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Abstract: We design a mechanism of the players’ sustainable cooperation in multistage n-person
game in the extensive form with chance moves. When the players agreed to cooperate in a dynamic
game they have to ensure time consistency of the long-term cooperative agreement. We provide the
players’ rank based (PRB) algorithm for choosing a unique cooperative strategy profile and prove
that corresponding optimal bundle of cooperative strategies satisfies time consistency, that is, at every
subgame along the optimal game evolution a part of each original cooperative trajectory belongs
to the subgame optimal bundle. We propose a refinement of the backwards induction procedure
based on the players’ attitude vectors to find a unique subgame perfect equilibrium and use this
algorithm to calculate a characteristic function. Finally, to ensure the sustainability of the cooperative
agreement in a multistage game we employ the imputation distribution procedure (IDP) based
approach, that is, we design an appropriate payment schedule to redistribute each player’s optimal
payoff along the optimal bundle of cooperative trajectories. We extend the subgame consistency
notion to extensive-form games with chance moves and prove that incremental IDP satisfies subgame
consistency, subgame efficiency and balance condition. An example of a 3-person multistage game is
provided to illustrate the proposed cooperation mechanism.

Keywords: time consistency; multistage game; chance moves; subgame perfect equilibria;
cooperative trajectory; imputation distribution procedure

1. Introduction

In a dynamic n-person game the players first choose their “optimal” strategies at the initial
position x0 (which form the optimal strategy profile for the whole game), and then have an option to
change their strategies at any intermediate position xt and switch to other strategies if these strategies
constitute the locally optimal strategy profile for the subgame starting at xt. The time consistency
property (first introduced in References [1–3] for differential games) ensures that the players will not
have an incentive to change their strategies at any subgame along the optimal game evolution, and
hence plays an important role in the designing of the optimal players’ behavior in non-cooperative
and cooperative dynamic games (see, e.g., References [2–21], for details).

We consider an n-person finite multistage games in the extensive form (see, e.g.,
References [5,17,22,23]) with perfect information and with chance moves. Note that much research has
been already done on time consistent solutions (or close concepts) in extensive-form games (see, e.g.,
References [4,6,13,17,21]). Time consistency concept was extended to dynamic games played over event
trees in References [14,16,20] as well as to multicriteria extensive-form cooperative games (without
chance moves) in References [7,8,10,11,15]. The property of "time consistency in the whole game" was
extended to multicriteria extensive-form cooperative games with chance moves in Reference [9] (note

Mathematics 2020, 8, 1061; doi:10.3390/math8071061 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-9510-5195
https://orcid.org/0000-0002-2678-3723
http://dx.doi.org/10.3390/math8071061
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/7/1061?type=check_update&version=2


Mathematics 2020, 8, 1061 2 of 20

that in these games an optimal pure strategy profile does not generate the unique optimal trajectory in
the game tree but rather the whole optimal bundle of the trajectories).

In the paper, we mainly focus on the dynamic aspects of cooperation in a dynamic extensive-form
game with chance moves, and propose to design a mechanism of the players’ sustainable cooperation
which satisfies three properties. First, a fragment of each cooperative trajectory from the optimal
bundle for the original game Γx0 should “remain optimal” at each subgame Γxt along the cooperative
game evolution, that is, it should belong to the subgame optimal bundle of cooperative trajectories.
Secondarily, a cooperative payoff-to-go at the subgame Γxt is no less than the non-cooperative
payoff-to-go for all players. Finally, when the players re-evaluate their expected cooperative payoff
after each passed chance move, they have no incentive to change original cooperative agreement.

To this aim, we first need to provide a rule for choosing a unique cooperative strategy profile as
well as the unique optimal bundle of cooperative trajectories. We introduce the Players’ Rank Based
(PRB) algorithm and prove that this algorithm generates the unique optimal bundle of cooperative
trajectories which satisfies time consistency. Note that a rather close approach—the so-called Refined
Leximin (RL) algorithm—was introduced recently in Reference [8]. Let us notice the main differences
of these two algorithms. The RL algorithm is applicable for multicriteria game without chance moves
and is based on the ranking of the criteria, while the PRB algorithm is designed for single-criterion
extensive-form game with chance moves and employed the players’ ranks. Further, the RL algorithm
allows to choose a unique cooperative trajectory while the PRB algorithm generates the unique optimal
bundle of the cooperative trajectories in the game tree. To the best of the authors’ knowledge, other
approaches to choosing an optimal bundle of the cooperative trajectories in extensive-form game with
chance moves have not been considered yet.

Then, to construct a characteristic function (which describes the worth of each coalition in
cooperative game) we use an equilibrium-based approach, namely the γ-characteristic function
introduced in Reference [24]. Hence, the players have to accept a specific method for choosing
a unique Subgame Perfect Equilibria (SPE) [25] in an extensive-form game with chance moves.
To solve this problem we provide the novel refinement of the backwards induction procedure (see,
e.g., References [5,17,23])—the so-called Attitude SPE algorithm. A similar approach to construct a
unique SPE in extensive-form game with perfect information was explored in References [17,26,27] and
was called the Type Equilibrium (TE) algorithm. Both algorithms are the refinements of the general
backwards induction procedure that take into account the attitudes of each player towards other
players. Let us point out the main differences of these algorithms. The TE algorithm is applicable for
the game without chance moves and for the case when the payoffs are only determined in terminal
nodes. In addition, the TE algorithm allows to construct SPE that is “unique” in the sense of payoffs
(i.e., there may exist several optimal trajectories which generate the same equilibrium payoffs) while
the Attitude SPE algorithm allows to choose unique SPE strategy profile as well as unique bundle of
trajectories. Another rather close approach to find a unique SPE—the so-called Indifferent Equilibrium
(IE) algorithm—was introduced in Reference [28]. Again, the IE algorithm is applicable only for the
game without chance moves and for the partial case when the payoffs are determined in terminal
nodes. Moreover, IE algorithm in general allows to construct a SPE in behavior strategies while the
proposed Attitude SPE algorithm always generates a SPE in pure strategies.

It is worth noting, that other approaches to analyze an extensive-form game, except for the
backwards induction procedure and its refinements mentioned above, imply that the researcher
first needs to obtain a strategic representation of the original extensive game and then analyzes this
strategic (or normal-form) game (see, e.g., References [29–31] ). For instance, the software tool “Game
Theory Explorer” [29] is based on the strategic-form representation and then applying the modified
Lemke-Howson algorithm [32] to find all Nash equilibria. The majority of existing algorithms are
developed to find Nash equilibria in mixed strategies for 2-person games and do not allow to construct
SPE in pure strategies. Moreover, as it was noted in Reference [31], in general the strategic-form
representation is exponential in the size of the original game tree. In contrast, the proposed Attitude
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SPE algorithm is a rather simple recursive algorithm which deals with n-person extensive-form game
(with perfect information) itself and allows to compute a unique SPE in pure strategies.

After computing the γ-characteristic function we suppose that the players adopt some
single-valued cooperative solution ϕ (for instance, the Shapley value [33], the nucleolus [34], etc.)
which satisfies the individual and collective rationality property. Finally, to guarantee the sustainability
of the achieved long-term cooperative agreement we employ the Imputation Distribution Procedure
(IDP) based approach (see, e.g., References [3,12,14,16–18,20,35]), that is, a payment schedule to
redistribute the ith player’s expected cooperative payoff along the optimal bundle of cooperative
trajectories. In this paper, we mainly focus on the following good properties an IDP may satisfy:
subgame efficiency, strict balance condition [10,15,17] and an appropriate refinement of the time
consistency property, called subgame consistency. The point is that the “time consistency in the whole
game” property [9,14,16,20] is based on an a priori assessment of the ith player’s expected optimal
payoff (before the game Γx0 starts). However, when the players make a decision in the subgame Γxt

after the chance move occurs, they need to re-estimate their expected optimal payoffs-to-go since the
original optimal bundle of cooperative trajectories shrinks after each chance node. To deal with this
interesting feature of the game with chance moves we adopt the notion of subgame consistency that
was firstly proposed in Reference [36] for cooperative stochastic differential games and then extend it
to stochastic dynamic games in References [37,38].

Since we derive a suitable definition of subgame consistency for other class of games, the proposed
Definition 6 differs from ones provided in References [37,38] but captures the same idea. Let us point
out the main differences with References [37,38]. While D. Yeung and L. Petrosyan do not consider
the issue of multiple equilibria and study the stochastic games in which there exists a unique Nash
equilibrium in each subgame, we focus on the problem of how to select a unique (subgame perfect)
Nash equilibrium in extensive-form game with chance moves and derive the corresponding algorithm.
Secondarily, the characteristic function has not been constructed in References [37,38] and, hence, the
players are restricted to using the simplest cooperative solutions (for instance, they may share equally
the excess of the total expected cooperative payoff over the expected sum of individual non-cooperative
payoffs), whereas we provide a method for calculating the γ-characteristic function. Hence, the players
may use different solution concepts based on the characteristic function approach. Finally, it turns
out that the incremental IDP specified for extensive-form games with chance moves in Reference [9]
satisfies not only the subgame consistency but also subgame efficiency and strict balance condition.

Therefore, the suggested PRB algorithm, the Attitude SPE algorithm combined with the
γ-characteristic function, and the incremental payment schedule for any single-valued cooperative
solution (meeting individual and collective rationality) together constitute a required mechanism of
the players’ sustainable cooperation that satisfies exactly three properties mentioned above for any
extensive-form game with chance moves.

It is worth noting that the extensive-form games, as well as dynamic games played over
event trees, differential games and multistage games with discrete dynamics are used to model
various real-world situations where several decision makers (or players) with different objectives may
cooperate (see, e.g., References [5,12,14,16,17,20,39–44]. Hence, a proposed approach to implement a
long-term cooperative agreement may have a number of possible applications.

The rest of the paper is organized as follows: Section 2 recalls the main ingredients of the class
of games of interest. In Section 3, we specify the attitude SPE algorithm that allows constructing a
unique SPE in a extensive-form game with chance moves. In Section 4, we provide the PRB algorithm
and prove that the optimal bundle of cooperative trajectories generated by this algorithm satisfy time
consistency. Section 5 reveals a drawback of the IDP “time consistency in the whole game” property
and presents a subgame consistency definition that is applicable for extensive-form games with chance
moves. We prove that incremental IDP satisfies a number of good properties and consider an example
of a 3-person multistage game with chance moves to illustrate the incremental IDP implementation.
Section 6 provides a brief review of the results and discussion.
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2. Extensive-Form Game with Chance Moves

We consider a finite multistage game in extensive form following References [6,13,17,22,23]. First
we need to define the basic notations and briefly remind some properties of extensive-form game that
will be used in the sequel:

• N = {1, . . . , n} is the set of all players.
• K is the game tree with the root x0 and the set of all nodes P.
• S(x) is the set of all direct successors (descendants) of the node x, and S−1(y) is the unique

predecessor (parent) of the node y 6= x0 such that y ∈ S(S−1(y)).
• Pi is the set of all decision nodes of the ith player (at these nodes the player i chooses the following

node), Pi ∩ Pj = ∅, for all i, j ∈ N, i 6= j.
• Pn+1 = {zj}m

j=1 denotes the set of all terminal nodes (final positions), S(zj) = ∅ ∀zj ∈ Pn+1.
• P0 is the set of all nodes at which a chance moves, where π(y|x) > 0 denotes the probability of

transition from node x ∈ P0 to node y ∈ S(x). We suppose that for each x ∈ P0 it holds that

S(x) ∩ P0 = ∅. Lastly,
n+1⋃
i=0

Pi = P.

• ω = (x0, . . . , xt−1, xt, . . . , xT) is the trajectory (or the path) in the game tree, xt−1 = S−1(xt), 1 ≤
t ≤ T, xT = zj ∈ Pn+1; where index t in xt denotes the ordinal number of this node within the
trajectory ω and can be interpreted as the "time index".

• hi(x) = (hi/1(x), . . . , hi/r(x)) is the payoff of the ith player at the node x ∈ P. We assume that for
all i ∈ N, k = 1, . . . , r, and x ∈ P the payoffs are non-negative, that is, hi/k(x) > 0.

In the following, we will use Gcm(n) to denote the class of all finite multistage n-person games
with chance moves in extensive form defined above, where Γx0 ∈ Gcm(n) denotes a game with root
x0. Note that Γx0 is an extensive-form game with perfect information (see, e.g., References [17,22,23]
for details).

Since all the solutions we are interested in throughout the paper are attainable when the players
restrict themselves to the class of pure strategies we will focus on this class of strategies. The pure
strategy ui(·) of the ith player is a function with domain Pi that specifies for each node x ∈ Pi the next
node ui(x) ∈ S(x) which the player i has to choose at x. Let Ui denote the (finite) set of all ith player’s
pure strategies, U = ∏i∈N Ui.

Denote by p(y|x, u) the conditional probability that node y ∈ S(x) is reached if node x has been
already reached (the probability of transition from x to y) while the players use the strategies ui, i ∈ N.
Note that for all x ∈ Pi, i = 1, . . . , n, and for all y ∈ S(x) p(y|x, u) = 1 if ui(x) = y and p(y|x, u) = 0 if
ui(x) 6= y. For chance moves, that is, if x ∈ P0 p(y|x, u) = π(y|x) for all y ∈ S(x) for each u ∈ U.

Then one can calculate the probability p(ω, u) of realization of the trajectory ω =

(x0, . . . , xτ , xτ+1, . . . , xT), xT ∈ Pn+1, xτ+1 ∈ S(xτ), τ = 0, . . . , T − 1, when the players use the
strategies ui from the strategy profile u = (u1, . . . , un).

p(ω, u) = p(x1|x0, u) · p(x2|x1, u) · . . . · p(xT |xT−1, u) =
T−1

∏
τ=0

p(xτ+1|xτ , u). (1)

Denote by Ω(u) = {ωk(u)|p(ωk, u) > 0} the finite set (or the bundle) of the trajectories ωk
which are generated by strategy profile u ∈ U. Note that for all ωk(u) ∈ Ω(u), uj(xτ) = xτ+1 for all
xτ ∈ ωk(u) ∩ Pj, j ∈ N, 0 ≤ τ ≤ T − 1.

Let h̃i(ω) =
T
∑

τ=0
hi(xτ) denote the ith player’s vector payoff corresponding to the trajectory

ω = (x0, . . . , xt, xt+1, . . . , xT).
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Denote by

Hi(u) = ∑
ωk∈Ω(u)

p(ωk, u) · h̃i(ωk) = ∑
ωk∈Ω(u)

p(ωk, u) ·
T(k)

∑
τ=0

hi(xτ) (2)

the (expected) value of the ith player’s payoff function which corresponds to the strategy profile
u = (u1, . . . , un). Let Ωn+1(u) = {Ω(u) ∩ Pn+1} denote the set of all terminal nodes of the trajectories
ωk(u) ∈ Ω(u).

Remark 1 ([9]). If the pure strategy profiles u and v generate different bundles Ω(u) and Ω(v) of the
trajectories, that is, Ω(u) 6= Ω(v), then Ωn+1(u) ∩Ωn+1(v) = ∅.

According to References [17,22,23] each intermediate node xt ∈ P \ Pn+1 generates a subgame Γxt

with the subgame tree Kxt and the subgame root xt as well as a factor-game ΓD with the factor-game
tree KD = (K \ Kxt) ∪ {xt}. Decomposition of the original extensive game Γxt at node xt onto the
subgame Γxt and the factor-game ΓD generates the corresponding decomposition of the pure (and
mixed) strategies (see References [17,22] for details).

Let Pxt
i (PD

i ), i ∈ N, denote the restriction of Pi on the subgame tree Kxt(KD), and uxt
i (uD

i ), i ∈ N,
denote the restriction of the ith player’s pure strategy ui(·) in Γx0 on Pxt

i (PD
i ). The pure strategy profile

uxt = (uxt
1 , . . . , uxt

n ) generates the bundle of the subgame trajectories Ωxt(uxt) = {ωxt
k (uxt)|p(ωxt

k , uxt)

> 0}. Similarly to (2), let us denote by

Hxt
i (uxt) = ∑

ω
xt
k ∈Ωxt (uxt )

p(ωxt
k , uxt) ·

T(k)

∑
τ=t

hi(xτ) = ∑
ω

xt
k ∈Ωxt (uxt )

p(ωxt
k , uxt) · h̃i(ω

xt
k ) (3)

the expected value of the ith player’s payoff in Γxt , and by Uxt
i the set of all possible ith player’s pure

strategies in the subgame Γxt , Uxt = ∏
i∈N

Uxt
i . Note that for each trajectory ω = (x0, . . . , xt, xt+1, . . . , xT),

1 6 t 6 T − 1, xT ∈ Pn+1,

p(ω, u) =
t−1

∏
τ=0

p(xτ+1|xτ , u) ·
T−1

∏
τ=t

p(xτ+1|xτ , u) =

= p(ωxt , u) · p(ωxt , u) = p(ωxt , uD) · p(ωxt , uxt),

(4)

where ωxt = (x0, x1, . . . , xt−1, xt) denotes a fragment of trajectory ω implemented before the subgame
Γxt starts, and p(ωxt , u) = p(xt, u) denotes the probability that node xt is reached when the players
employ the strategies ui, i ∈ N. It is worth noting that factor-game ΓD = ΓD(uxt) is usually defined
for given strategy profile uxt in the subgame Γxt since we assume that

hD
i (x0, x1, . . . , xt−1, xt) =

t−1

∑
τ=0

hi(xτ) + Hxt
i (uxt) = h̃i(ω

xt \ {xt}) + Hxt
i (uxt) (5)

(see, e.g., References [17,22] for details). Moreover, given intermediate node xt, the bundle Ω(u) =
{ωk(u)|p(ωk, u) > 0} can be divided in two subsets, that is, Ω(u) = {Ψm} ∪ {χl}, where xt ∈ Ψm,
and xt /∈ χl , {Ψm} ∩ {χl} = ∅. Then, taking (1), (3), (4) and (5) into account, we get



Mathematics 2020, 8, 1061 6 of 20

Hi(u) = ∑
m

p(Ψm, u) · h̃i(Ψm) + ∑
l

p(χl , u) · h̃i(χl) =

= ∑
m

p(xt, u) · p(Ψxt
m , uxt) ·

[
h̃i(Ψxt

m \ {xt}) + h̃i(Ψxt
m )
]
+

+ ∑
l

p(χl , u) · h̃i(χl) = p(xt, uD) · h̃i(x0, . . . , xt−1) ·∑
m

p(Ψxt
m , uxt)+

+ p(xt, uD) ·∑
m

p(Ψxt
m , uxt) · h̃i(Ψxt

m ) + ∑
l

p(χl , u) · h̃i(χl) =

= p(xt, uD) · h̃i(x0, . . . , xt−1) + p(xt, uD) · Hxt
i (uxt)+

+ ∑
l

p(χl , u) · h̃i(χl) = p(xt, uD) · hD
i (x0, . . . , xt) + ∑

l
p(χl , u) · h̃i(χl).

(6)

Note that, since Pi = Pxt
i ∪ PD

i , one can compose the ith player’s pure strategy Wi = (uD
i , vxt

i ) ∈ Ui
in the original game Γx0 from her strategies vxt

i ∈ Uxt
i in the subgame Γxt and uD

i ∈ UD
i in the

factor-game ΓD [17,22].

3. Refined Backwards Induction Procedure to Construct a Unique SPE

Definition 1 ([45]). A strategy profile u = (u1, u2, . . . , un) is a Nash Equilibrium (NE) in Γx0 ∈ Gcm(n), if

Hi(vi, u−i) 6 Hi(ui, u−i), ∀vi ∈ Ui, ∀i ∈ N.

Let NE(Γx0) denote the set of all pure strategy Nash equilibria in Γx0 .

Definition 2 ([25]). A strategy profile u is a subgame perfect (Nash) equilibrium (SPE) in Γx0 ∈ Gcm(n),
if ∀x ∈ P \ Pn+1 it holds that ux ∈ NE(Γx), i. e. the restriction of u on each subgame Γx forms a NE in
this subgame.

To construct SPE in an extensive-form game with perfect information one may employ a so-called
backwards induction procedure (see, e.g., References [12,17,22,23,46,47]).

However, the backwards induction procedure may generate multiple subgame perfect
equilibriums in an extensive form game with different payoffs to the players (see, e.g.,
References [5,12,17,23]). To choose a unique SPE and unique corresponding bundle of trajectories we
use an approach based on the players’ attitude vectors. Namely, let the ith player’s attitude vector
Fi = { fi(1), . . . , fi(n)} be a permutation of numbers {1, . . . , n} meeting the condition fi(i) = 1. If
fi(j) = k one may interpret the player j as an "ith player’s associate of level k".

In the paper we will use these attitude vectors when constructing SPE via backwards induction
procedure in the following way. Let x ∈ Pi, Hy

i (u
y) denote the ith player’s expected payoff in the

subgame Γy, y ∈ S(x) while uy be a SPE in this subgame. Assume that there exist multiple nodes
y1, . . . , yq such that hi(y1) + Hy1

i (uy1) = . . . = hi(yq) + H
yq
i (uyq), that is, player i is indifferent to the

choice of particular node y from {y1, . . . , yq} while the ith player’s choice may affect the other players’
payoffs. If fi(j) = 2, suppose that the ith player aims to maximize firstly the jth player’s expected
payoff Hy

j (u
y) when choosing a unique node y from y1, . . . , yq. If again there are several nodes y

with the same value Hy
j (u

y) the ith player purposes to maximize secondarily the expected payoff

Hy
l (u

y) of such player l that fi(l) = 3, and so on. Note that similar approach to construct a unique
SPE in extensive-form game with perfect information but without chance moves was explored in
References [17,26,27] for the case when the payoffs are only determined in terminal nodes.

Now let us provide a rigorous specification of this backwards induction procedure refinement
which we will refer to as the Attitude SPE or A-SPE algorithm.

Attitude SPE algorithm. Suppose that the players attitude vectors F1, F2, . . . , Fn are of common
knowledge, i. e. each player knows these vectors, and all the players are aware of it. Let the length
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of the trajectory ω = (x0, . . . , xt, xt+1, . . . , xT) equals to T − 1, and the multistage game Γx0 length
equals to the maximal length of the trajectory ω in Γx0 . We’ll construct the unique subgame perfect
equilibrium u = (u1, . . . , un) in Γx0 by induction in the length L of the subgame Γx.

Step L = 1: Consider a subgame Γx of the length L = 1. If x ∈ Pi, i = 1, . . . , n, we have two cases.

Case 1: there exists a unique zk ∈ S(x) = Px
n+1 such that hi(zk) = max

z∈S(x)
hi(z). Then suppose that

ui(x) = zk, p(zk|x, u) = 1, p(z|x, u) = 0 ∀z ∈ S(x) \ {zk}.
Case 2: there exist q > 1 nodes zkq ∈ S(x) = Px

n+1 such that hi(zk1) = hi(zk2) = . . . =

hi(zkq) = max
z∈S(x)

hi(z). Then suppose that the ith player chooses the terminal position

zk ∈ {zk1 , . . . , zkq} = Si,1(x) such that

hj(zk) = max
z∈Si,1(x)

hj(z), where fi(j) = 2. (7)

Let Si,2(x) denote the set of all nodes zk ∈ Si,1(x) meeting (7). If Si,2(x) consists of unique
node zk then ui(x) = zk, p(zk|x, u) = 1, p(z|x, u) = 0 ∀z ∈ S(x) \ {zk}. Otherwise, suppose
that the ith player chooses terminal node zk ∈ Si,2(x) such that

hl(zk) = max
z∈Si,2(x)

hl(z), where fi(l) = 3. (8)

Let Si,3(x) denote the set of all final nodes zk ∈ Si,2(x) satisfying (8), and so on.
...
Finally, if Si,n(x) contains unique node zk, then ui(x) = zk, p(zk|x, u) = 1, p(z|x, u) = 0
∀z ∈ S(x) \ {zk}. Otherwise, suppose that player i chooses the final node zk from Si,n(x)
with minimal ordinal number k.

Note that for all cases Hj(u) = hj(zk), j ∈ N.

If x ∈ P0 then S(x) = Px
n+1 and we do not need to define a strategy of any player at x, while

Hj(u) = ∑
zk∈S(x)

π(zk|x) · hj(zk). Hence, the players’ behavior ux = (ux
1 , . . . , ux

n) ∈ NE(Γx) and

the expected payoffs Hx
j (u

x), j ∈ N are defined for all subgames Γx of the length 1. In addition,

for games Γy, y ∈ Pn+1 of length L = 0 we assume that Hy
i (u

y) = hi(y), i ∈ N.
Step 2, . . . , L − 1: Suppose that at each subgame Γy of the length (L − 1) or less the unique SPE

uy = (uy
1, . . . , uy

n) has been already constructed (“inductive assumption”), and Hy
i (u

y), i ∈ N, is
the corresponding vector of all the players’ payoffs.

Step L: Consider the game Γx0 of the length L > 1. Note that for all y ∈ S(x0) the length of the
subgame Γy is less than L. If x0 ∈ P0 then

Hj(u) = ∑
y∈S(x0)

π(y|x0) · (hj(y) + Hy
j (u

y)) > ∑
y∈S(x0)

π(y|x0) · (hj(y) + Hy
j (u

y
j , uy

−j)) = Hj(u
y
j , uy

−j) (9)

for all uj = uy
j ∈ Uy

j = Uj since uy ∈ NE(Γy) due to induction assumption, and each player
j ∈ N can deviate from uj only in the subgames Γy, y ∈ S(x0).

If x0 ∈ Pi for some i ∈ N, we have two cases.

Case 1: there exists a unique y ∈ S(x0) such that

hi(y) + Hy
i (u

y) = max
y∈S(x0)

(
hi(y) + Hy

i (u
y)
)

. (10)

Then we suppose that ui(x0) = y; uj(x) = uy
j (x) if x ∈ Pj ∩ Ky, y ∈ S(x0), j = 1, . . . , n.
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Case 2: there exist q > 1 nodes y1, . . . , yq ∈ S(x0) such that

hi(y1) + Hy1
i (uy1) = . . . = hi(yq) + H

yq
i (uyq) = max

y∈S(x0)

(
hi(y) + Hy

i (u
y)
)

. (11)

Then we suppose that the ith player chooses y ∈ {y1, . . . , yq} = Si,1(x0) such that

hj(y) + Hy
j (u

y) = max
y∈Si,1(x0)

(
hj(y) + Hy

j (u
y)
)

, where fi(j) = 2. (12)

Let Si,2(x0) denote the set of all nodes y ∈ Si,1(x0) satisfying (12). If Si,2(x0) consists of unique
node y then we suppose that ui(x0) = y; uj(x) = uy

j (x) if x ∈ Pj ∩ Ky, y ∈ S(x0), j = 1, . . . , n.

Otherwise, suppose that the ith player chooses node y ∈ Si,2(x0) such that

hl(y) + Hy
l (u

y) = max
y∈Si,2(x0)

(
hl(y) + Hy

l (u
y)
)

, where fi(l) = 3. (13)

Let Si,3(x0) denote the set of all nodes y ∈ Si,2(x0) meeting (13), and so on.
...
Finally, if Si,n(x0) contains several nodes ym, denote by l = min

ym∈Si,n(x0)
{l | zl ∈ Pym

n+1 ∩Ω(uym)} the

minimal number of terminal nodes of the trajectories generated by subgame perfect equilibriums
uym in the subgames Γym , ym ∈ Si,n(x0) (see Remark 1). Note that there exists unique trajectory
ω = (x0, . . . , zl) from x0 to zl in the game Γx0 , and let y = ω ∩ Si,n(x0). Again, we suppose that
ui(x0) = y; uj(x) = uy

j (x) if x ∈ Pj ∩ Ky, y ∈ S(x0), j = 1, . . . , n.

Now we prove that for both cases no player has profitable deviation in Γx0 from the strategy
profile u = (u1, . . . , un) constructed above.

Hi(u) = hi(y) + Hy
i (u

y) > hi(y) + Hy
i (u

y) > hi(y) + Hy
i (u

y
i , uy

−i) (14)

for all y ∈ S(x0), uy
i ∈ Uy

i due to (10), (11) and the induction assumption that uy ∈ NE(Γy), y ∈ S(x0).
For other players j ∈ N, j 6= i, we have

Hj(u) = hj(y) + Hy
j (u

y) > hj(y) + Hy
j (u

y
j , uy

−j) = Hj(uj, u −j) (15)

for all uj ∈ Uj since uy ∈ NE(Γy), and the only deviation of player j ∈ N, j 6= i from uj in the subgame
Γy may affect the players’ payoffs.

Hence, taking (9), (14) and (15) into account we obtain by induction that the strategy profile
u = (u1, . . . , un) constructed above forms unique subgame perfect equilibria in Γx0 .

Proposition 1. If the players attitude vectors F1, F2, ..., Fn are of common knowledge, the Attitude SPE
algorithm allows to construct a unique subgame perfect equilibrium u = (u1, . . . , un) in pure strategies
for any extensive-form game Γx0 ∈ Gcm(n) with chance moves as well as a unique bundle of trajectories Ω(u).

It is worth noting than the existence of (subgame perfect) pure strategy equilibrium in extensive
form game with perfect information and chance moves was first proved in References [46,47] for
the partial case when the payoffs are only defined in terminal nodes. Hence, Proposition 1 could be
considered as a corollary of these results. However, we provide a rigorous algorithm how to construct
a unique SPE in extensive-form game with chance moves as well as a (unique) corresponding bundle
of trajectories. We will use this algorithm, in particular, to calculate the characteristic function of the
cooperative extensive-form game in Section 4.

Let us use the following example to demonstrate how the Attitude SPE algorithm works.
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Example 1. (A 3-player multistage game with chance moves).
Let P0 = {x1, x3}, P1 = {x0, x2

4}, P2 = {x1
2, x5}, P3 = {x2

2, x3
4}, Pn+1 = {z1, . . . , z10}. The players’

payoffs and probabilities π(y|x), x ∈ P0 are written in the game tree.
Suppose that the players’ attitude vectors are F1 = ( f1(1), f1(2), f1(3)) = (1, 3, 2), F2 = (2, 3, 1) and

F3 = (3, 1, 2).
When using the Attitude SPE algorithm, at each node x ∈ Pi, i = 1, 2, 3, the ith player has to choose the

alternative marked in bold violet in Figure 1. Note that

Hx3(ux3) =

 12
0
0

+
1
6

 0
24
0

+
1
2

 24
0

24

+
1
3

 0
18
12

 =

 24
10
16

 and Hz2 = h(z2) =

 0
10
20

 .

Hence, S2,1(x1
2) = {z2, x3}, and u2(x1

2) = z2 due to the player’s 2 attitude vector F2.
The A-SPE algorithm generates unique SPE u = (u1, u2, u3), where u1(x0) = x1, u1(x2

4) = z8;
u2(x1

2) = z2, u2(x5) = z9; u3(x2
2) = z4, u3(x3

4) = z6, while H(u) = (11, 22, 18). We will use this SPE later
in Section 4 when calculating the γ-characteristic function.

x3 x2
4

x5 x6 = z10

x2
2

z3

x3
4

z7

6
0
0

z1

12
0
0 z4

x1
4 = z5

z6

z8 z9

x0 x1 x1
2

z2

0
0

12 0
0
4

12
12
0

0
6
0

0
0

12

0
10
20

12
0
0

0
24
0

0
18
0

0
0

12

12
0

24

0
12
12

0
0

12

12
0
0

18
0
0

12
0
0

1
2

1
2

1
6

1
2

1
3

Figure 1. 3-person extensive-form game: A-Subgame Perfect Equilibria (SPE) algorithm implementation.

4. Cooperative Strategies and Trajectories

If the players agree to cooperate in multicriteria game Γx0 , first they are expected to maximize the

total payoff
n
∑

i=1
Hi(u) of the grand coalition. Let U(Γx0) denote the set of all pure strategy profiles u,

such that

∑
i∈N

Hi(u) = max
v∈U

∑
i∈N

Hi(v) = H. (16)

The set U(Γx0) is known to be nonempty and it may contain multiple strategy profiles (see,
e.g., Reference [17]). Hence, the players need to agree on a specific approach they are going to use to
choose a unique optimal cooperative strategy profile u ∈ U(Γx0) as well as the corresponding optimal
bundle of cooperative trajectories in the game tree. To this aim we introduce the so-calle Players’ Rank
Based (PRB) algorithm. Note that rather close approach—using the ranking of the criteria to choose a
unique cooperative trajectory—was proposed recently in Reference [8] for multicriteria extensive-form
games without chance moves. Namely, suppose that the players have agreed on the so-called "rank"
of each player within the grand coalition N, and r(k) = i means that the rank of player i equals k,
k = 1, ..., n.

Players’ rank based (PRB) algorithm.
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Step 0. Consider the set U(Γx0). If all strategy profiles u ∈ U(Γx0) generate the same bundle of
trajectories Ω(u) (see, e.g., References [17,22,23] for discussion on a certain redundancy of the
pure strategy definition in extensive game), let the players choose any strategy profile u ∈ U(Γx0)

as the cooperative strategy profile and Ω(u) denote the corresponding bundle of cooperative
trajectories.

Step k = 1. Otherwise, that is, if the strategy profiles from U(Γx0) generate different (and hence,
disjoint—see Remark 1) bundles of the trajectories, calculate

max
v∈U(Γx0 )

Hr(1)(v) = Hr(1).

Let Ur(1)(Γx0) denote the set of all strategy profiles u such that Hr(1)(u) = Hr(1). If all strategy
profiles u ∈ Ur(1)(Γx0) generate the same bundle of trajectories Ω(u), the players may choose
any strategy profile u ∈ Ur(1)(Γx0) as the cooperative strategy profile. Otherwise proceed to the
next step.

Step k = 2. Consider the set Ur(1)(Γx0). If all strategy profiles u ∈ Ur(1)(Γx0) generate the same
bundle of trajectories Ω(u), the players may choose any strategy profile u ∈ Ur(1)(Γx0) as the
cooperative strategy profile. Otherwise, proceed to the next step.

Step k (k = 2, . . . , n).
...

Step k + 1. Finally, if the strategy profiles from u ∈ Ur(n)(Γx0 ) generate different bundles of the
trajectories, we suppose that the players choose such u ∈ Ur(n)(Γx0 ) that Ω(u) = {ωm(u) =

(x0, . . . , xT(m) = zl) | p(ωm, u) > 0} contains the trajectory ω(u) with minimal number l of the
terminal node zl (see Remark 1).

Henceforth, we will refer to the strategy profile u ∈ U(Γx0) and the bundle of the trajectories Ω(u)
as the optimal cooperative strategy profile and the optimal bundle of cooperative trajectories respectively.

In the dynamic setting it is significant that a specific method which the players agreed to accept in
order to choose a unique optimal cooperative strategy profile u ∈ U(Γx0) as well as the corresponding
optimal bundle of cooperative trajectories satisfies time consistency (see, e.g., References [1,2,6,13,17]),
that is, a fragment of the optimal bundle of the cooperative trajectories in the subgame should remain
optimal in this subgame. Suppose that at each subgame Γxt along the cooperative trajectories, that is
xt ∈ ω(u), ω(u) ∈ Ω(u), the players choose the strategy profile uxt ∈ Uxt such that

uxt ∈ arg max
vxt∈Uxt

∑
i∈N

Hxt
i (vxt). (17)

Let U(Γxt) denote the set of all pure strategy profiles uxt ∈ Uxt which satisfy (17) and the players
use the same approach to choose a unique optimal cooperative strategy profile uxt ∈ U(Γxt) in the
subgame as for the original game Γx0 (namely, the PRB algorithm).

Proposition 2. A cooperative strategy profile for Γx0 ∈ Gcm(n) based on the PRB algorithm satisfies time
consistency. Namely, let u ∈ U satisfies (16), and Ω(u) be the optimal bundle of cooperative trajectories. Then
for each subgame Γxt , xt ∈ ω(u) = (x0, . . . , xt, xt+1, . . . , xT), 1 6 t < T, with x0 = x0, ω(u) ∈ Ω(u), it
holds that

∑
i∈N

Hxt
i (uxt) = max

vxt∈Uxt
∑
i∈N

Hxt
i (vxt), (18)

while ωxt = (x̄t, x̄t+1, . . . , x̄T) ∈ Ω(uxt), that is, ωxt belongs to the optimal bundle of cooperative trajectories
in the subgame Γxt .
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Proof. The optimal bundle of cooperative trajectories Ω(u) generated by u ∈ PO(Γx0) can be divided
onto two subsets {Ψm} = {ω ∈ Ω(u) | xt ∈ ω} and {χl} = {ω ∈ Ω(u) | xt /∈ ω}while {Ψm}∩{χl} =
∅, {Ψm} ∪ {χl} = Ω(u). Then, taking (5) and (6) into account we get

Hi(u) = ∑
m

p(Ψm, u) · h̃i(Ψm) + ∑
l

p(χl , u) · h̃i(χl) =

= p(xt, u) ·
[

h̃i(x0, x1, . . . , xt−1) + Hxt
i (uxt)

]
+ ∑

l
p(χl , uD) · h̃i(χl),

(19)

and (16) for u takes the form

∑
i∈N

p(xt, u) ·
(

h̃i(x0, x1, . . . , xt−1) + Hxt
i (uxt)

)
+

+ ∑
i∈N

∑
l

p(χl , uD) · h̃i(χl) = max
v∈U

Hi(v).
(20)

Suppose that uxt does not satisfy (18), that is, there exists vxt ∈ Uxt such that

∑
i∈N

Hxt
i (uxt) < ∑

i∈N
Hxt

i (vxt). (21)

Denote by Ω(vxt) = {λxt
m = (xt, . . . , xT(m)) | p(λxt

m , vxt) > 0} the bundle of all trajectories in the
subgame Γxt generated by vxt . Then (21) takes the form

∑
i∈N

∑
m

p(Ψxt
m , uxt) · h̃xt

i (Ψxt
m ) < ∑

i∈N
∑
m

p(λxt
m , vxt) · h̃xt

i (λxt
m ). (22)

Denote by Wi = (ūD
i , vxt

i ), i ∈ N, the ith player’s compound pure strategy in Γx0 . The strategy
profile W = (W1, . . . , Wn) generates the strategy bundle Ω(W) that can be divided onto two disjoint
subsets {λm} = {ω ∈ Ω(W) | xt ∈ ω} and {χl} = {ω ∈ Ω(W) | xt /∈ ω}, where the second
subset for Ω(W) coincides with the second subset for Ω(u) since WD = uD, and λm = (x0, . . . , xt) ∪
(xt, . . . , xT(m)) = (x0, . . . , xt) ∪ λxt

m .
Adding ∑

i∈N
h̃i(x0, x1 . . . , xt−1) to both sides of (22) we get

∑
i∈N

(
h̃i(x0, . . . , xt−1) + Hxt

i (uxt)
)
< ∑

i∈N

(
h̃i(x0, . . . , xt−1) + Hxt

i (vxt)
)

. (23)

Then we can multiply both sides of (23) on p(xt, u) = p(xt, uD) = p(xt, WD) = p(xt, W) > 0 and
then add ∑

i∈N
∑
l

p(χl , uD) · h̃i(χl) to both sides of the last inequality. Taking into account (4)–(6) and (20)

we obtain

∑
i∈N

Hi(u) < ∑
i∈N

Hi(W)

for the constructed strategy profile W ∈ U. The last inequality contradicts the fact that u ∈ U(Γx0),
hence (18) is valid.

Arguing in a similar way (for the case when different strategy profiles from U(Γxt) generate
different bundles of the trajectories) we can verify that ωxt = (xt, . . . , xT) — a fragment of the
cooperative trajectory ω ∈ Ω(u), starting at xt — belongs to the optimal bundle of cooperative
trajectories in the subgame Γxt , that is, ωxt ∈ Ω(uxt).

We will assume in this paper that all the players have agreed to apply the PRB algorithm in order
to choose the cooperative strategy profile u = (ū1, . . . , ūn) that generates the optimal bundle Ω(u)
of cooperative trajectories in Γx0 ∈ Gcm(n). The next step of cooperation is to define a characteristic
function Vx0(S). There are different notions of characteristic functions (see, e.g., References [23,24,48]),
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in this paper we adopt the so-called γ-characteristic function introduced in Reference [24]. Namely,
we assume that Vx0(S) is given by the SPE (based on the Attitude SPE algorithm) outcome of S in the
noncooperative game between members of S maximizing their joint payoff, and non members playing
individually.

The γ-characteristic function Vxt for the subgame Γxt , xt ∈ ωm(u) = (x0, . . . , xt, . . . , xT(m)),
ωm(u) ∈ Ω(u) along the optimal bundle of cooperative trajectories can be constructed using the same
approach. Note that

Vxt(N) = ∑
ω

xt
m ∈Ω(uxt )

p(ωxt
m , uxt) ·

T(m)

∑
τ=t

∑
i∈N

hi(xτ), t = 0, 1, . . . , T(m). (24)

Let Γx0 (N, Vx0) denote extensive-form cooperative game Γx0 ∈ Gcm(n) with γ-characteristic
function, and Γxt

(
N, Vxt

)
denote the corresponding subgame.

We assume that the players adopt a single-valued cooperative solution ϕx0 (for instance,
the Shapley value [33], the nucleolus [34], etc.) for the cooperative game Γx0(N, Vx0) which satisfies
the collective rationality property

n

∑
i=1

ϕx0
i = Vx0(N) = ∑

ωm∈Ω(u)
p(ωm, u) ·

T(m)

∑
τ=0

∑
i∈N

hi(xτ) (25)

and the individual rationality property

ϕx0
i = Vx0({i}), i = 1, . . . , n. (26)

In addition, we assume that the same properties (25) and (26) are valid for the cooperative
solutions ϕx̄t at each subgame Γx̄t(N, V x̄t), t = 0, . . . , T − 1.

It is worth noting that the last assumption as well as the choice of γ-characteristic function ensure
that every player has an incentive to cooperate at each subgame along the optimal game evolution
since the ith player’s cooperative payoff-to-go at Γx̄t(N, V x̄t), t = 0, . . . , T − 1, is at least equal to her
non-cooperative counterpart: ϕx̄t

i > H x̄t
i (ux̄t).

5. Subgame Consistency and Incremental IDP

Let β = {βi(xτ)}, i = 1, . . . , n; τ = 1, . . . , T(l), x(τ) ∈ ωl(u), ωl(u) ∈ Ω(u) denote the
Imputation Distribution Procedure (IDP) for the cooperative solution

(
ϕx0

i

)
i∈N

or the payment

schedule (see, e.g., References [3,8–12,14–18,20] for details). The IDP approach means that all the
players have agreed to allocate the total cooperative payoff Vx0(N) between the players along the
optimal bundle Ω(u) of cooperative trajectories ωl(u) according to some specific rule which is called
IDP. Namely, βi(xτ) denotes the actual current payment which the player i receives at position xτ

(instead of hi(xτ)) if the players employ the IDP β. Moreover, one can design such an IDP β that all the
players will be interested in cooperation in any subgame Γxτ , x(τ) ∈ ωl(u), ωl(u) ∈ Ω(u), that is, at
any intermediate time instant.

Definition 3. The IDP β = {βi(xτ)} satisfies subgame efficiency, if at any intermediate node xt ∈ ω(u),
ω(u) ∈ Ω(u), 0 6 t < T, it holds that:

∑
ω

xt
m ∈Ω(uxt )

p(ωxt
m , uxt) ·

T(m)

∑
τ=t

βi(xτ) = ϕxt
i , i ∈ N. (27)

Equation (27) means that the expected sum of the payments to player i along the optimal subgame
Γxt evolution equals to what she is entitled to in this subgame. Then the IDP for each player can
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be reasonably implemented as a rule for step-by-step allocation of the ith player’s current expected
optimal payoff. Note that for t = 0 the subgame efficiency definition coincides with the efficiency at
initial node x0 or the efficiency in the whole game Γx0 condition (see References [9,14,16,20]).

Definition 4 ([10]). The IDP β = {βi(xτ)} satisfies the strict balance condition if for each node x̄τ ∈ ωm(u),
ωm(u) ∈ Ω(u) ∀t = 0, . . . , T(m)

∑
i∈N

βi(x̄τ) = ∑
i∈N

hi(x̄τ). (28)

Equation (28) ensures the “admissibility” of the IDP, that is, the sum of payments to the players in
any node x̄τ is equal to the sum of payoffs that they can collect in this node.

The next advantageous dynamic property of an IDP—the time consistency, introduced in
Reference [3]—was extended to dynamic games played over event trees in References [14,16,20]
as well as to multicriteria extensive-form cooperative games (with chance moves) in Reference [9].

To write down properly the time consistency condition for some intermediate node xt ∈ ω(u) =
(x̄0, x̄1, . . . , x̄t−1, x̄t, x̄t+1, . . . , x̄T), ω(u) ∈ Ω(u), 1 6 t < T, in multistage game Γx0 with chance moves
we need to pay attention to all chance nodes on the path (x̄0, . . . , x̄t−1) = ωxt \ {xt}.
Namely, let us numerate the chance nodes from P0 ∩ (ωxt \ {xt}) in order of their occurrence on the
path (x̄0, . . . , x̄t−1), that is, y1 = xt(1), y2 = xt(2), . . . , yθ = xt(θ), 0 6 t(1) < t(2) < . . . < t(θ) < t.

Definition 5 ([9]). The IDP β = {βi/k(xτ)} for the cooperative solution ϕx0 is called time consistent in the
whole game Γx0 (N, Vx0) ∈ Gcm(n) if at any intermediate node xt ∈ ω(u), ω(u) ∈ Ω(u), 1 6 t < T, for all
i ∈ N, it holds that

case θ = 0 (no chance nodes on the path (x̄0, . . . , x̄t−1)):

t−1

∑
τ=0

βi(xτ) + ϕxt
i = ϕx0

i , (29)

case θ = 1 (only one chance node y1 = xt(1) before x̄t):

t(1)

∑
τ=0

βi(xτ) + p(xt(1)+1, u) ·

 t−1

∑
τ=t(1)+1

βi(xτ) + ϕxt
i

+

+ ∑
xk∈S(xt(1))\{xt(1)+1}

p(xk, u) · ϕxk

i = ϕx0
i ,

(30)

case θ = 2 (two chance nodes y1 = xt(1), y2 = xt(2) before x̄t):

t(1)

∑
τ=0

βi(xτ) + p(xt(1)+1, u) ·
{

t(2)

∑
τ=t(1)+1

βi(xτ) + p(xt(2)+1 | xt(2), u)×

×

 t−1

∑
τ=t(2)+1

βi(xτ) + ϕxt
i

+ ∑
xm∈S(xt(2))\{xt(2)+1}

p(xm | xt(2), u) · ϕxm

i

}
+

+ ∑
xk∈S(xt(1))\{xt(1)+1}

p(xk, u) · ϕxk

i = ϕx0
i ,

(31)

. . .
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Note that for partial case when xt ∈ S(xt(1)), that is, if xt follows the chance node xt(1)
Equation (30) takes the simpler form

t(1)

∑
τ=0

βi(xτ) + ∑
xk∈S(xt(1))

p(xk, u) · ϕxk

i = ϕx0
i .

A similar note is valid for equation (31), and so forth.
Roughly speaking, Definition 5 implies that the payments collected by the ith player (according

to the payment schedule β) before reaching some intermediate node xt plus the expected ith player’s
component of the Shapley value in the subgame Γxt starting at xt plus this player’s expected Shapley
value components in other subgames along the cooperative trajectories which do not contain xt

corresponds to what the player i is entitled to in the original game Γx0 (N, Vx0).
It is worth noting that Definition 5 indeed provides a reasonable consistency requirements which

a good payment schedule β should satisfy when the player evaluates IDP β at the initial node x0, that
is, before the game Γx0 (N, Vx0) starts (and the words “in the whole game” in Definition 5 properly
reflect this feature). However, when the player purposes to evaluate IDP β in the subgame Γxt , that
is, after reaching some intermediate node xt (in case when θ > 1) this player will unlikely take into
account the expected future payoffs in all the subgames which are unattainable if the node xt has
been already reached, that is, the last addends in the LHS of (30) and (31). To overcome this problem
we suggest the players to use a notion of subgame consistency—a refinement of time consistency
that was firstly proposed in Reference [36] for cooperative stochastic differential games and then
extend it to stochastic dynamic games in References [37,38]. Let us provide a rigorous definition of the
IDP subgame consistency for extensive-form games with chance moves that is applicable in all the
subgames along the optimal bundle of cooperative trajectories.

Definition 6. The IDP β = {βi(xτ)} is called subgame consistent if at any intermediate node xt ∈ ω(u),
ω(u) ∈ Ω(u), 1 6 t 6 T, for all i ∈ N, it holds that

case 1 6 t 6 t(1) (no chance nodes before the subgame Γxt root xt):

t−1

∑
τ=0

βi(xτ) + ϕxt
i = ϕx0

i , (32)

case t(1) + 1 < t 6 t(2) (only one chance node y1 = xt(1) before xt):

t−1

∑
τ=t(1)+1

βi(xτ) + ϕxt
i = ϕ

xt(1)+1
i , (33)

case t(2) + 1 < t 6 t(3) (two chance nodes before xt):

t−1

∑
τ=t(2)+1

βi(xτ) + ϕxt
i = ϕ

xt(2)+1
i , (34)

...
case t(θ) + 1 < t 6 T (no chance nodes after xt):

t−1

∑
τ=t(θ)+1

βi(xτ) + ϕxt
i = ϕ

xt(θ)+1
i . (35)

The subgame consistency definition differs from the “time consistency in the whole game”
property (see References [9,14,16,20]) which is based on an a priori assessment of the ith player’s
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expected optimal payoff (before the game starts). However, when the players make a decision in the
subgame after the chance move occurs they need to recalculate the expected optimal payoff since the
original optimal bundle of cooperative trajectories shrinks after each chance node. Note that we can
not write out the subgame consistency condition for t = t(1) + 1, t(2) + 1, ..., t(θ) + 1, that is, for the
nodes xt that immediately follow the chance nodes.

One can suggest different imputation distribution procedures that may or may not satisfy the
useful properties listed above. The review of different IDP for multistage games (without chance
moves) as well as the analysis of their properties can be found in References [10,12,15,17]. Below we
consider the refinement of the so-called incremental IDP (see, e.g., References [10,14,16,17,20,21]) that
was recently introduced for multistage games with chance moves [9].

Definition 7 ([9]). The incremental IDP for the cooperative solution ϕx0 in multistage game with chance moves
Γx0 is defined as follows:

βi(xt) = ϕxt
i − ∑

xk
t+1∈S(xt)

p(xk
t+1|xt, u) · ϕxk

t+1
i (36)

for xt ∈ ωl(u) = (x0, . . . , xt, . . . , xT(l)), ωl(u) ∈ Ω(u), t = 0, . . . , T(l)− 1;

βi(xT(l)) = ϕ
xT(l)
i (37)

for xT(l) ∈ Ω(u) ∩ Pn+1.

Remark 2. Formulas (36), (37) are similar to the imputation distribution procedures suggested in
References [14,16,20] for (single-criterion) stochastic discrete-time dynamic games played over event trees.
If xt ∈ Pi, i = 1, . . . , n Equation (36) takes the simpler form βi(xt) = ϕxt

i − ϕ
xt+1
i , where ui(xt) = xt+1, that

coincides with the “classical” incremental IDP.

Let us use again 3-person extensive-form game from Example 1 to demonstrate a proposed
scheme of cooperation.

Example 2. (Cooperative behavior in 3-player game from Ex. 1).
Suppose that the players have agreed on the following ranks: r(1) = 1, r(2) = 2 and r(3) = 3.

When implementing the PRB algorithm we get the optimal bundle Ω(u) which contains four cooperative
trajectories (marked in bold, deep blue in Figure 2): ω1 = (x0, x1, x1

2, x3, x2
4, x5, x6), ω2 = (x0, x1, x2

2, z3),
ω3 = (x0, x1, x1

2, x3, x1
4) and ω4 = (x0, x1, x1

2, x3, x3
4, z7). Note that players use the ranks when making

decision at node x5.

x0 x1 x1
2

x3 x2
4

x5 x6 = z10

6
0
0

z1 x2
2

z3

12
0
0 z4

z2 x1
4 = z5

x3
4

z7

z6

z8 z9

0
0

12 0
0
4

12
12
0

0
6
0

0
0
12

0
10
20

12
0
0

0
24
0

0
18
0

0
0
12

12
0

24

0
12
12

0
0

12

12
0
0

18
0
0

12
0
0

1
2

1
2

1
6

1
2

1
3

Figure 2. 3-player extensive-form game: cooperative behavior.



Mathematics 2020, 8, 1061 16 of 20

To demonstrate the implementation of the incremental IDP and its properties we will adopt the Shapley
value as a single valued cooperative solution. The values of the γ-characteristic function Vx0 for the original
game Γx0(N, Vx0) and the Shapley value ϕx0 are

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx0 (S) 12 11 18 38 48 33 68
, ϕx0 =

 25 1
6

17 1
6

25 2
3

 .

Consider, for instance, the incremental IDP along the longest cooperative trajectory ω2 = (x0, . . . , x6)

from Ω(u). If we calculate γ-characteristic functions using Attitude SPE algorithm for the subgames, we get
the following results.
Subgame Γx1(N, Vx1):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx1 (S) 6 11 18 32 42 33 62
, ϕx1 =

 19 1
6

17 1
6

25 2
3

 .

Subgame Γx1
2(N, Vx1

2):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx1
2 (S) 0 10 32 40 60 42 76

, ϕx1
2 =

 21
17
38

 .

Subgame Γx2
2(N, Vx2

2):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx2
2 (S) 12 0 4 12 24 12 36

, ϕx2
2 =

 17 1
3

5 1
3

13 1
3

 .

Subgame Γx3(N, Vx3):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx3 (S) 24 10 16 40 48 26 64
, ϕx3 =

 31
13
20

 .

Subgame Γx2
4(N, Vx2

4):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx2
4 (S) 24 0 24 36 60 24 72

, ϕx2
4 =

 36
6
30

 .

Subgame Γx3
4(N, Vx3

4):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx3
4 (S) 0 18 12 18 18 30 36

, ϕx3
4 =

 3
18
15

 .

Subgame Γx5(N, Vx5):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Vx5 (S) 0 12 24 12 24 36 36
, ϕx5 =

 0
12
24

 .

Finally, ϕx6 = hx6 = (12, 0, 0).
One can calculate the incremental IDP {βi(xτ), xτ ∈ ω2} using (36) and (37):

x0 x1 x1
2 x3 x2

4 x5 x6

β1(xτ) 6 0 −10 12 36 −12 12
β2(xτ) 0 6 4 0 −6 12 0
β3(xτ) 0 0 18 0 6 24 0

,

Note that the subgame consistency conditions at nodes x1, x3 and x5 according to (32)–(34) respectively
take the form:

βi(x0) + ϕx1
i = ϕx0

i , i ∈ N, or

 6
0
0

+

 19 1
6

17 1
6

25 2
3

 =

 25 1
6

17 1
6

25 2
3

 ,
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βi(x1
2) + ϕx3

i = ϕ
x1

2
i , i ∈ N, or

 −10
4
18

+

 31
13
20

 =

 21
17
38

 ,

βi(x2
4) + ϕx5

i = ϕ
x2

4
i , i ∈ N, or

 36
−6
6

+

 0
12
24

 =

 36
6

30

 .

It is known that the classical incremental IDP for multistage (and differential) games may imply
negative current payments to some players at some positions (see References [4,10,17,38] for details).
As one can observe in Ex. 2, this drawback of the incremental IDP may appear in the extensive-form
game with chance moves as well. Two approaches how to overcome this possible disadvantage
were suggested in References [4,10]. Unfortunately, as it was firstly proved in Reference [10], in
general it is impossible to design a time consistent IDP which satisfies both the balance condition and
non-negativity constraint.

Proposition 3. The incremental IDP (36), (37) satisfies strict balance condition (28), the subgame efficiency
condition (27), and the subgame consistency conditions (32)–(35).

Proof. Incremental IDP β was proved to satisfiy strict balance condition (28) in Reference [9]. The
proof of subgame consistency can be carried out by direct verification. For instance, consider the case
when t(1) + 1 < t 6 t(2). Then, using Remark 2 we get

t−1

∑
τ=t(1)+1

βi(xτ) =
(

ϕ
xt(1)+1

i − ϕ
xt(1)+2

i

)
+ . . . +

(
ϕ

xt−1
i − ϕxt

i

)
= ϕ

xt(1)+1

i − ϕxt
i .

Obviously, (33) is satisfied.
The proof that IDP (36), (37) satisfies subgame efficiency (27) is based on direct calculations but

rather cumbersome in general case (i.e., for arbitrary game Γx0 ). Let us demonstrate how it works for
the game in Example 2. For instance we verify that the incremental IDP meets the subgame efficiency
condition at node x3.

Note that Ω(ux3) =
{

ωx3
1 = (x3, x1

4); ωx3
2 = (x3, x2

4, x5, x6); ωx3
3 = (x3, x3

4, z7)
}

while

p(ωx3
1 , ux3) = π(x1

4|x3), p(ωx3
2 , ux3) = π(x2

4|x3) and p(ωx3
3 , ux3) = π(x3

4|x3). Then, using (32),
(33), Remark 2, equality ∑

xk
4∈S(x3)

π(xk
4|x3) = 1 and the notation

Φ4
i =

3

∑
k=1

π(xk
4|x3) · ϕ

xk
4

i ,

we obtain

∑
ω

x3
k ∈Ω(ux3 )

p(ωx3
k , ux3 ) ·

T(k)

∑
τ=3

βi(xτ) = π(x1
4|x3) ·

[(
ϕx3

i −Φ4
i

)
+ ϕ

x1
4

i

]
+

+π(x2
4|x3) ·

[(
ϕx3

i −Φ4
i

)
+
(

ϕ
x2

4
i − ϕx5

i

)
+
(

ϕx5
i − ϕx6

i

)
+ ϕx6

i

]
+

+π(x3
4|x3) ·

[(
ϕx3

i −Φ4
i

)
+
(

ϕ
x3

4
i − ϕz7

i

)
+ ϕz7

i

]
= ϕx3

i ·
3

∑
k=1

π(xk
4|x3)+

+π(x1
4|x3) ·

[
−Φ4

i + ϕ
x1

4
i

]
+ π(x2

4|x3) ·
[
−Φ4

i + ϕ
x2

4
i

]
+ π(x3

4|x3) ·
[
−Φ4

i + ϕ
x3

4
i

]
=

= ϕx3
i −Φ4

i ·
3

∑
k=1

π(xk
4|x3) +

3

∑
k=1

π(xk
4|x3) · ϕ

xk
4

i = ϕx3
i .
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According to Proposition 3, the incremental payment schedule (36), (37) can be used to implement
a long-term cooperative agreement in an extensive-form game with chance moves.

6. Conclusions

In the paper we purposes to design a mechanism of the players’ sustainable long-term cooperation
that satisfies a number of good properties. To this aim we formalised the players’ rank based algorithm
for selecting a unique optimal bundle of cooperative trajectories, and proved that corresponding
cooperative strategy profile satisfies time consistency. To calculate γ-characteristic function one need to
have a specific method for constructing a unique (subgame perfect) equilibrium at any extensive-form
game with chance moves. Hence, we formalised a backwards induction procedure refinement based
on the players’ attitude vectors—the so-called attitude SPE algorithm.

As a result of reexamination of the “IDP time consistency in the whole game” concept, we suggest
to adopt the concept of subgame consistency, introduced in Reference [36] for differential stochastic
games and then extend it to dynamic stochastic games in References [37,38]. The definition of subgame
consistency for extensive-form game with chance moves is provided. This property takes into account
such an interesting feature of the games under consideration that when the players make a decision
in the subgame Γxt after the chance move occurs, they need to recalculate their expected optimal
payoffs-to-go since the original optimal bundle of cooperative trajectories shrinks after each chance
node. It is worth noting that a similar approach, based on the IDP subgame consistency notion could
be applied to dynamic games played over event trees ([14,16,20]). We proved that the incremental IDP
specified for multistage games with chance moves in Reference [9] satisfy subgame consistency and
subgame efficiency as well as the strict balance condition.

It follows from Propositions 1–3 that two specified algorithms combined with the γ-characteristic
function, and the incremental payment schedule together constitute a mechanism of the players’
sustainable cooperation that satisfies a number of good properties and could be used in extensive-form
games with chance moves. Note that the main result of the paper—Proposition 3—does not depend
on the specific method which the players employ to calculate the characteristic function as well as on
the specific single-valued cooperative solution meeting (25) and (26).

Since this is the first time that subgame consistent solutions are examined for extensive-form
games with chance moves, further research along this line is expected. It is surely of interest to develop
appropriate software application to implement proposed algorithms in arbitrary extensive-form game
with chance moves. Possibly, one can use the so-called Game Theory Explorer [30] when developing
such software tools for 2-person extensive games. Further, it might be interesting to run experiments
with large-scale datasets, after the software application that allows to construct unique SPE, the optimal
bundle of cooperative trajectories, γ-characteristic function, and so forth, will be developed.

Let us notice some preliminary suggestions on how one can use such software application to run
simulations. First, one can vary the main parameter—the length of the game tree, and the additional
parameters such as the game structure, the players’ payoffs, probabilities of transitions, and so forth,
to obtain practical estimations of the proposed algorithms complexity and scalability. Secondarily,
one can generate external disturbances of the stage payoffs and probabilities and vary the players’
attitude vectors to carry out the sensitivity analysis of the proposed non-cooperative and cooperative
solutions. Further, it is of interest to get experimental estimations of the price of anarchy and the price
of stability for the class of games under consideration. Finally, one can use such software application
to check whether the additional properties (non-negativity, irrational-behavior-proof conditions, etc.)
of the proposed incremental IDP and other payment schedules (see, e.g., Reference [15]) are satisfied
for given extensive-form game with chance moves.
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