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Abstract: We construct a new volume preserving map from the unit ball B3 to the regular 3D
octahedron, both centered at the origin, and its inverse. This map will help us to construct refinable
grids of the 3D ball, consisting in diameter bounded cells having the same volume. On this 3D
uniform grid, we construct a multiresolution analysis and orthonormal wavelet bases of L2(B3),
consisting in piecewise constant functions with small local support.
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1. Introduction

Spherical 3D signals occur in a wide range of fields, including computer graphics, and medical
imaging (e.g., 3D reconstruction of medical images [1]), crystallography (texture analysis of crystals) [2,3]
and geoscience [4–6]. Therefore, we need suitable efficient techniques for manipulating such signals,
and one of the most efficient technique consists in using wavelets on the 3D ball (see e.g., [4–10] and
the references therein). In this paper we propose to construct an orthonormal basis of wavelets with
small support, defined on the 3D ball B3, starting from a multiresolution analysis. Our wavelets will
be piecewise constant functions on the cells of a uniform and refinable grid of B3. By a refinable
(or hierarchical) grid we mean that the cells can be divided successively into a given number of smaller
cells of the same volume. By a uniform grid we mean that all the cells at a certain level of subdivision
have the same volume. These two very important properties of our grid derive from the fact that it is
constructed by mapping a uniform and refinable grid of the 3D regular octahedron, using a volume
preserving map onto B3. Compared to the wavelets on the 3D ball constructed in [8,10], with localized
support, our wavelets have local support, and this is very important when dealing with data consisting
in big jumps on small portions, as shown in [11]. Another construction of piecewise constant wavelets
on the 3D ball was realized in [7], starting from a similar construction on the 2D sphere. The author
assumes that his wavelets are the first Haar wavelets on the 3D ball which are orthogonal and symmetric,
even though we do not see any symmetry, neither in the cells, nor in the decomposition matrix. Moreover,
his 8× 8 decomposition matrices change in each step of the refinement, the entries depending on the
volumes of the cells, which are, in our opinion, difficult to evaluate and for this reason they are not
calculated explicitly in [7]. Another advantage of our construction is that our cells are diameter bounded,
unlike the cells in [7] containing the origin, which become long and thin after some steps of refinement.

The paper is structured as follows. In Section 2 we introduce some notations used for the
construction of the volume preserving map. In Section 3 we construct the volume preserving maps
between the regular 3D octahedron and the 3D ball B3. In Section 4 we construct a uniform refinable
grid of the regular octahedron followed by implementation issues, and its projection onto B3 . Finally,
in Section 5 we construct a multiresolution analysis and piecewise constant wavelet bases of L2(B3).
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2. Preliminaries

Consider the ball of radius r centered at the origin O, defined as

B3 =
{
(x, y, z) ∈ R3, x2 + y2 + z2 ≤ r2

}

and the regular octahedron K of the same volume, centered at O and with vertices on the
coordinate axes

K =
{
(x, y, z) ∈ R3, |x|+ |y|+ |z| ≤ a

}
.

Since the volume of the regular octahedron is 4a3/3, we have

a = r 3
√

π. (1)

The parametric equations of the ball are

x = ρ cos θ sin ϕ,

y = ρ sin θ sin ϕ, (2)

z = ρ cos ϕ,

where ϕ ∈ [0, π] is the colatitude, θ ∈ [0, 2π) is the longitude and ρ ∈ [0, r] is the distance to the origin.
A simple calculation shows that the volume element of the ball is

dV = ρ2 sin ϕ dρ dθ dϕ. (3)

The ball and the octahedron can be split into eight congruent parts (see Figure 1), each part being
situated in one of the eight octants I±i , i = 0, 1, 2, 3,

I+0 = {(x, y, z), x ≥ 0, y ≥ 0, z ≥ 0}, I−0 = {(x, y, z), x ≥ 0, y ≥ 0, z ≤ 0},
I+1 = {(x, y, z), x ≤ 0, y ≥ 0, z ≥ 0}, I−1 = {(x, y, z), x ≤ 0, y ≥ 0, z ≤ 0},
I+2 = {(x, y, z), x ≤ 0, y ≤ 0, z ≥ 0}, I−2 = {(x, y, z), x ≤ 0, y ≤ 0, z ≤ 0},
I+3 = {(x, y, z), x ≥ 0, y ≤ 0, z ≥ 0}, I−3 = {(x, y, z), x ≥ 0, y ≤ 0, z ≤ 0}.

Let Bs
i and Ks

i be the regions of B3 and K, situated in Is
i , respectively.

Figure 1. The eight spherical zones obtained as intersections of the coordinate planes with the ball B3.

Next we will construct a map U : B3 → K which preserves the volume, i.e., U satisfies

vol(D) = vol(U (D)), for all D ⊆ B3, (4)
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where vol(D) denotes the volume of a domain D. For an arbitrary point (x, y, z) ∈ B3 we denote

(X, Y, Z) = U (x, y, z) ∈ K. (5)

3. Construction of the Volume Preserving Map U and Its Inverse

We focus on the region B+
0 ⊂ I+0 where we consider the points A = (r, 0, 0), B = (0, r, 0),

C = (0, 0, r) and the vertical plane of equation y = x tan α with α ∈ (0, π/2) (see Figure 2 (left)).
We denote by M its intersection with the great arc ÃB of the sphere of radius r. More precisely,
M = (r cos α, r sin α, 0). The volume of the spherical region OAMC equals r3α/3.

B(0, r, 0)

M (r cosα, r sinα, 0)

α

O

C(0, 0, r)

A(r, 0, 0)
B′

(
0,

L√
2
,0
)

M’

β

O

C′
(
0,0,

L√
2

)

A′
( L√

2
,0,0

)

Figure 2. The spherical region OAMC and its image OA′M′C′ = U (OAMC) on the octahedron.

Now we intersect the region K+
1 of the octahedron with the vertical plane of equation y = x tan β

and denote by M′(m, n, 0) its intersection with the edge A′B′, where A′ (a, 0, 0) , B′ (0, a, 0) (see Figure 2
(right)). Then m + n = a and from n = m tan β we find

m = a · 1
1 + tan β

, n = a · tan β

1 + tan β
.

The volume of OA′M′C′ is

V(OA′M′C′) =
OC′ · A(OA′M′)

3
=

a
3
· OA′ · n

2
=

a3 tan β

6(1 + tan β)
.

If we want the volume of the region OAMC of the unit ball to be equal to the volume of OA′M′C′,
we obtain

α =
π

2
· tan β

1 + tan β
, whence tan β =

2α

π − 2α
.

This give us a first relation between (x, y, z) and (X, Y, Z):

Y
X

=
2 arctan y

x
π − 2 arctan y

x
.

Using the spherical coordinates (2) we obtain

Y =
2θ

π − 2θ
· X. (6)

In order to obtain a second relation between (x, y, z) and (X, Y, Z), we impose that, for an arbitrary
ρ̃ ∈ (0, r] the region

{
(x, y, z) ∈ R3, x2 + y2 + z2 ≤ ρ̃2, x, y, z ≥ 0

}
of volume

πρ̃3

6
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is mapped by U onto

{
(X, Y, Z) ∈ R3, X + Y + Z ≤ `, X, Y, Z ≥ 0

}
of volume

`3

6
.

Then, the volume preserving condition (4) implies ` = a · ρ̃/r, with a satisfying (1). Thus,

X + Y + Z =
a
r

√
x2 + y2 + z2

and in spherical coordinates this can be written as

X + Y + Z =
aρ

r
. (7)

In order to have a volume preserving map, the modulus of the Jacobian J(U ) of U must be 1, or,
equivalently, taking into account the volume element (3), we must have

J(U ) =

∣∣∣∣∣∣∣

X′ρ X′ϕ X′θ
Y′ρ Y′ϕ Y′θ
Z′ρ Z′ϕ Z′θ

∣∣∣∣∣∣∣
= ρ2 sin ϕ. (8)

Taking into account formula (7), we have

J(U ) =

∣∣∣∣∣∣∣

X′ρ X′ϕ X′θ
Y′ρ Y′ϕ Y′θ

a/r− X′ρ −Y′ρ −X′ϕ −Y′ϕ −X′θ −Y′θ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

X′ρ X′ϕ X′θ
Y′ρ Y′ϕ Y′θ
a/r 0 0

∣∣∣∣∣∣∣
=

a
r

∣∣∣∣∣
X′ϕ X′θ
Y′ϕ Y′θ

∣∣∣∣∣ .

Further, using relation (6) we get

J(U ) = a
r

∣∣∣∣∣
X′ϕ X′θ

2θ
π−2θ · X′ϕ 2θ

π−2θ · X′θ + 2π
(π−2θ)2 · X

∣∣∣∣∣ =
a
r

∣∣∣∣∣
X′ϕ X′θ
0 2π

(π−2θ)2 · X

∣∣∣∣∣ =
2πa

r(π − 2θ)2 XX′ϕ.

For the last equality, we have multiplied the first row by −2θ/(π − 2θ) and we have added it to the
second row. Then, using the expression for J(U ) obtained in (8) we get the differential equation

2X′ϕ · X =
rρ2

πa
(π − 2θ)2 sin ϕ.

The integration with respect to ϕ gives

X2 = − r(π − 2θ)2

πa
ρ2 cos ϕ + C(θ, ρ),

and further, for finding C(θ, ρ) we use the fact that, for ϕ = π/2 we must obtain Z = 0. Thus,
for ϕ = π/2 we have

X2 = C(θ, ρ), so Y =
2θ

π − 2θ

√
C(θ, ρ), and

Z =
aρ

r
− X−Y =

aρ

r
− π

π − 2θ

√
C(θ, ρ).

Thus, Z = 0 is obtained for

C(θ, ρ) =
a2ρ2

π2r2 (π − 2θ)2,
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and finally, the map U restricted to the region I+0 is

X =

√
2

π2/3 · ρ(π − 2θ) sin
ϕ

2
, (9)

Y =

√
2

π2/3 · ρ · 2θ sin
ϕ

2
, (10)

Z = π1/3ρ
(
1−
√

2 sin
ϕ

2
)
. (11)

In the other seven octants, the map U can be obtained by symmetry as follows. A point (x, y, z) ∈
B3, can be written as

(x, y, z) = (sgn(x) · |x|, sgn(y) · |y|, sgn(z) · |z|), with (|x|, |y|, |z|) ∈ I+0 .

Therefore, if we denote by (X, Y, Z) = U (|x|, |y|, |z|), then we can define U (x, y, z) as

U (x, y, z) = (sgn(x) · X, sgn(y) ·Y, sgn(z) · Z). (12)

Next we deduce the formulas for the inverse of U . First, from (6) we obtain

θ =
πY

2(X + Y)
,

and from (7) we have
ρ =

r
a
(X + Y + Z) = π−1/3(X + Y + Z).

Adding (9) and (10), after some more calculations we obtain

sin
ϕ

2
=

X + Y√
2(X + Y + Z)

,

and further

cos ϕ =
Z(2X + 2Y + Z)
(X + Y + Z)2 , sin ϕ =

X + Y
X + Y + Z

√
2−

(
X + Y

X + Y + Z

)2
.

Finally, the inverse U−1 : K→ B3 is defined by

x = π−1/3(X + Y)

√
2−

(
X + Y

X + Y + Z

)2
cos

πY
2(X + Y)

, (13)

y = π−1/3(X + Y)

√
2−

(
X + Y

X + Y + Z

)2
sin

πY
2(X + Y)

, (14)

z = π−1/3 Z(2X + 2Y + Z)
(X + Y + Z)

. (15)

for (X, Y, Z) ∈ K+
0 , and for the other seven octants the formulas can be calculated as in (12).

4. Uniform and Refinable Grids of the Regular Octahedron and of the Ball

In this section we construct a uniform refinement of the regular octahedron K of volume vol(K),
more precisely a subdivision of K into 64 cells of two shapes, each of them having the volume
vol(K)/64. This subdivision can be repeated for each of the 64 small cells, the resulting 642 cells
of volume vol(K)/642 being of one of the two types from the first refinement. Next, the volume
preserving map U will allow us the construction of uniform and refinable grids of the 3D ball B3 by



Mathematics 2020, 8, 994 6 of 15

transporting the octahedral uniform refinable 3D grids, and further, the construction of orthonormal
piecewise constant wavelets on the 3D ball.

4.1. Refinement of the Octahedron

The initial octahedron K consists in four congruent cells, each situated in one of the octants
I+i ∪ I−i , i = 0, 1, 2, 3 (see Figure 3). We will say that this type of cell is T0, the index 0 of T0 being the
coarsest level of the refinement. For simplifying the writing we denote by N0 the set of positive natural
numbers and by Nn = {1, 2, . . . , n}, for n ∈ N0.

X

Y

Z

O

A
B

C

D

M
N

P

Q R

Figure 3. Left: one of the four cells of type T0 constituting the octahedron. Right: each cell of type T0

can be subdivided into six cells of type T1 and two cells of type M1.

4.1.1. First Step of Refinement

The cell T0 = (ABCD) ∈ I+0 ∪ I−0 , with A(a, 0, 0), B(0, a, 0), C(0, 0, a), D(0, 0,−a) (see Figure 3),
will be subdivided into eight smaller cells having the same volume, as follows: we take the mid-points
M, N, P, Q, R of the edges AC, BC, AB, AD, BD, respectively. Thus, one obtains t1 = 6 cells of type
T1 (MQOP, MQAP, NROP, NRBP, ODQR and COMN), and m1 = 2 other cells, OMNP and OPQR,
of another type, say M1. The cells of type T1 have the same shape with the cells T0. Their volumes are

vol(T1) = vol(M1) =
vol(T0)

8
.

Figures 4 and 5 also show the eight cells at the first step of refinement.
Similarly we refine the other three cells situated in I+i ∪ I−i , i = 1, 2, 3, therefore the total number

of cells after the first step of refinement is 32, more precisely 24 of type T1 and 8 of type M1.
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Figure 4. The subdivision of a T cell.

Figure 5. The first step of the refinement: the cell T0 is divided into two cells of type M1 (yellow) and
six cells of type T1: two red, two blue and two green.

4.1.2. Second Step of Refinement

A cell of type T1 will be subdivided in the same way as a cell of type T0, i.e., into six cells of type
T2 and two cells of type M2. Their volumes will be

vol(T2) = vol(M2) =
vol(T0)

82 .

Therefore, from the subdivision of the 6 cells of type T1 we have 36 cells of type T2 and 12 cells of
type M2.

For a cell (OMNP) of type M1, which is a regular tetrahedron of edge `1 = a
√

2/2, we take the
mid-points of the six edges (see Figures 6 and 7). This will give four cells of type T2 in the middle and
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four cells of type M2, i.e., regular tetrahedrons of edge `2 = a
√

2/22. From the subdivision of the two
cells of type M1 we have 8 cells of type T2 and 8 cells of type M2.

Figure 6. The four cells of type T of the subdivision of a cell of type M.

Figure 7. The subdivision of a cell of type M1 into four cells of type M: the four tetrahedrons at the
corners and four cells of type T in the middle, forming an octahedron.

In conclusion, the second step of subdivision yields in I+0 ∪ I−0 t2 = 44 cells of type T2 and
m2 = 20 cells of type M2, each having the volume vol(T0)/64, therefore the total number of cells after
the second refinement will be 4 · 82, more precisely 76 of type T2 and 80 of type M2.

4.1.3. The General Step of Refinement

Let mj and tj denote the numbers of cells of type Mj and Tj, respectively, resulted at the step j
of the subdivision, starting from one cell of type T0. At this step, each of the tj−1 cells of type Tj−1 is
subdivided into 6 cells of type Tj and 2 cells of type Mj, and each of the mj−1 cells of type Mj−1 is
subdivided into 4 cells of type Tj and 4 cells of type Mj. This implies

tj = 6tj−1 + 4mj−1,

mj = 2tj−1 + 4mj−1,

or (
tj
mj

)
= A

(
tj−1

mj−1

)
= A2

(
tj−2

mj−2

)
= . . . = Aj

(
t0

m0

)
,
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with t0 = 1, m0 = 0 and A =

(
6 4
2 4

)
. After some calculations we obtain

Aj =
1
3

(
2j(22j+1 + 1) 2j+1(22j − 1)

2j(22j − 1) 2j(22j + 2)

)
, whence

tj =
2j

3
(22j+1 + 1), mj =

2j

3
(22j − 1),

the total number of cells of K+
1 ∪K−1 at step j being tj + mj = 8j, and 4 · 8j for the whole octahedron K.

Each of the cells of type Tj and Mj has the volume vol(T0)/8j.

4.2. Implementation Issues

Every cell of the polyhedron is identified by the coordinates of its four vertices. We have two
types of cells, which will be denoted by T and M.

A cell of type T has the same coordinates x and y for the first two vertices. The z coordinate of
the first vertex is greater than the z coordinate of the second vertex and the mean value of these z
coordinates gives the value of the z coordinate of the third and fourth vertices of T.

A cell of type M has two pairs of vertices at the same altitude (the same value of the z coordinate).
At every step of refinement, every cell T is divided into 6 cells of type T and two cells of

type M. Suppose [p1, p2, p3, p4] is the array giving the coordinates of the four vertices of a T cell.
The coordinates of the vertices of the next level cells are computed as follows

next level cell number 1 :
1
2
[p1 + p1, p1 + p2, p1 + p3, p1 + p4],

next level cell number 2 :
1
2
[p2 + p1, p2 + p2, p2 + p3, p2 + p4],

next level cell number 3 :
1
2
[p3 + p1, p3 + p2, p3 + p3, p3 + p4],

next level cell number 4 :
1
2
[p4 + p1, p4 + p2, p4 + p3, p4 + p4],

next level cell number 5 :
1
2
[p1 + p3, p2 + p3, p3 + p4, p1 + p2],

next level cell number 6 :
1
2
[p1 + p4, p2 + p4, p1 + p2, p3 + p4],

next level cell number 7 :
1
2
[p1 + p2, p1 + p3, p1 + p4, p3 + p4],

next level cell number 8 :
1
2
[p1 + p2, p2 + p3, p2 + p4, p3 + p4].

The cells 1–6 are of type T and the cells 7 and 8 are of type M (see Figure 4).
Every cell M consists in 4 cells of type T and 4 cells of type M. Suppose [p1, p2, p3, p4] is the

array giving the coordinates of the four vertices of the cell M and let pk =
(

pkx, pky, pkz

)
, k = 1, 2, 3, 4.

We rearrange these four vertices in ascending order with respect to the z coordinate. Let [q1, q2, q3, q4]

be the vector [p1, p2, p3, p4] sorted ascendingly with respect to the z coordinate of the vertices, i.e., q1z ≤
q2z ≤ q3z ≤ q4z. Similarly, let [r1, r2, r3, r4] be the rearrangement of vertices p1, . . . , p4 such that
r1x ≤ r2x ≤ r3x ≤ r4x. Let, also, [s1, s2, s3, s4] be the array of rearranged vertices with respect to the y
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coordinate in ascending order. The coordinates of the vertices of the cells at the next level are computed
as follows:

next level cell number 1 :
1
2
[q3 + q4, q1 + q2, r3 + r4, s3 + s4]

next level cell number 2 :
1
2
[q3 + q4, q1 + q2, s3 + s4, r1 + r2]

next level cell number 3 :
1
2
[q3 + q4, q1 + q2, r1 + r2, s1 + s2]

next level cell number 4 :
1
2
[q3 + q4, q1 + q2, s1 + s2, r3 + r4]

next level cell number 5 :
1
2
[p1 + p1, p1 + p2, p1 + p3, p1 + p4]

next level cell number 6 :
1
2
[p2 + p1, p2 + p2, p2 + p3, p2 + p4]

next level cell number 7 :
1
2
[p3 + p1, p3 + p2, p3 + p3, p3 + p4]

next level cell number 8 :
1
2
[p4 + p1, p4 + p2, p4 + p3, p4 + p4].

To verify whether a point p = (px, py, pz) is inside a cell with vertices [p1, p2, p3, p4], we compute the
following numbers:

d1 = sgn

∣∣∣∣∣∣∣∣∣

p1x p2x p3x px

p1y p2y p3y py

p1z p2z p3z pz

1 1 1 1

∣∣∣∣∣∣∣∣∣
, d2 = sgn

∣∣∣∣∣∣∣∣∣

p1x p2x px p4x
p1y p2y py p4y
p1z p2z pz p4z
1 1 1 1

∣∣∣∣∣∣∣∣∣
, d3 = sgn

∣∣∣∣∣∣∣∣∣

p1x px p3x p4x
p1y py p3y p4y
p1z pz p3z p4z
1 1 1 1

∣∣∣∣∣∣∣∣∣
,

d4 = sgn

∣∣∣∣∣∣∣∣∣

px p2x p3x p4x
py p2y p3y p4y
pz p2z p3z p4z
1 1 1 1

∣∣∣∣∣∣∣∣∣
, d5 = sgn

∣∣∣∣∣∣∣∣∣

p1x p2x p3x p4x
p1y p2y p3y p4y
p1z p2z p3z p4z
1 1 1 1

∣∣∣∣∣∣∣∣∣
.

We calculate v = |d1|+ |d2|+ |d2|+ |d3|+ |d4|+ |d5|. If |d1 + d2 + d3 + d4 + d5| = v, then for v = 5
the point p is in the interior of the cell, for v = 4 the point p is on one of the faces of the cell, for v = 3
the point p is situated on one of the edges of the cell, and for v = 2 the point p is one of the vertices of
the cell. If |d1 + d2 + d3 + d4 + d5| 6= v, the point p is located outside the cell. Since the vertices pk are
different we have v ≥ 2.

4.3. Uniform and Refinable Grids of the Ball B3

If we transport the uniform and refinable grid on K onto the ball B3 using the volume preserving
map U−1, we obtain a uniform and refinable grid of B3. Figures 8–10 show the images on B3 of
different cells of K.

Besides the multiresolution analysis and wavelet bases, which will be constructed in Section 5,
another useful application is the construction of a uniform sampling of the rotation group SO(3),
by calculations similar to the ones in [3]. This will be subject of a future paper.
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Figure 8. Left: a cell of M in red and a cell of T type in green from the octahedron Middle and right:
the corresponding cells of the ball.

Figure 9. Left: the image on the ball of the positive octant; Right: the same image rotated.

Figure 10. The image on the ball of the cells of the octahedron corresponding to Figure 7.

5. Multiresolution Analysis and Piecewise Constant Orthonormal Wavelet Bases of
L2(K) and L2(B3)

Let D = D0 = {D1, D2, D3, D4} be the decomposition of the domain K considered in Section 4.1,
consisting in four congruent domains (cells) of type T0. For D ∈ D, letRD denote the set of the eight
refined domains, constructed in Section 4.1.1. The set D1 = ∪D∈D0RD is a refinement of D0, consisting
in 4 · 8 congruent cells. Continuing the refinement process as we described in Section 4, we obtain a
decomposition D j of K, for j ∈ N0, |D j| = 4 · 8j.

For a fixed j ∈ N0 we assign to each domain Dj
k ∈ D j, k ∈ Nj := N4·8j , the function ϕ

Dj
k

: K→ R,

ϕ
Dj

k
= (2
√

2)j 2√
vol(K)

χ
Dj

k
,
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where χ
Dj

k
is the characteristic function of the domain Dj

k. Then we define the spaces of functions

V j = span{ϕ
Dj

k
, k ∈ Nj} of dimension 4 · 8j, consisting of piecewise constant functions on the domains

of D j. Moreover, we have ‖ϕ
Dj

k
‖L2(K) = 1, the norm being the usual 2-norm of the space L2(K).

For Aj ∈ D j = {Dj
k, j ∈ Nj}, let Aj+1

k , k ∈ N8, be the refined subdomains obtained from Aj. One has

ϕAj =
1

2
√

2

(
ϕ

Aj+1
1

+ ϕ
Aj+1

2
+ . . . + ϕ

Aj+1
8

)
,

in L2(K), equality which implies the inclusion V j ⊆ V j+1, for all j ∈ N0. With respect to the usual inner
product 〈·, ·〉L2(K), the spaces V j are Hilbert spaces, with the corresponding usual 2-norm ‖ · ‖L2(K).
In conclusion, the sequence of subspaces V j has the following properties:

1. V j ⊆ V j+1 for all j ∈ N0,
2. closL2(K)

⋃∞
j=0 V j = L2(K),

3. The set {ϕ
Dj

k
, k ∈ Nj} is an orthonormal basis of the space V j for each j ∈ N0,

i.e., the sequence {V j, j ∈ N0} constitutes a multiresolution analysis of the space L2(K). Let W j denote
the orthogonal complement of the coarse space V j in the fine space V j+1, so that

V j+1 = V j ⊕W j.

The dimension of W j is dim W j = 28 · 8j. The spaces W j are called wavelet spaces and their elements
are called wavelets. In the following we construct an orthonormal basis of W j. To each domain Aj ∈ D j,
seven wavelets supported on Dj will be associated in the following way:

ψ`
Aj = a`1 ϕ

Aj+1
1

+ a`2 ϕ
Aj+1

2
+ . . . + a`8 ϕ

Aj+1
8

, for ` ∈ N7,

with a`j ∈ R, ` ∈ N7, j ∈ N8. We have to find conditions on the coefficients a`j which ensure that the
set {ψ`

Aj , ` ∈ N7, Aj ∈ D j} is an orthonormal basis of W j. First we must have

〈ψ`
Aj , ϕSj〉 = 0, for ` ∈ N7 and Aj, Sj ∈ D j. (16)

If Aj 6= Sj, the equality is immediate, since supp ψ`
Aj ⊆ supp ϕAj and supp ϕAj ∩ supp ϕSj is either

empty or an edge, whose measure is zero. If Aj = Sj, evaluating the inner product (16) we obtain

〈ψ`
Aj , ϕSj〉 = 〈a`1 ϕ

Aj+1
1

+ a`2 ϕ
Aj+1

2
+ . . . + a`8 ϕ

Aj+1
8

, ϕAj〉

=
1

2
√

2
(a`1 + a`2 + . . . + a`8).

Then, each of the orthogonality conditions

〈ψ`
Aj , ψ` ′

Aj〉 = δ`` ′ , for all Aj ∈ D j,

is equivalent to a` ′1a`1 + a` ′2a`2 + . . .+ a` ′8a`8 = δ`` ′ , `, ` ′ ∈ N7. In fact, one requires the orthogonality
of the 8× 8 matrix M =

(
aij
)

i,j with the entries of the first row equal to 1/(2
√

2).
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A particular case was considered in [12], where the authors divide a tetrahedron into eight small
tetrahedrons of the same area using Bey’s method and for the construction of the orthonormal wavelet
basis they take the Haar matrix

1
2
√

2




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1




Alternatively, we can consider the symmetric orthogonal matrix




c c c c c c c c
c a b b b b b b
c b a b b b b b
c b b a b b b b
c b b b a b b b
c b b b b a b b
c b b b b b a b
c b b b b b b a




,

with

a =
±24−

√
2

28
, b =

∓4−
√

2
28

, c =
1

2
√

2
,

or the tensor product H ⊗ H ⊗ H of the matrix

H =
1√
2

(
1 1
1 −1

)
, which is

1
2
√

2




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




or, more general, we can generate all orthogonal 8× 8 matrices with the entries of the first row equal to
1/(2
√

2) using the method described in [13], where we start with the well known Euler’s formula for
the general form of a 3× 3 rotation matrix. It is also possible to use different orthogonal matrices for
the wavelets associated to the decomposition of the cells of type T and M.

Next, following the ideas in [14] we show how one can transport the above multiresolution
analysis and wavelet bases on the 3D ball B3, using the volume preserving map U : B3 → K
constructed in Section 3.

Consider the ball B3 is given by the parametric equations

ξ = ξ(X, Y, Z) = U−1(X, Y, Z) = (x(X, Y, Z), y(X, Y, Z), z(X, Y, Z)) ,
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with (X, Y, Z) ∈ K. Since U and its inverse preserve the volume, the volume element dω(ξ) of B3

equals the volume element dX dY dZ = dx of K (and R3). Therefore, for all f̃ , g̃ ∈ L2(B3) we have

〈 f̃ , g̃〉L2(B3) =
∫

B3
f̃ (ξ)g̃(ξ) dω(ξ)

=
∫

U (B3)
f̃ (U−1(X, Y, Z)) g̃(U−1(X, Y, Z)) dX dY dZ

= 〈 f̃ ◦ U−1, g̃ ◦ U−1〉L2(K),

and similarly, for all f , g ∈ L2(K) we have

〈 f , g〉L2(K) = 〈 f ◦ U , g ◦ U〉L2(B3). (17)

If we consider the map Π : L2(B3)→ L2(K) induced by U , defined by

(Π f̃ )(X, Y, Z) = f̃
(
U−1(X, Y, Z)

)
, for all f̃ ∈ L2(B3),

and its inverse Π−1 : L2(K)→ L2(B3),

(Π−1 f )(ξ) = f (U (ξ)), for all f ∈ L2(K),

then Π is a unitary map, that is

〈Π f̃ , Πg̃〉L2(K) = 〈 f̃ , g̃〉L2(B3), (18)

〈Π−1 f , Π−1g〉L2(B3) = 〈 f , g〉L2(K). (19)

Equality (17) suggests us the construction of orthonormal scaling functions and wavelets defined
on B3. The scaling functions ϕ̃

Dj
k

: B3 → R will be

ϕ̃
Dj

k
= ϕ

Dj
k
◦ U =

{
1, on U−1(Dj

k),
0, in rest.

(20)

and the wavelets will be defined similarly,

ψ̃`
Aj = ψ`

Aj ◦ U .

From equality (17) we can conclude that the spaces

Ṽ j := span {ϕ̃
Dj

k
, k ∈ Nj}

constitute a multiresolution analysis of L2(B3), each of the set {ϕ̃
Dj

k
, k ∈ Nj} being an orthonormal

basis for the space Ṽ j. Moreover, the set

{ψ̃`
Aj , ` ∈ N7, Aj ∈ Dj}

is an orthonormal basis of W̃ j.
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6. Conclusions and Future Works

The 3D uniform hierarchical grid constructed here can find applications in texture analysis
of crystalls, by constructing a grid in the space of 3D rotations, using the technique used in [3].
A comparison of these grids is subject of a future paper.

Another interesting topic which we are going to approach in the future is to compare our wavelets
with other 3D wavelets on the ball, listed in the introduction.
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to the published version of the manuscript.
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