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Abstract: The motivation for this paper is to create new criteria for oscillation of solutions of
second-order nonlinear neutral differential equations. In more than one respect, our results improve
several related ones in the literature. As proof of the effectiveness of the new criteria, we offer more
than one practical example.
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1. Introduction

In recent decades, an increasing interest in establishing sufficient criteria for oscillatory
and non-oscillatory properties of different classes of differential equations has been observed;
see, for instance, the monographs [1–3] and the references cited therein. Many authors were concerned
with the oscillation and nonoscillation of delay differential equations of second-order [4–17] and
higher-order [18–23]. The growing interest of delay differential equation is due to the many applications
of these equations in different fields of science, see [24,25].

In this work, by using different techniques, we create new criteria for oscillation of 2nd-order
neutral differential equation (

r (ζ)
(
z′ (ζ)

)α
)′

+ q (ζ) xβ (σ (ζ)) = 0, (1)

where ζ ≥ ζ0 and z (ζ) := x (ζ) + p (ζ) x (τ (ζ)). Moreover, we assume that:

[N1] α, β ∈ Q+
odd, where Q+

odd := {a/b : a, b ∈ Z+ are odd};
[N2] r ∈ C ([ζ0, ∞)) , r (ζ) > 0 and

θs (ζ) :=
∫ ζ

s
r−1/α (s)ds;

[N3] p, q ∈ C ([ζ0, ∞)) , q (ζ) ≥ 0, 0 ≤ p (ζ) ≤ p0 < ∞ and q (ζ) is not identically zero for large ζ;
[N4] τ, σ ∈ C ([ζ0, ∞)) , τ (ζ) ≤ ζ, σ (ζ) < ζ, and limζ→∞ τ (ζ) = limζ→∞ σ (ζ) = ∞.

If x ∈ C1[ζx, ∞), ζx ≥ ζ0, r (ζ) (z′ (ζ))α ∈ C1[ζx, ∞) for all ζx ≥ ζ0, and x satisfies (1) on
[ζx, ∞), then x is called a solution of (1). Our attention will be solely to the solutions which satisfy
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sup{|x (ζ)| : ζ ≥ ζ} > 0, for all ζ ≥ ζx. If there exists a ζ1 ≥ ζ0 such that either x (ζ) > 0 or
x (ζ) < 0 for all ζ ≥ ζ1, then x is said to be a non-oscillatory solution; otherwise, it is said to
be an oscillatory solution.

First, we will shed light on the studies of canonical equations that require θζ0 (∞) = ∞.
By employing the Riccati transformation, Sun and Meng [16] studied the oscillation of delay
Equation (1), with p (ζ) = 0 and α = β. They proved that (1) is oscillatory if

∫ ∞

ζ1

(
θα

ζ1
(σ (s)) q (s)− αα+1σ′ (s)

(α + 1)α+1 θζ1 (σ (s)) r1/α (σ (s))

)
ds = ∞.

Likewise, Xu and Meng [17] extended the results of [16] to the neutral case, and proved that if

∫ ∞

ζ1

(
θα

ζ1
(σ (s)) G (s)− αα+1σ′ (s)

(α + 1)α+1 θζ1 (σ (s)) r1/α (σ (s))

)
ds = ∞, α = β,

then (1) is oscillatory, where G (ζ) := q (ζ) (1− p (σ (ζ)))α.
By a different approach, by using comparison theorems that compare the second-order equation

with first-order equations, Baculikova and Dzurina [5] proved that (1) is oscillatory if α ≥ β,
σ (ζ) ≤ τ (ζ) and

lim inf
ζ→∞

∫ ζ

τ−1(σ(ζ))
Ĝ (s)

(∫ σ(ζ)

ζ1

r−1/α (u)du
)β

ds >

(
1 +

pβ
0

τ0

)β/α
1
κe

, (2)

where
Ĝ (ζ) := min {q (ζ) , q (τ (ζ))} (3)

and

κ :=
{

1 if 0 < β ≤ 1;
21−β if β > 1.

(4)

Very recently, complementing the approach taken in [7], Grace et al. [11] improved the results
in [5,13,17]. They established the following criteria for oscillation of (1) with α = β:

(a) By using comparison theory:

lim inf
ζ→∞

∫ ζ

σ(ζ)
G (s)

(
θ∗ζ1

(σ (s))
)α

ds >
1
e

,

where

θ∗ζ1
(ζ) := θζ1 (ζ) +

1
α

∫ ζ

ζ1

θζ1 (u) θα
ζ1
(u)du;

(b) By employing the Riccati transformation

lim sup
ζ→∞

∫ ∞

ζ1

(
φ (s) exp

(
−
∫ s

σ(s)

du
r1/α (u) θ∗ζ1

(u)

)
−

r (s) (φ′+ (s))α+1

(α + 1)α+1 φα (s)

)
ds = ∞, (5)

where φ ∈ C ([ζ0, ∞) , (0, ∞)) and φ′+ (ζ) := max {φ′ (ζ) , 0} .

Moreover, Moaaz [14] extended the results of [11] to (1) when α > β and α < β.
On the other hand, there are many studies to improve the criteria for oscillation of solutions of

non-canonical equations θζ0 (∞) < ∞, some of which we will refer to below.
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Recently, Agarwal et al. [4] established conditions for oscillation of (1) which are an improvement
for its predecessors. They proved that (1), with β = α, is oscillatory if

lim sup
ζ→∞

∫ ζ

ζ0

(
ρ (s) q (s) (1− p (σ (s)))α −

(
(ρ′ (s))+

)α+1 r (τ (s))

(α + 1)α+1 ρα (s) (τ′ (s))α

)
ds = ∞ (6)

and

lim sup
ζ→∞

∫ ζ

ζ0

(
ψ (s)−

δ (s) r (s)
(
(ϕ (s))+

)α+1

(α + 1)α+1

)
ds = ∞ (7)

hold, where

ψ (ζ) = δ (ζ)

(
q (ζ)

(
1− p (σ (ζ))

π (τ (σ (ζ)))

π (σ (ζ))

)α

+
1− α

r1/α (ζ)πα+1 (ζ)

)
,

and ϕ (ζ) = (δ′ (ζ) /δ (ζ)) + (1 + α) /
(

r1/α (ζ)π (ζ)
)

and (ϕ (ζ))+ = max{ϕ (ζ) , 0}.
Bohner et al. in [7], Theorem 2.4 simplified the criteria for oscillatory by setting one sufficient

condition

lim inf
ζ→∞

∫ ζ

σ(ζ)

(
1

r (ζ)

∫ ζ

ζ1

q (ζ)
(

1− p (σ (ζ))
π (τ (σ (ζ)))

π (σ (ζ))

)α)1/α

ds >
1
e

.

The main purpose of this work is to improve conditions (2) and (5) by establishing a new criterion
for oscillation of (1), which also takes into account the influence of delay argument τ (ζ). Our approach
is essentially based on presenting sharper criteria for oscillation solutions of (1) than criteria in [5,11].
Moreover, for non-canonical case, we improve and complete some results in [4,7]. As proof of the
effectiveness of the new criteria, we offer more than one practical example.

2. Oscillation Theorems in Canonical Case

In this section, we establish new criteria for oscillation of solution of (1) in canonical case
θζ0 (∞) = ∞. For convenience, we denote that: Q (ζ) := q (ζ) (1− p (σ (ζ)))β ,

θ̃ζ0 (ζ) : = θζ0 (ζ) +
1
α

∫ ζ

ζ0

θζ0 (u) θα
ζ0
(σ (ζ)) η (σ (u)) Q (u)du,

θ̂ζ0 (ζ) : = exp

(
−α

∫ ζ

σ(ζ)

1
θ̃ζ0 (s) r1/α (s)

ds

)
,

ψk (ζ) : =
∫ ∞

ζ
θ̂k (u) η (σ (u)) Q (u)du, k = 0, 1,

and

η (ζ) :=

{
cβ−α

1 if α ≤ β;
c2θ

β−α
ζ2

(ζ) if α > β,

where c1 and c2 are positive constants.

Lemma 1. Assume that x is an eventually positive solution of (1). Then,

z (ζ) > 0, z′ (ζ) > 0 and
(

r (ζ)
(
z′ (ζ)

)α
)
≤ 0, (8)

for ζ ≥ ζ1, where ζ1 is sufficiently large. Moreover, zβ−α (ζ) ≥ η (ζ), eventually.

Proof. First, we postulate that x is a positive solution of (1). From [5], Lemma 3, we have that (8) holds.
Next, let α ≤ β. From the monotonicity of z, we get that z (ζ) ≥ z (ζ2) := c1 > 0 for ζ ≥ ζ2, where

ζ2 is sufficiently large.
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In the case where α > β, since r (ζ) (z′ (ζ))α is non-increasing, we have that

z (ζ) ≤ z (ζ2) + r1/α (ζ2) z′ (ζ2) θζ2 (ζ) ,

for ζ ≥ ζ2. In view of the fact that θζ2 (∞) = ∞, there exists a N > 0 and ζN > ζ2 such that

θζ2 (ζ) > N for all ζ ≥ ζN . Thus, z (ζ) ≤ c2θζ2 (ζ) where c3 :=
(

z (ζ2) /N + r1/α (ζ2) z′ (ζ2)
)

.

Consequently, zβ−α (ζ) ≥ η (ζ). The proof is complete.

Theorem 1. Assume that

σ (ζ) ≤ τ (ζ) , τ′ (ζ) ≥ τ0 > 0 and τ ◦ σ = σ ◦ τ.

If

lim inf
ζ→∞

∫ ζ

τ−1(σ(ζ))
Ĝ (s) θ̃

β
ζ1
(σ (ζ))ds >

(
1 +

pβ
0

τ0

)β/α
1
κe

, (9)

where Ĝ (s) and κ defined as in (3) and (4), respectively, then all solutions of (1) are oscillatory.

Proof. Suppose the contrary; that (1) has an eventually non-oscillatory solution. Without loss
of generality, we assume that x (ζ) > 0, x (τ (ζ)) > 0 and x (σ (ζ)) > 0 for ζ ≥ ζ1, where
ζ1 is sufficiently large. By Lemma 1, we have that (8) holds. Taking (8) into account, we obtain
x (ζ) ≥ z (ζ) (1− p (σ (ζ))), which with (1) gives(

r (ζ)
(
z′ (ζ)

)α
)′
≤ −Q (ζ) zβ (σ (ζ)) . (10)

Using the chain rule and simple computation, we see that

α
(

r1/αz′
)α−1 d

dζ

(
z− θζ1 r1/αz′

)
= −α

(
r1/αz′

)α−1
θζ1

(
r1/αz′

)′
= −θζ1

(
r
(
z′
)α
)′

. (11)

From (10) and (11), we obtain

d
dζ

(
z (ζ)− θζ1 (ζ) r1/α (ζ) z′ (ζ)

)
≥ 1

α

(
r1/α (ζ) z′ (ζ)

)1−α
θζ1 (ζ) Q (ζ) zβ (σ (ζ))

≥ 1
α

(
r1/α (ζ) z′ (ζ)

)1−α
θζ1 (ζ) Q (ζ) η (σ (ζ)) zα (σ (ζ)) .

Integrating this inequality from ζ1 to ζ, we arrive at

z (ζ) ≥ θζ1 (ζ) r1/α (ζ) z′ (ζ) +
1
α

∫ ζ

ζ1

(
r1/α (u) z′ (u)

)1−α
θζ1 (u) Q (u) η (σ (u)) zα (σ (u))du. (12)

From the monotonicity of r1/α (ζ) z′ (ζ), we have

z (σ (ζ)) ≥ θζ1 (σ (ζ)) r1/α (σ (ζ)) z′ (σ (ζ)) ≥ θζ1 (σ (ζ)) r1/α (ζ) z′ (ζ) .

Thus, (12) becomes
z (ζ) ≥ θ̃ζ1 (ζ) r1/α (ζ) z′ (ζ) . (13)

Proceeding as in the proof of Theorem 1 in [5] and using (13) instead of ((2.10) in [5]), we arrive at(
ω (ζ) +

pβ
0

τ0
ω (τ (ζ))

)′
+ κĜ (ζ) θ̃

β
ζ1
(σ (ζ))ωβ/α (σ (ζ)) ≤ 0,
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where ω := r1/αz′. Next, set ψ (ζ) := ω (ζ) +
(

pβ
0 /τ0

)
ω (τ (ζ)) > 0. Since τ (ζ) ≤ ζ and ω′ (t) ≤ 0,

we obtain

ψ (ζ) ≤ ω (τ (ζ)) +
(

pβ
0 /τ0

)
ω (τ (ζ))

≤ ω (τ (ζ))

(
1 +

pβ
0

τ0

)
.

Thus, ψ is a positive solution of

ψ′ (ζ) + κ

(
τ0

τ0 + pβ
0

)β/α

Ĝ (ζ) θ̃
β
ζ1
(σ (ζ))ψβ/α

(
τ−1 (σ (ζ))

)
≤ 0.

From Theorem 1 in [26], the equation

ψ′ (ζ) + κ

(
τ0

τ0 + pβ
0

)β/α

Ĝ (ζ) θ̃
β
ζ1
(σ (ζ))ψβ/α

(
τ−1 (σ (ζ))

)
= 0, (14)

also has a positive solution. It is well-known (see, e.g., [27], Theorem 2) that condition (9) implies
oscillation of (14). This contradiction completes the proof.

Theorem 2. If

lim inf
ζ→∞

α

ψ1 (ζ)

∫ ∞

ζ
r−1/α (u)ψ

(α+1)/α
1 (u)du >

α

(α + 1)(α+1)/α
, (15)

then all solutions of (1) are oscillatory.

Proof. Proceeding as in the proof of Theorem 1, we arrive at (13). From (13), we see that

z (σ (ζ))

z (ζ)
≥ exp

(
−
∫ ζ

σ(ζ)

1
θ̃ζ1 (s) r1/α (s)

ds

)
. (16)

Define the function

w (ζ) :=
r (ζ) (z′ (ζ))α

zα (ζ)
. (17)

Then ω (ζ) > 0 for ζ ≥ ζ1. From (1) and (17), we get

w′ (ζ) ≤ −Q (ζ)
zα (σ (ζ))

zα (ζ)
zβ−α (σ (ζ))− α

r1/α (ζ)
w(α+1)/α (ζ) .

Using Lemma 1 and (16), we obtain

w′ (ζ) ≤ −θ̂ (ζ) η (σ (ζ)) Q (ζ)− α

r1/α (ζ)
w(α+1)/α (ζ) < 0. (18)

By integrating (18) from ζ to s, we conclude that∫ s

ζ
θ̂ (u) η (σ (u)) Q (u)du + α

∫ s

ζ
r−1/α (u)w(α+1)/α (u)du ≤ w (ζ)− w (s) .

Since w is positive decreasing function, we see that

ψ1 (ζ) + α
∫ ∞

ζ
r−1/α (u)w(α+1)/α (u)du ≤ w (ζ) .
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Hence,

1 +
α

ψ1 (ζ)

∫ ∞

ζ
r−1/α (u)ψ(α+1)/α (u)

(
w (u)
ψ (u)

)(α+1)/α

du ≤ w (ζ)

ψ1 (ζ)
. (19)

Set

δ := inf
ζ≥ζ1

w (ζ)

ψ1 (ζ)
.

From (19), δ ≥ 1. Taking (15) and (19) into account, we find

1 + α

(
δ

α + 1

)1+1/α

≤ δ

or (
δ

α + 1

)α+1
≤
(

δ− 1
α

)α

,

which is not possible with the permissible value α > 0 and δ ≥ 1. This contradiction completes
the proof.

In the following, we give an example to illustrate our main results.

Example 1. Consider the differential equation((
(x (ζ) + p0x (µζ))′

)α)′
+

q0

ζα+1 xα (λζ) = 0, (20)

where q0 > 0 and µ, λ ∈ (0, 1). We note that θζ0 (ζ) = ζ,

Q (ζ) =
q0

ζα+1 (1− p0)
α , Ĝ (ζ) :=

q0

ζα+1 , θ̃ζ0 (ζ) = Aζ, θ̂ (ζ) = λα/A

and
ψ1 (ζ) =

1
α

λα/Aq0 (1− p0)
α 1

ζα
,

where A := 1 + 1
α q0λα (1− p0)

α.
From Theorem 1, Equation (20) is oscillatory if λ < µ and

q0 (Aλ)α ln
µ

λ
>

(
1 +

pβ
0

µ

)β/α
1
κe

. (21)

Using Theorem 2, we have that if(
1
α

λα/Aq0 (1− p0)
α
)1/α

>
α

(α + 1)(α+1)/α

or

q0λα/A (1− p0)
α >

αα+1

(α + 1)α+1 , (22)

then (20) is oscillatory

As a particular case, the known criteria for oscillation of equation((
(x (ζ))′

)1/3
)′

+
q0

ζ4/3 x1/3
(

9
10

ζ

)
= 0, (23)
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where q0 > 0, are:

Using Comparison Theory (As in [5])

C1 Corollary 2 in [5] q0 > 3.61643

C2 Condition (21) q0 > 1.92916

Using comparison theory (as in [11])

C3 Corollary 2.1 in [11] q0 > 1.92916

By employing the Riccati transformation

C4 Corollary 2.1 in [16] q0 > 0.16312

C5 Theorem 6 in [11] q0 > 0.16243

C6 Condition (22) q0 > 0.16131

Remark 1. Note that,Theorem 1 improves Theorem 2 in [5]. The criterion of oscillation in Theorem 1 (as (21))
essentially takes into account the influence of delay argument τ (ζ), which has been neglected in results of [11].
Moreover, Theorem 2 improves Theorem 6 in [11], and supports the most efficient condition for oscillation of
Equation (20).

3. Oscillation Theorems in Non-Canonical Case

In the following, we derive new criteria for oscillation of solution of (1) in non-canonical case
θζ0 (∞) < ∞. For convenience, we denote that: θζ (∞) := θ (ζ) and

Θ (ζ) := q (ζ)

(
1− p (σ (ζ))

θ (τ (σ (ζ)))

θ (σ (ζ))

)β

.

Lemma 2. Let Φ ($) = L$−M ($− N)(α+1)/α , where M > 0, L and N are constants. Then, the maximum
value of Φ on R is at $∗ = N + (αL/ ((α + 1) M))α and is given by

max
$∈R

Φ ($) = Φ ($∗) = LN +
αα

(α + 1)(α+1)
Lα+1

Mα
.

Lemma 3. Let x be an eventually positive solution of (1), z′ (ζ) < 0 and

∫ ∞

ζ0

(
1

r (ζ)

∫ ζ

ζ1

Θ (s)ds
)1/α

dζ = ∞ (24)

holds. If there exists a constant δ ∈ [0, 1) such that

θ (ζ)

(
η (ζ)

∫ ζ

ζ0

Θ (s)ds
)1/α

≥ δ, (25)

then
d

dζ

(
z (ζ)

θ
δ
(ζ)

)
≤ 0. (26)

Proof. Suppose that x positive solution of (1) and z′ (ζ) < 0. We assume that x (ζ) > 0, x (τ (ζ)) > 0
and x (σ (ζ)) > 0 for ζ ≥ ζ1, where ζ1 is sufficiently large. Then, from (1), we obtain z (ζ) > 0 and(

r (ζ)
(
z′ (ζ)

)α
)′

= −q (ζ) xβ (σ (ζ)) < 0. (27)
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Thus, we have

z (ζ) ≥ −
∫ ∞

ζ

1
r1/α ($)

r1/α ($) z′ ($)d$ ≥ −θ (ζ) r1/α (ζ) z′ (ζ) (28)

and so
d

dζ

(
z (ζ)
θ (ζ)

)
=

θ (ζ) z′ (ζ) + (r (ζ))−1/α z (ζ)

θ
2
(ζ)

≥ 0.

Hence, we find

x (ζ) ≥
(

1− p (ζ)
θ (τ (ζ))

θ (ζ)

)
z (ζ) ,

which with (27) gives (
r (ζ)

(
z′ (ζ)

)α
)′
≤ −Θ (ζ) zβ (σ (ζ)) . (29)

Next, since z is a positive decreasing function, we have that limζ→∞ z (ζ) = ε ≥ 0. Let ε > 0.
Then, from (29), there exists a ζ1 ≥ ζ0 such that(

r (ζ)
(
z′ (ζ)

)α
)′
≤ −Θ (ζ) zβ (σ (ζ)) ≤ −εβΘ (ζ) .

Integrating this inequality from ζ1 to ζ, we have

− z′ (ζ) ≥ εβ/α

(
1

r (ζ)

∫ ζ

ζ1

Θ (s)ds
)1/α

. (30)

Integrating (30) from ζ1 to ζ, we get

z (ζ) ≤ z (ζ1)− εβ/α
∫ ζ

ζ1

(
1

r ($)

∫ $

ζ1

Θ (s)ds
)1/α

d$.

Taking limζ→∞ of this inequality and using (24), we arrive at a contradiction with positivity of z.
Therefore, we get that ε = 0 that is

lim
ζ→∞

x (ζ) = lim
ζ→∞

z (ζ) = 0. (31)

Integrating (29) from ζ1 to ζ, we get

r (ζ)
(
z′ (ζ)

)α ≤ r (ζ1)
(
z′ (ζ1)

)α −
∫ ζ

ζ1

Θ (s) zβ (σ (s))ds

≤ r (ζ1)
(
z′ (ζ1)

)α − zβ (σ (ζ))
∫ ζ

ζ1

Θ (s)ds. (32)

In view of (31), we see that

r (ζ1)
(
z′ (ζ1)

)α
+ zβ (σ (ζ))

∫ ζ1

ζ0

Θ (s)ds > 0, (33)

for ζ ≥ ζ2, where ζ2 large enough. Combining (32) and (33) and using the fact that zβ−α (ζ) ≥ η (ζ),
we find

r (ζ)
(
z′ (ζ)

)α ≤ −zβ (σ (ζ))
∫ ζ

ζ0

Θ (s)ds ≤ −η (ζ) zα (ζ)
∫ ζ

ζ0

Θ (s)ds, (34)
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which with (25) gives

z′ (ζ) ≤ −r (ζ)−1/α z (ζ)
(

η (ζ)
∫ ζ

ζ0

Θ (s)ds
)1/α

≤ − δ

θ (ζ)
r (ζ)−1/α z (ζ) .

Thus, we have

d
dζ

(
z (ζ)

θ
δ
(ζ)

)
=

θ
δ−1

(ζ)
(

θ (ζ) z′ (ζ) + δ (µ (ζ) r (ζ))−1/α z (ζ)
)

θ
2δ
(ζ)

≤ 0.

This completes the proof.

Theorem 3. Assume that (24) holds, θ (τ (ζ)) ≥ θ (ζ) and there exists a δ ∈ [0, 1) such that (25) holds.
If there exist a function ρ ∈ C1 ([ζ0, ∞) , (0, ∞)) and a ζ1 ∈ [ζ0, ∞) such that

lim sup
ζ→∞

 θ
α
(ζ)

ρ (ζ)

∫ ζ

ζ1

ρ ($)Θ ($) η ($)

(
θ (σ ($))

θ ($)

)δβ

− r ($) (ρ′ ($))α+1

(α + 1)α+1 ρα ($)

d$

 > 1, (35)

then all solutions of (1) are oscillatory.

Proof. Assuming that the required result is not fulfilled, we suppose, without loss of generality,
that x is a positive solution of (1) on [ζ0, ∞). Then, there exists ζ1 ≥ ζ0 such that x (τ (ζ)) > 0 and
x (σ (ζ)) > 0 for all ζ ≥ ζ1. Obviously, for all ζ ≥ ζ1, z (ζ) ≥ x (ζ) > 0 and

(
r (z′)α)′ ≤ 0. Therefore,

z′ (ζ) is either eventually negative or eventually positive.
Assume first that z′ (ζ) < 0. From Lemma 3, we get that (28) and (29) hold. We define the function

w := ρ

(
r (z′)α

zα
+

1

θ
α

)
. (36)

Using (28), we see that w (ζ) ≥ 0 for all ζ ≥ ζ2 ≥ ζ1. Differentiating (36), we get

w′ =
ρ′

ρ
w + ρ

(
r (z′)α)′

zα
− αρ

r (z′)α+1

zα+1 + αρ
1

r1/αθ
α+1 .

From Lemma 1, (29) and (36), we obtain

w′ ≤ − α

(ρr)1/α

(
w− ρ

θ
α

)1+1/α

− ρΘη
zβ (σ)

zβ
+ αρ

1

r1/αθ
α+1 +

ρ′

ρ
w. (37)

Using Lemma 2 with L := ρ′/ρ, M := α/ (ρr)1/α , N = ρ/θ
α

and $ := w, we get

ρ′

ρ
w− α

(ρr)1/α

(
w− ρ

θ
α

)1+1/α

≤ ρ′

θ
α +

r

(α + 1)α+1
(ρ′)α+1

ρα
,

which with (37) gives

w′ ≤ ρ′

θ
α +

r

(α + 1)α+1
(ρ′)α+1

ρα
− ρΘη

zβ (σ)

zβ
+ αρ

1

r1/αθ
α+1 . (38)

From Lemma 3 we arrive at (26). From (26), we conclude that
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z (σ (ζ))

z (ζ)
≥ θ

δ
(σ (ζ))

θ
δ
(ζ)

. (39)

Thus, (38) becomes

w′ ≤ −ρΘη

(
θ (σ (ζ))

θ (ζ)

)δβ

+
r

(α + 1)α+1
(ρ′)α+1

ρα
+

(
ρ

θ
α

)′
.

Integrating this inequality from ζ2 to ζ, we have

∫ ζ

ζ2

ρ ($)Θ ($) η ($)

(
θ (σ ($))

θ ($)

)δβ

− r ($) (ρ′ ($))α+1

(α + 1)α+1 ρα ($)

d$

≤
(

ρ (ζ)

θ
α
(ζ)
− w (ζ)

)∣∣∣∣∣
ζ

ζ2

≤ −
(

ρ (ζ)
r (ζ) (z′ (ζ))α

zα (ζ)

)∣∣∣∣ζ
ζ2

. (40)

From (28), we have

− r (ζ)1/α z′ (ζ)
z (ζ)

≤ 1
θ (ζ)

,

which in view of (40) implies

θ
α
(ζ)

ρ (ζ)

∫ ζ

ζ2

ρ ($)Θ ($) η ($)

(
θ (σ ($))

θ ($)

)δβ

− r ($) (ρ′ ($))α+1

(α + 1)α+1 ρα ($)

d$ ≤ 1.

Taking the lim sup on both sides of this inequality, we arrive at a contradiction with (35).
Now assume that z′ (ζ) > 0. Since z′ > 0 and θ (τ (ζ)) ≥ θ (ζ) . Then

x (ζ) ≥ (1− p (ζ)) z (ζ) ≥
(

1− p (ζ)
θ (τ (ζ))

θ (ζ)

)
z (ζ) . (41)

From (1) and (41), we have

(
r (ζ)

(
z′ (ζ)

)α
)′
≤ −q (ζ)

(
1− p (σ (ζ))

θ (τ (σ (ζ)))

θ (σ (ζ))

)β

zβ (σ (ζ))

≤ −Θ (ζ) zβ (σ (ζ)) .

Integrating the above inequality from ζ2 to ζ, we have

r (ζ)
(
z′ (ζ)

)α ≤ r (ζ2)
(
z′ (ζ2)

)α −
∫ ζ

ζ2

Θ (s) zβ (σ (s))ds

≤ r (ζ2)
(
z′ (ζ2)

)α − zβ (σ (ζ2))
∫ ζ

ζ2

Θ (s)ds. (42)

Now, from (24) and θζ0 (∞) < ∞, we get that
∫ ζ

ζ1
Θ (s)ds must be unbounded, that is∫ ∞

ζ1

Θ (s)ds = ∞. (43)

From (42) and (43), we get contradictions to z′ > 0 as ζ → ∞. The proof is complete.
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Corollary 1. Assume that (24) holds, θ (τ (ζ)) ≥ θ (ζ) and there exists a δ ∈ [0, 1) such that (25) holds.
If there exists a ζ1 ∈ [ζ0, ∞) such that

lim sup
ζ→∞

∫ ζ

ζ1

θ
α
($)Θ ($) η ($)

(
θ (σ ($))

θ ($)

)δβ

−
(

α

α + 1

)α+1 1
r1/α ($) θ ($)

d$ > 1, (44)

then all solutions of (1) are oscillatory.

Example 2. Consider the second-order differential equation(
ζα+1

(
(x (ζ) + p0x (κζ))′

)α)′
+ q0xα (λζ) = 0, ζ ≥ 1, (45)

where q0 > 0 and κ, λ ∈ (0, 1]. Note that, r (ζ) = ζα+1, p (ζ) = p0, τ (ζ) = κζ, q (ζ) = q0, σ (ζ) = λζ

and β = α. It is easy to conclude that η (ζ) = 1, θ (ζ) = α/ζ1/α and Θ (ζ) = q0

(
1− 21/α p0

)α
. We note

that the conditions (24) and (25) hold. Furthermore, condition (44) becomes

lim sup
ζ→∞

∫ ζ

ζ0

(
αα

s
q0

(
1− 21/α p0

)α 1
λδ
−
(

α

α + 1

)α+1 1
αs

)
ds > 1.

Using Corollary 1, we get that every solution of Equation (45) is oscillatory if

q0

(
1− 21/α p0

)α 1
λδ

>
1

(α + 1)α+1 . (46)

From Theorem 2.2 in [4], (45) is oscillatory if α ≥ 1 and

q0

(
1− 21/α p0

)α
>

1− (1− α) (α + 1)α+1

αα+1 (α + 1)α+1 . (47)

By using Theorem 2.4 in [7], (45) is oscillatory if

q1/α
0

(
1− 21/α p0

)
ln

1
λ
>

1
e

. (48)

Consider the special case in which α = 1, κ = λ = 1/2, p0 = 1/4 and q0 =
√

2/3, that is,(
ζ2

((
x (ζ) +

1
4

x
(

1
2

ζ

))′)α)′
+

√
2

3
x
(

1
2

ζ

)
= 0.

We note that the criteria arrive at
√

2/3 > 0.4307,
√

2/3 > 0.5 and
√

2/3 > 1.0615. Hence, it is obvious
that (47) and (48) fail to apply.

4. Conclusions

During this work, we highlighted the oscillatory properties of solutions of differential Equation (1).
By using many techniques, we have created new criteria that are more effective than the relevant criteria
in the literature. Moreover, we discussed oscillatory behavior in both canonical and non-canonical
cases. Through the examples, it turns out that our results improve and complete some of the results
in [4,5,7,11,16]. Finally, we can try to extend our results to differential equations with a damping term,
in the future.
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