# On a Class of Generalized Nonexpansive Mappings

^{*}

## Abstract

**:**

## 1. Introduction

## 2. A Convergence Result

**Theorem**

**1.**

## 3. An Example

**Proposition**

**1.**

**Proof.**

**Proposition**

**2.**

**Proof.**

**Proposition**

**3.**

**Proof.**

**Proposition**

**4.**

**Proof.**

**Proposition**

**5.**

**Proof.**

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math.
**1922**, 3, 133–181. [Google Scholar] [CrossRef] - Betiuk-Pilarska, A.; Benavides, T.D. Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices. Pure Appl. Funct. Anal.
**2016**, 1, 343–359. [Google Scholar] - Butnariu, D.; Reich, S.; Zaslavski, A.J. Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces. In Fixed Point Theory and Its Applications; Yokohama Publishers: Yokohama, Japan, 2006; pp. 11–32. [Google Scholar]
- de Blasi, F.S.; Myjak, J.; Reich, S.; Zaslavski, A.J. Generic existence and approximation of fixed points for nonexpansive set-valued maps. Set-Valued Var. Anal.
**2009**, 17, 97–112. [Google Scholar] [CrossRef] - Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Jachymski, J. Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points. Pure Appl. Funct. Anal.
**2017**, 2, 657–666. [Google Scholar] - Kirk, W.A. Contraction mappings and extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kubota, R.; Takahashi, W.; Takeuchi, Y. Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications. Pure Appl. Funct. Anal.
**2016**, 1, 63–84. [Google Scholar] - Reich, S.; Zaslavski, A.J. Well-posedness of fixed point problems. Far East J. Math. Sci. Spec. Vol. Funct. Anal. Appl.
**2001**, 46, 393–401. [Google Scholar] [CrossRef] - Pustylnyk, E.; Reich, S.; Zaslavski, A.J. Convergence to compact sets of inexact orbits of nonexpansive mappings in Banach and metric spaces. Fixed Point Theory Appl.
**2008**, 2008, 528614. [Google Scholar] [CrossRef] [Green Version] - Reich, S.; Zaslavski, A.J. Generic aspects of metric fixed point theory. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 557–575. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Convergence to attractors under perturbations. Commun. Math. Anal.
**2011**, 10, 57–63. [Google Scholar] - Reich, S.; Zaslavski, A.J. Genericity in nonlinear analysis. In Developments in Mathematics; Springer: New York, NY, USA, 2014; Volume 34. [Google Scholar]
- Zaslavski, A.J. Approximate solutions of common fixed point problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for solving common fixed point problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Funct. Anal.
**2018**, 3, 565–586. [Google Scholar] - Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal.
**2017**, 2, 243–258. [Google Scholar] - Gibali, A.; Reich, S.; Zalas, R. Outer approximation methods for solving variational inequalities in Hilbert space. Optimization
**2017**, 66, 417–437. [Google Scholar] [CrossRef] - Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal.
**2017**, 2, 685–699. [Google Scholar] - Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal.
**2018**, 3, 349–369. [Google Scholar] - Gabour, M.; Reich, S.; Zaslavski, A.J. A generic fixed point theorem. Indian J. Math.
**2014**, 56, 25–32. [Google Scholar] - Reich, S.; Zaslavski, A.J. Contractivity and genericity results for a class of nonlinear mappings. J. Nonlinear Convex Anal.
**2015**, 16, 1113–1122. [Google Scholar] - de Blasi, F.S.; Myjak, J. Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. C. R. Acad. Sci. Paris
**1976**, 283, 185–187. [Google Scholar] - Reich, S.; Zaslavski, A.J. Well-posedness of generalized best approximation problems. Nonlinear Funct. Anal. Appl.
**2002**, 7, 115–128. [Google Scholar] - Reich, S.; Zaslavski, A.J. Porous sets and generalized best approximation problems. Nonlinear Anal. Forum
**2004**, 9, 135–152. [Google Scholar] - Reich, S.; Zaslavski, A.J. Existence of a unique fixed point for nonlinear contractive mappings. Mathematics
**2020**, 8, 55. [Google Scholar] [CrossRef] [Green Version] - Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc.
**1962**, 13, 459–465. [Google Scholar] [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Reich, S.; Zaslavski, A.J.
On a Class of Generalized Nonexpansive Mappings. *Mathematics* **2020**, *8*, 1085.
https://doi.org/10.3390/math8071085

**AMA Style**

Reich S, Zaslavski AJ.
On a Class of Generalized Nonexpansive Mappings. *Mathematics*. 2020; 8(7):1085.
https://doi.org/10.3390/math8071085

**Chicago/Turabian Style**

Reich, Simeon, and Alexander J. Zaslavski.
2020. "On a Class of Generalized Nonexpansive Mappings" *Mathematics* 8, no. 7: 1085.
https://doi.org/10.3390/math8071085