ψkj
}∞

j=1 of {ψk}∞
k=1 such that the limit

χ = lim
j→∞

ψkj
(22)

exists in P0. Evidently, ‖χ‖ = 1. Since K is closed subset of P0, we have that χ ∈ K. From (21),
we find that

T0(tkj
)ψkj
− ψkj

tkj

=
e

µtkj − 1
tkj

ψkj

for j = 1, 2, . . . . From this, letting j→ ∞, using (22) and the fact that

d+

dt

∣∣∣∣
t=0

T0(t) =
d+

dt

∣∣∣∣
t=0

etA0 = A0,

we obtain
χ′ = A0χ = µχ.

Hence χ(θ) = χ(0)eµθ for θ ∈ [−r, 0]. Since 0 6= χ ∈ K ⊂ C+, we have that v := χ(0) ∈ Rn
+ \ {0}.

Finally, χ ∈ P0 ⊂ D(A) implies that χ′(0) = L(χ) which is equivalent to ∆(µ)v = 0.

3. Discussion

The basic oscillation theorem for differential equations with constant coefficients and several
delays was obtained by Arino and Győri [9]. A generalization to a class of linear differential
equations with distributed delays was given by Győri and Krisztin [3]. Krisztin [10] showed that
linear functional differential equations of mixed type may have nonoscillatory solutions in spite
of the nonexistence of a real root of the characteristic equation. Henry [11] proved that small
solutions of linear autonomous retarded functional differential equations must vanish after some
time. Henry’s theorem was improved by Verduyn Lunel [12]. Further information on small solutions
and the completness of the eigenfunctions and generalized eigenfunctions of linear autonomous
functional differential equations can be found in the monographs by Hale and Verduyn Lunel [1]
and Dieckman et al. [13]. Small solutions for nonlinear equations were studied for the first time by
Mallet Paret [14], who showed that they do not exist on the attractor of certain nonlinear scalar delay
differential equations. For later results, see the papers by Cao [15], Arino [16], Cooke and Verduyn
Lunel [17], Mallet Paret and Sell [18], Braverman et al. [19], Garab [20] and the references therein.

The main result of this paper, Theorem 2, is closely related to Theorem 1.5 from our recent
work [6], which shows that if K is a cone in Rn, then Equation (1) has a positive solution with respect to
the partial order induced by K if and only if Equation (4) has a real root with a positive eigenfunction.
In the case K = Rn

+, Theorem 2 improves ([6], Theorem 1.5) in the sense that while the latter theorem
applies only to positive solutions, Theorem 2 provides a similar conclusion for the larger class of
nontrivial nonnegative solutions. It should be noted that ([6], Theorem 1.5) is a corollary of a more
general Perron type theorem for positive solutions of a perturbed system of functional differential
equation with a long proof. We believe that the above short proof of Theorem 2 can be of interest.
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