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Abstract: Plithogenic set is an extension of the crisp set, fuzzy set, intuitionistic fuzzy set, and
neutrosophic sets, whose elements are characterized by one or more attributes, and each attribute can
assume many values. Each attribute has a corresponding degree of appurtenance of the element to
the set with respect to the given criteria. In order to obtain a better accuracy and for a more exact
exclusion (partial order), a contradiction or dissimilarity degree is defined between each attribute
value and the dominant attribute value. In this paper, entropy measures for plithogenic sets have
been introduced. The requirements for any function to be an entropy measure of plithogenic sets
are outlined in the axiomatic definition of the plithogenic entropy using the axiomatic requirements
of neutrosophic entropy. Several new formulae for the entropy measure of plithogenic sets are also
introduced. The newly introduced entropy measures are then applied to a multi-attribute decision
making problem related to the selection of locations.

Keywords: neutrosophic set; plithogenic set; fuzzy set; entropy; similarity measure; information measure

1. Introduction

In recent years, there has been numerous authors who gave characterizations of entropy measures
on fuzzy sets and their generalizations. Most notably, the majority of them had worked on developing
entropy measures on intuitionistic fuzzy sets (IFS). Alongside with their introduction of new ways
of entropy measures on IFS, these authors have also given some straightforward examples to show
how their entropy measures can be applied to various applications including multi-attribute decision
making (MADM) problems [1,2].

In 2016, Zhu and Li [3] gave a new definition for entropy measures on IFS. The new definition
was subsequently compared against many other previous definitions of entropy measures on IFS.
Montes et al. [4] proposed another new definition for entropy measures on intuitionistic fuzzy sets
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based on divergence. Both of these research groups [3,4] subsequently demonstrated the applications
of their definition of IFS onto MADM problems, and both of them deployed examples of IFS, whose
data values were not derived from real-life datasets but were predetermined by the authors to justify
their new concepts. On the other hand, Farnoosh et al. [5] also gave their new definition for entropy
measures on IFS, but they focused only on discussing its potential application in fault elimination of
digital images rather than MADM. Ansari et al. [6] also gave a new definition of entropy measures on
IFS in edge detection of digital images. Both research groups [5,6] did not provide examples on how
their new definitions for entropy measures on IFS may be applied on MADM.

Some of the definitions of entropy measures defined for IFS were parametric in nature.
Gupta et al. [7] defined an entropy measures on IFS, characterized by a parameter α. Meanwhile,
Joshi and Kumar [8] independently (with respect to [7]) defined a new entropy measures on IFS,
also characterized by a parameter α. An example on MADM was also discussed by Joshi and Kumar [8],
once again involving a small, conceptual IFS like those encountered in the work of Zhu and Li [3] as well
as Montes et al. [4]. The works by Joshi and Kumar [8] were subsequently followed by Garg et al. [9]
who defined an entropy measure on IFS characterized by two parameters: (α, β). Like the previous
authors, Garg et al. [9] discussed the application of their proposed entropy measure on MADM using a
similar manner. In particular, they compared the effect of different parameters α, β on the results of
such decision-making process. Besides, they had also compared the results yielded by the entropy
measure on IFS from some other authors. Joshi and Kumar [10] also defined another entropy measure
on IFS, following their own previous work on the classical fuzzy sets in [11] and also the work by
Garg et al. in [9].

For various generalizations derived from IFS, such as inter-valued intuitionistic fuzzy sets (IVIFS)
or generalized intuitionistic fuzzy soft sets (GIFSS), there were also some studies to establish entropy
measures on some generalizations, followed by a demonstration on how such entropy measures can be
applied to certain MADM problems. Recently, Garg [12] defined an entropy measure for inter-valued
intuitionistic fuzzy sets and discussed the application of such entropy measures on solving MADM
problems with unknown attribute weights. In 2018, Rashid et al. [13] defined another distance-based
entropy measure on the inter-valued intuitionistic fuzzy sets. Again, following the conventions of
the previous authors, they clarified the applications of their work on MADM problem using a simple,
conceptual small dataset. Selvachandran et al. [14] defined a distance induced intuitionistic entropy
for generalized intuitionistic fuzzy soft sets, for which they also clarified the applications of their work
on MADM problems using a dataset of the same kind.

As for the Pythagorean fuzzy set (PFS) and its generalizations, an entropy measure was defined
by Yang and Hussein in [15]. Thao and Smarandache [16] proposed a new entropy measure for
Pythagorean fuzzy sets in 2019. Such new definitions of entropy in [16] discarded the use of natural
logarithm as in [15], which is computationally intensive. Such work was subsequently followed by
Athira et.al. [17,18], where an entropy measure was given for Pythagorean fuzzy soft sets—a further
generalization of Pythagorean fuzzy sets. As for vague set and its generalizations, Feng and Wang [19]
defined an entropy measure considering the hesitancy degree. Later, Selvachandran et al. [20] defined an
entropy measure on complex vague soft sets. In the ever-going effort of establishing entropy measures
for other generalizations of fuzzy sets, Thao and Smarandache [16] and Selvachandran et al. [20] were
among the research groups who justified the applicability of their entropy measures using examples
on MADM. Likewise, each of those works involved one or several (if more than one example provided
in a work) small and conceptual datasets created by the authors themselves.

Besides IFS, PFS, vague sets and all their derivatives, there were also definitions of entropy
established on some other generalizations of fuzzy sets in recent years, some came alongside with
examples on MADM involving conceptual datasets as well [21]. Wei [22] defined an asymmetrical
cross entropy measure for two fuzzy sets, called the fuzzy cross-entropy. Such cross entropy for
interval neutrosophic sets was also studied by Sahin in [23]. Ye and Du [21] gave four different new
ways entropy measures on interval-valued neutrosophic sets. Sulaiman et al. [24,25] defined entropy
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measures for interval-valued fuzzy soft sets and multi-aspect fuzzy soft sets. Hu et al. [26] gave an
entropy measure for hesitant fuzzy sets. Al-Qudah and Hassan [27] gave an entropy measure for
complex multi-fuzzy soft sets. Barukab et al. [28] gave an entropy measure for spherical fuzzy sets.
Piasecki [29] gave some remarks and characterizations of entropy measures among fuzzy sets. In 2019,
Dass and Tomar [30] further examined the legitimacy of some exponential entropy measures on IFS,
such as those defined by Verna and Sharma in [31], Zhang and Jiang in [32], and Mishra in [33]. On
the other hand, Kang and Deng [34] outlined the general patterns for which the formula for entropy
measures could be formed, thus also applicable for entropy measures to various generalizations of
fuzzy sets. Santos et al. [35] and Cao and Lin [36] derived their entropy formulas for data processing
based on those for fuzzy entropy with applications in image thresholding and electroencephalogram.

With many entropy measures being defined for various generalizations of fuzzy sets, it calls upon
a need to standardize which kind of functions are eligible to be used as entropy measures and which
are not. One of the most notable and recent works in this field is accomplished by Majumdar [1],
who established an axiomatic definition on the entropy measure on a single-valued neutrosophic set
(SVNS). Such an axiomatic definition of entropy measure, once defined for a particular generalization of
fuzzy set, serves as an invaluable tool when choosing a new entropy measure for a particular purpose.
Moreover, with the establishment of such an axiomatic definition of entropy measure, it motivates
researchers to work on deriving a collection of functions, which all qualify themselves to be used as
entropy measures, rather than inventing a single standalone function as an entropy measure for a
particular scenario.

In 2017, Smarandache [2] firstly established a concept of plithogenic sets, intended to serve as a
profound and conclusive generalization from most (if not all) of the previous generalizations from
fuzzy sets. This obviously includes the IFS, where most works had been done to establish its great
variety of entropy measures. However, Smarandache [2] did not give any definitions on entropy
measures for plithogenic sets.

Our work on this paper shall be presented as follows: Firstly, in Section 2, we mention all the
prerequisite definitions needed for the establishment of entropy measures for plithogenic sets. We also
derive some generalizations of those previous definitions. Such generalizations are necessary to further
widen the scope of our investigation on the set of functions that qualifies as entropy measures for
plithogenic sets. Then, in Section 3, we first propose new entropy measures for plithogenic sets in
which requirements for any function to be an entropy measure of plithogenic sets are outlined in the
axiomatic definition. Later in Section 3, several new formulae for the entropy measure of plithogenic
sets are also introduced. In Section 4, we will apply a particular example of our entropy measure onto
a MADM problem related to the selection of locations.

Due to the complexity and the novelty of plithogetic sets, as well as the scope constraints of
this paper, the plithogenic set involved in the demonstration of MADM will be of a small caliber
within 150 data values in total. Those data values contained in the plithogenic set example will be
also conceptual in nature (only two to three digits per value). Such presentation, although it may be
perceived as simple, is in alliance with the common practice of most renowned works done by the
previous authors discussed before, whenever a novel way of entropy measure is invented and first
applied on a MADM problem. Hence, such a start-up with a small and conceptual dataset does not
hinder the justification on the practicability of the proposed notions. Quite the contrary, it enables even
the most unfamiliar readers to focus on the procedure of such novel methods of dealing with MADM
problems, rather than being overwhelmed by the immense caliber of computation encountered in
dealing with up-to-date real-life datasets.

2. Preliminary

Throughout all the following of this article, let U be the universal set.
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Definition 1 [1]. A single valued neutrosophic sets (SVNS) on U is defined to be the collection

A =
{
(x, TA(x), IA(x), FA(x)) : x ∈ U

}
where TA, IA, FA : U→ [0, 1] and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

We denote SVNS(U) to be the collection of all SVNS on U.

Majumdar [1] have established the following axiomatic definition for an entropy measure on SVNS.

Definition 2 [1]. An entropy measure on SVNS is a function EN : SVNS(U)→ [0, 1] that satisfies the
following axioms for all A ∈ SVNS(U):

I. EN(A) = 0 if A is a crisp set i.e., (TA(x), IA(x), FA(x)) ∈
{
(1, 0, 0), (0, 0, 1)

}
for all x ∈ U.

II. EN(A) = 1 if (TA(x), IA(x), FA(x)) =
(

1
2 , 1

2 , 1
2

)
for all x ∈ U.

III. EN(A) ≥ EN(B) if A is contained in B i.e., TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x) for all
x ∈ U.

IV. EN(A) = EN(Ac) for all A ∈ SVNS(U).

In the study of fuzzy entropy, a fuzzy set with membership degree of 0.5 is a very special fuzzy set
as it is the fuzzy set with the highest degree of fuzziness. Similarly, in the study of entropy for SVNSs,
a SVNS with all its membership degree of 0.5 for all the three membership components is very special
as it is the SVNS with the highest degree of uncertainty. Hence, we denote A[ 1

2 ]
∈ SVNS(U) as the

SVNS with (TA(x), IA(x), FA(x)) =
(

1
2 , 1

2 , 1
2

)
for all x ∈ A. Such axiomatic descriptions in Definition 2

of this paper, defined by Majumdar [1], serve as the cornerstone for establishing similar axiomatic
descriptions for the entropy measures on other generalizations of fuzzy sets, which shall certainly
include that for plithogenic sets by Smarandache [2].

We however, disagree with (iii) of Definition 2. As an illustrative example, let A be empty, then A
has zero entropy because it is of absolute certainty that A “does not contain any element”. Whereas
a superset of A, say B ∈ SVNS(U), may have higher entropy because it may not be crisp. Thus, we
believe that upon establishing (iii) of Definition 2, the authors in [1] concerned only the case where A
and B are very close to the entire U. Thus, on the establishment of entropy measures on plithogenic
sets in this article, only axioms (i), (ii) and (iv) of Definition 2 will be considered.

Together with axioms (i), (ii), and (iv) of Definition 2, the following two well-established
generalizations of functions serve as our motives of defining the entropies, which allows different
users to customize to their respective needs.

Definition 3 [1]. Let T : [0, 1]2 → [0, 1] , be a function satisfying the following for all p, q, r, s ∈ [0, 1].

1. T(p, q) = T(q, p) (commutativity)
2. T(p, q) ≤ T(r, s), if p ≤ r and q ≤ s
3. T(p, T(q, r)) = T(T(p, q), r) (associativity)
4. T(p, 0) = 0
5. T(p, 1) = p

Then T is said to be a T-norm function.

Example 1. “minimum” is a T-norm function.

Definition 4 [1]. Let S : [0, 1]2 → [0, 1] , be a function satisfying the following for all p, q, r, s ∈ [0, 1].

1. S(p, q) = S(q, p) (commutativity)
2. S(p, q) ≤ S(r, s), if p ≤ r and q ≤ s
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3. S(p, S(q, r)) = S(S(p, q), r) (associativity)
4. S(p, 0) = p
5. S(p, 1) = 1

Then, S is said to be an S-norm (or a T-conorm) function.

Example 2. “maximum” is an S-norm function.

In the study of fuzzy logic, we also find ourselves seeking functions that measure the
central tendencies, as well as a given position of the dataset, besides maximum and minimum.
Such measurement often involves more than two entities and those entities can be ordered of otherwise.
This is the reason we introduce the concept of M-type function and the S-type function, defined on all
finite (not ordered) sets with entries in [0, 1]. Due to the commutativity of S-norm function, S-type
function is thus a further generalization of S-norm function as it allows more than two entities. In all
the following of this article, let us denote Φ[0,1] as the collection of all finite sets with entries in [0, 1].
To avoid ending up with too many brackets in an expression, it is convenient to denote the image of
{a1, a2, · · · , an} under f as f (a1, a2, · · · , an).

Definition 5 [1]. Let f : Φ[0,1] → [0, 1] , be a function satisfying the following:

(i) f (0, 0, · · · , 0) = 0
(ii) f (1, 1, · · · , 1) = 1

Then f is said to be an M-type function.

Remark 1. “maximum”, “minimum”, “mean”, “interpolated inclusive median”, “interpolated exclusive
median”, “inclusive first quartile”, “exclusive 55th percentile”, 1−

∏
k∈K(1− k) and 1− |K|

√∏
k∈K(1− k) are

some particular examples of M-type functions.

Definition 6 [1]. Let f : Φ[0,1] → [0, 1] , be a function satisfying the following:

(i) f (0, 0, · · · , 0) = 0.
(ii) If K ∈ Φ[0,1] contains at least an element k > 0, then f (K) > 0.

(iii) If K ∈ Φ[0,1] contains at least an element k = 1, then f (K) = 1.

(iv) For every two sets from Φ[0,1] with the same cardinality: K = {k1, k2, · · · , kn} and R = {r1, r2, · · · , rn}. If
k j ≥ r j for all j, then f (K) ≥ f (R).

Then f is said to be an S-type function.

Remark 2. “maximum”, 1 −
∏

k∈K(1− k) and 1 − |K|
√∏

k∈K(1− k) are some particular examples of
S-type functions.

Lemma 1. If f is an S-type function, then it is also an M-type function.

Proof. As {1, 1, · · · , 1} contains one element which equals to 1, f (1, 1, · · · , 1) = 1, thus the lemma follows.
�

Remark 3. The converse of this lemma is not true however, as it is obvious that “mean” is an M-type function
but not an S-type function.

All of these definitions and lemmas suffice for the establishment of our entropy measure for
plithogenic sets.
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3. Proposed Entropy Measure for Plithogenic Sets

In [2], Smarandache introduced the concept of plithogenic set. Such a concept is as given in the
following definition.

Definition 7 [2]. Let U be a universal set. Let P ⊆ U. Let A be a set of attributes. For each attribute a ∈ A:
Let Sa be the set of all its corresponding attribute values. Take Va ⊆ Sa. Define a function da : P×Va → [0, 1] ,
called the attribute value appurtenance degree function. Define a function ca : Va ×Va → [0, 1] , called the
attribute value contradiction (dissimilarity) degree function, which further satisfies:

(i) ca(v, v) = 0, for all v ∈ Va.
(ii) ca(v1, v2) = ca(v2, v1), for all v1, v2 ∈ Va.

Then:

(a) R = 〈P, A, V, d, c〉 is said to form a plithogenic set on U.
(b) da is said to be the attribute value appurtenance fuzzy degree function (abbr. AFD-function) for a in R,

and da(x, v) is called the appurtenance fuzzy degree of x in v.
(c) ca is said to be the attribute value contradiction (dissimilarity) fuzzy degree function (abbr. CFD-function)

for a in R, and ca(v1, v2) is called the contradiction fuzzy degree between v1 and v2.

Remark 4. If P = U, A = {ao}, Vao = {v1, v2, v3}, cao(v1, v2) = cao(v2, v3) = 0.5 and cao(v1, v3) = 1, then R
is reduced to a single valued neutrosophic set (SVNS) on U.

Remark 5. If P = U, Va = {v1, v2} for all a ∈ A, da : P×Va → [0, 1] is such that 0 ≤ da(x, v1)+ da(x, v2) ≤ 1
for all x ∈ P and for all a ∈ A, ca(v1, v2) = ca(v2, v1) = 1 for all a ∈ A, then R is reduced to a generalized
intuitionistic fuzzy soft set (GIFSS) on U.

Remark 6. If P = U, A = {ao}, Vao = {u1, v1, u2, v2}, dao : P×Vao → [0, 1] is such that 0 ≤ dao(x, v1) +

dao(x, v2) ≤ 1, 0 ≤ dao(x, u1) ≤ dao(x, v1) and 0 ≤ dao(x, u2) ≤ dao(x, v2) all satisfied for all x ∈ P, and
cao(u1, u2) = cao(v1, v2) = 1, then R is reduced to an inter-valued intuitionistic fuzzy set (IVIFS) on U.

Remark 7. If P = U, A = {ao}, Vao = {v1, v2}, dao : P×Vao → [0, 1] is such that 0 ≤ dao(x, v1) +

dao(x, v2) ≤ 1 for all x ∈ P, and cao(v1, v2) = 1, then R is reduced to an intuitionistic fuzzy set (IFS) on U.

Remark 8. If P = U, A = {ao}, Vao = {v1, v2}, dao : P×Vao → [0, 1] is such that 0 ≤ dao(x, v1)
2 +

dao(x, v2)
2
≤ 1 for all x ∈ P, and cao(v1, v2) = 1, then R is reduced to a Pythagorean fuzzy set (PFS) on U.

Remark 9. If P = U, A = {ao} and Vao = {vo}, then R is reduced to a fuzzy set on U.

Remark 10. If P = U, A = {ao}, Vao = {vo}, and dao : P×Vao → {0, 1} ⊂, [0, 1] , then R is reduced to a
classical crisp set on U.

In all the following, the collection of all the plithogenic sets on U shall be denoted as PLFT(U).

Definition 8. Let = 〈P, A, V, d, c〉 ∈ PLFT(U). The compliment for R, is defined as

R =
〈
P, A, V, d, c

〉
,

where da = 1− da for all a ∈ A.

Remark 11. This definition of compliment follows from page 42 of [2].
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Remark 12. It is clear that R ∈ PLFT(U) as well.

With the all these definitions established, we now proceed to define a way of measurement
of entropy for plithogenic sets. In the establishment of such entropy measures, we must let all the
AFD-functions {da : a ∈ A} and all the CFD-functions {ca : a ∈ A} to participate in contributing to the
overall entropy measures of = 〈P, A, V, d, c〉 ∈ PLFT(U).

We now discuss some common traits of how each element from {da : a ∈ A} and {ca : a ∈ A} shall
contribute to the overall entropy measures of R, all of which are firmly rooted in our conventional
understanding of entropy as a quantitative measurement for the amount of disorder.

Firstly, on the elements of {da : a ∈ A}: In accordance with Definition 7, each da(x, v) is the
appurtenance fuzzy degree of x ∈ P, over the attribute value v ∈ Va (Va in turn belongs to the attribute
a ∈ A). Note that da(x, v) = 1 indicates absolute certainty of membership of x in v; whereas da(x, v) = 0
indicates absolute certainty of non-membership of x in v. Hence, any da(x, v) satisfying da(x, v) ∈ {0, 1}
must be regarded as contributing zero magnitude to the overall entropy measure of R, as absolute
certainty implies zero amount of disorder. On the other hand, da(x, v) = 0.5 indicates total uncertainty of
the membership of x in v, as 0.5 is in the middle of 0 and 1. Hence, any da(x, v) satisfying da(x, v) = 0.5
must be regarded as contributing the greatest magnitude to the overall entropy measure of R, as total
uncertainty implies the highest possible amount of disorder.

Secondly, on the elements of {ca : a ∈ A}: For each attribute a ∈ A, ca(v1, v2) = 0 indicates that the
attribute values v1, v2 are of identical meaning (synonyms) with each other (e.g., “big” and “large”),
whereas ca(v1, v2) = 1 indicates that the attribute values v1, v2 are of opposite meaning to each other
(e.g., “big” and “small”). Therefore, in the case of ca(v1, v2) = 0 and

{
da(x, v1), da(x, v2)

}
= {0, 1},

it implies that x is absolutely certain to be inside one vi among {v1, v2}, while outside of the other, even
though v1 and v2 carry identical meaning to each other. Such collection of

{
ca(v1, v2), da(x, v1), da(x, v2)

}
is therefore of the highest possible amount of disorder, because their combined meaning implies an
analogy to the statement of “x is very large and not big” or “x is not large and very big”. As a result,
such collection of

{
ca(v1, v2), da(x, v1), da(x, v2)

}
aforementioned must be regarded as contributing the

greatest magnitude to the overall entropy measure of R. Furthermore, in the case of ca(v1, v2) = 1
and

{
da(x, v1), da(x, v2)

}
⊂, {0, 1}, it implies that x is absolutely certain to be inside both v1 and v2 (or

outside both v1 and v2), even though v1 and v2 carry opposite meaning with each other. Likewise, such
collection of

{
ca(v1, v2), da(x, v1), da(x, v2)

}
is of the highest possible amount of disorder, because their

combined meaning implies an analogy to the statement of “x something is very big and very small” or
“x something is not big and not small”. As a result, such a collection of

{
ca(v1, v2), da(x, v1), da(x, v2)

}
aforementioned must be regarded as contributing the greatest magnitude to the overall entropy measure
of R as well.

We now define the three axioms of entropy on plithogenic sets, analogous to the axioms (i), (ii),
and (iv) in Definition 2 respectively.

Definition 9. An entropy measure on plithogenic sets, is a function E : PLFT(U)→ [0, 1] satisfying the
following three axioms

(i) (analogy to (i) in Definition 2): Let R = 〈P, A, V, d, c〉 ∈ PLFT(U) satisfying the following conditions for
all (x, v1, v2) ∈ P×Va ×Va:

(a) da : P×Va → {0, 1} for all a ∈ A.
(b)

{
da(x, v1), da(x, v2)

}
= {0, 1} whenever ca(v1, v2) ≥ 0.5.

(c)
{
da(x, v1), da(x, v2)

}
⊂, {0, 1} whenever ca(v1, v2) < 0.5.

Then E(R) = 0.
(ii) (analogy to (ii) in Definition 2). Let R = 〈P, A, V, d, c〉 ∈ PLFT(U) satisfying da : P×Va → {0.5} for all

a ∈ A. Then E(R) = 1.
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(iii) (analogy to (iv) in Definition 2). For all R = 〈P, A, V, d, c〉 ∈ PLFT(U), E(R) = E(R) holds.

The three axioms in Definition 9 thus serve as general rules for which any functions must fulfill to
be used as entropy measures on plithogenic sets. However, the existence of such functions satisfying
these three axioms needs to be ascertained. To ensure that we do have an abundance of functions
satisfying these axioms, we must therefore propose and give characterization to such functions with
explicit examples and go to the extent of proving that each one among our proposed examples satisfy
all these axioms. Such a procedure of proving the existence of many different entropy functions is
indispensable. This is because in practical use, the choices of an entropy measure will fully depend on
the type of scenario examined, as well as the amount of computing power available to perform such
computations, without jeopardizing the axioms of entropy measures as mentioned. It is only by doing
so that users are guaranteed to have plenty of room to customize an entropy measure of plithogenic
sets suited for their particular needs. In light of this motivation, a theorem showing a collection of
functions satisfying those axioms is presented in this paper.

Theorem 1. Let m1, m2, m3 be any M-type functions. Let s1, s2 be any S-type functions. Let ∆ be any function
satisfying the following conditions:

(i) ∆(1− c) = ∆(c), ∆(0) = ∆(1) = 0, ∆(0.5) = 1.
(ii) ∆(c) is increasing within [0, 0.5]. In other words, ∆(c1) ≤ ∆(c2) whenever 0 ≤ c1 < c2 ≤ 0.5.

Let ω be any function satisfying the following conditions:

(i) ω(x) = 0 for all x ∈ [0, 0.5], ω(1) = 1.
(ii) ω(c) is increasing within [0.5, 1]. In other words, ω(c1) ≤ ω(c2) whenever 0 ≤ c1 < c2 ≤ 1.

Define ε∆,a : P×Va → [0, 1] , where ε∆,a(x, v) = ∆(da(x, v)) for all (x, v) ∈ P × Va. Define
ϕω,a : P×Va ×Va → [0, 1] , where:

ϕω,a(x, v1, v2)= ω(1− ca(v1, v2))·
∣∣∣da(x, v1) − da(x, v2)

∣∣∣+ω(ca(v1, v2))·
∣∣∣da(x, v1) + da(x, v2) − 1

∣∣∣
for all (x, v1, v2) ∈ P×Va ×Va.

Then, any function E : PLFT(U)→ [0, 1] , in the form of

E(R) = m3
{
m2

{
m1

{
s2

{
ε∆,a(x, v), s1

{
ϕω,a(x, v, u) : u ∈ Va

} }
: v ∈ Va

}
: a ∈ A

}
: x ∈ P

}
for all R = 〈P, A, V, d, c〉 ∈ PLFT(U), are all entropy measures on plithogenic sets.

Proof. + Axiom (i): Taking any arbitrary u, v ∈ Va, a ∈ A and x ∈ P.

a. As da(x, v) ∈ {0, 1}, ε∆,a(x, v) = ∆(da(x, v)) = 0.
b. Whenever ca(v1, v2) ≥ 0.5, it follows that 1− ca(v1, v2) ≤ 0.5, which implies ω(1− ca(v1, v2)) = 0.

Thus, ϕω,a(x, v1, v2) = ω(ca(v1, v2))·
∣∣∣da(x, v1) + da(x, v2) − 1

∣∣∣.
Since

{
da(x, v1), da(x, v2)

}
= {0, 1}, da(x, v1) + da(x, v2) − 1 = 0 follows, which further implies that

ϕω,a(x, v1, v2) = 0.

c. whenever ca(v1, v2) < 0.5, it implies ω(ca(v1, v2)) = 0.

Thus, ϕω,a(x, v1, v2) = ω(1− ca(v1, v2))·
∣∣∣da(x, v1) − da(x, v2)

∣∣∣.
Since

{
da(x, v1), da(x, v2)

}
⊂, {0, 1}, da(x, v1) − da(x, v2) = 0 follows, which further implies that

ϕω,a(x, v1, v2) = 0.
Hence, ϕω,a(x, v, u) = ε∆,a(x, v) = 0 follows for all u, v, a, x.
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As a result,

E(R) = m3
{
m2

{
m1

{
s2

{
ε∆,a(x, v), s1

{
ϕω,a(x, v, u) : u ∈ Va

} }
: v ∈ Va

}
: a ∈ A

}
: x ∈ P

}
= m3{m2{ m1{s2{0, s1{0 : u ∈ Va} } : v ∈ Va} : a ∈ A} : x ∈ P }

= m3{m2{ m1{s2{0, 0} : v ∈ Va} : a ∈ A} : x ∈ P }
= m3{m2{ m1{0 : v ∈ Va} : a ∈ A} : x ∈ P } = 0.

+ Axiom (ii): Taking any arbitrary v ∈ Va, a ∈ A and x ∈ P.
As da : P×Va → {0.5} for all a ∈ A, we have
da(x, v) = 0.5 for all v, a, x. This further implies that
ε∆,a(x, v) = ∆(da(x, v)) = 1 for all v, a, x.
As a result,

E(R) = m3
{
m2

{
m1

{
s2

{
ε∆,a(x, v), s1

{
ϕω,a(x, v, u) : u ∈ Va

}}
: v ∈ Va

}
: a ∈ A

}
: x ∈ P

}
= m3

{
m2

{
m1

{
s2

{
1, s1

{
ϕω,a(x, v, u) : u ∈ Va

}}
: v ∈ Va

}
: a ∈ A

}
: x ∈ P

}
= m3{m2{ m1{1 : v ∈ Va} : a ∈ A} : x ∈ P} = 1.

+ Axiom (iii): da = 1− da follows by Definition 8. This will imply the following

(a) ∆
(
da(x, v)

)
= ∆(1− da(x, v)) = ∆(da(x, v)) = ε∆,a(x, v).

(b) First, we have ∣∣∣∣da(x, v1) − da(x, v2)
∣∣∣∣ = ∣∣∣(1− da(x, v1)) − (1− da(x, v2))

∣∣∣
=

∣∣∣−da(x, v1) + da(x, v2)
∣∣∣

=
∣∣∣da(x, v1) − da(x, v2)

∣∣∣
and ∣∣∣∣da(x, v1) + da(x, v2) − 1

∣∣∣∣ = ∣∣∣(1− da(x, v1)) + (1− da(x, v2)) − 1
∣∣∣

=
∣∣∣1− da(x, v1) + 1− da(x, v2) − 1

∣∣∣
=

∣∣∣1− da(x, v1) − da(x, v2)
∣∣∣

=
∣∣∣da(x, v1) + da(x, v2) − 1

∣∣∣.
Therefore, it follows that

ω(1− ca(v1, v2))·
∣∣∣∣da(x, v1) − da(x, v2)

∣∣∣∣+ω(ca(v1, v2))·
∣∣∣∣da(x, v1) + da(x, v2) − 1

∣∣∣∣
= ω(1− ca(v1, v2))·

∣∣∣da(x, v1) − da(x, v2)
∣∣∣+ω(ca(v1, v2))·

∣∣∣da(x, v1) + da(x, v2) − 1
∣∣∣

= ϕω,a(x, v1, v2)

Since

E(R) = m3
{
m2

{
m1

{
s2

{
ε∆,a(x, v), s1

{
ϕω,a(x, v, u) : u ∈ Va

}}
: v ∈ Va

}
: a ∈ A

}
: x ∈ P

}
E(R) = E(R) now follows. �

Remark 13. As ε∆,a(x, v) = ∆(da(x, v)) and

ϕω,a(x, v, u)= ω(1− ca(v, u))·
∣∣∣da(x, v) − da(x, u)

∣∣∣+ω(ca(v, u))·
∣∣∣da(x, v) + da(x, u) − 1

∣∣∣
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It follows that

E(R) =

m3

m2

 m1

s2

∆(da(x, v)), s1


ω(1− ca(v, u))·∣∣∣da(x, v) − da(x, u)

∣∣∣+
ω(ca(v, u))·∣∣∣da(x, v) + da(x, u) − 1

∣∣∣
: u ∈ Va


 : v ∈ Va

 : a ∈ A

 : x ∈ P


Such a version of the formula serves as an even more explicit representation of E(R).

Remark 14. For instance, the following is one of the many theoretical ways of choosing {m1, m2, m3, s1, s2, ∆,ω}
to form a particular entropy measure on plithogenic sets.

(a) ω(c) =

 0, 0 ≤ c < 1
2

2
(
c− 1

2

)
, 1

2 ≤ c ≤ 1
, for all c ∈ [0, 1].

(b) ∆(c) =
{

2c, 0 ≤ c < 1
2

2(1− c), 1
2 ≤ c ≤ 1

, for all c ∈ [0, 1].

(c) s1(K) = maximum(K), for all K ∈ Φ[0,1].

(d) s2(K) = 1−
∏

k∈K(1− k), for all K ∈ Φ[0,1].

(e) m1(K) = mean(K), for all K ∈ Φ[0,1].

(f) m2(K) = median(K), for all K ∈ Φ[0,1].

(g) m3(K) = mode(K), for all K ∈ Φ[0,1].

In practical applications, however, the choices of {m1, m2, m3, s1, s2, ∆,ω}will depend on the type of
scenario examined, as well as the amount of computing power available to perform such computations.
Such abundance of choices is a huge advantage, because it allows each user plenty of room of
customization suited for their own needs, without jeopardizing the principles of entropy functions.

4. Numerical Example of Plithogenic Sets

In this section, we demonstrate the utility of the proposed entropy functions for plithogenic sets
using an illustrative example of a MADM problem involving a property buyer making a decision
whether to live in Town P or Town B.

4.1. Attributes and Attributes Values

Three different addresses within Town P are selected: P =
{
p, q, r

}
. Another four different addresses

within Town B are selected as well: B =
{
α, β,γ, δ

}
. All the seven addresses are investigated by that

person based on 3 attributes as follows:

A =

{
Services near the address ( j), Security near the address (s),

Public transport near the address (t)

}
For each of the 3 attributes, the following attribute values are considered:

V j =
{
School(u1), Bank(u2), Factory(u3), Construction Site(u4), Clinic(u5)

}
Vs =

{
Police on Patrol(v1), Police Station(v2), CCTV Coverage(v3), Premise Guards(v4)

}
Vt =

{
Bus(w1), Train(w2), Taxi(w3), Grab services(w4)

}
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4.2. Attribute Value Appurtenance Degree Functions

In light of the limitation of one person doing the investigation, there could possibly be some
characteristics of Town P left unknown or unsure of. As a result, our example involved in this paper,
though small in caliber, shall provide a realistic illustration of such phenomena.

Thus, in our example: Let the attribute value appurtenance degree functions for Town P be given
in Tables 1–3 (as deduced by the property buyer).

Table 1. Attribute value appurtenance fuzzy degree function for j ∈ A on Town P (d j).

Vj u1 u2 u3 u4 u5
Addresses in Town P

p 1.0 1.0 0.0 0.0 1.0
q 0.0 0.0 1.0 0.8 0.0
r 1.0 0.9 0.0 0.3 1.0

Table 2. Attribute value appurtenance fuzzy degree function for s ∈ A on Town P (ds).

Vs v1 v2 v3 v4
Addresses in Town P

p 0.1 1.0 0.9 0.8
q 0.9 0.0 0.8 0.9
r 0.1 1.0 0.8 0.7

Table 3. Attribute value appurtenance fuzzy degree function for t ∈ A on Town P (dt).

Vt w1 w2 w3 w4
Addresses in Town P

p 0.9 0.9 0.9 0.1
q 0.8 0.8 0.1 0.9
r 0.9 1.0 0.1 0.8

For example:
d j(p, u1) = 1.0 indicates that schools exist near address p in town P.
dt(q, w4) = 0.9 indicates that Grab services are very likely to exist near address q in town P.
ds(r, v2) = 1.0 indicates that police stations exist near address r in town P.
Similarly, let the attribute value appurtenance degree functions for Town B be given in Tables 4–6

(as deduced by the property buyer):

Table 4. Attribute value appurtenance fuzzy degree function for j ∈ A on Town B (h j).

Vj u1 u2 u3 u4 u5
Addresses in Town B

α 0.0 1.0 1.0 0.0 1.0
β 1.0 0.0 1.0 0.8 0.0
γ 0.4 0.5 0.6 0.4 0.6
δ 0.0 0.1 0.1 0.2 0.9

Table 5. Attribute value appurtenance fuzzy degree function for s ∈ A on Town B (hs).

Vs v1 v2 v3 v4
Addresses in Town B

α 0.9 0.8 0.9 0.8
β 0.2 0.1 0.5 0.4
γ 0.8 0.9 0.8 0.5
δ 0.1 0.2 0.6 0.5
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Table 6. Attribute value appurtenance fuzzy degree function for t ∈ A on Town B (ht).

Vt w1 w2 w3 w4
Addresses in Town B

α 0.5 0.5 0.3 0.4
β 0.0 0.9 0.9 0.9
γ 0.8 0.0 0.1 0.1
δ 0.9 0.1 0.8 0.9

4.3. Attribute Value Contradiction Degree Functions

Moreover, each of the attributes of a town may be dependent on one another. For example, in a
place where schools are built, clinics should be built near to the schools, whereas factories should be
built far from the schools. Moreover, the police force should spread their manpower patrolling across
the town away from a police station. As a result, our example involved in this paper, though small in
caliber, shall provide a realistic illustration of such phenomena as well.

Thus, as an example, let the attribute value contradiction degree functions for the attributes
j, s, t ∈ A be given in Tables 7–9: (as deduced by the property buyer), to be used for both towns.

Table 7. Attribute value contradiction degree functions for j ∈ A (c j).

Vj u1 u2 u3 u4 u5

u1 0.0 0.2 1.0 0.7 0.0
u2 0.2 0.0 0.9 0.5 0.1
u3 1.0 0.9 0.0 0.2 0.9
u4 0.7 0.5 0.2 0.0 0.5
u5 0.0 0.1 0.9 0.5 0.0

Table 8. Attribute value contradiction degree functions for s ∈ A (cs).

Vs v1 v2 v3 v4

v1 0.0 1.0 0.5 0.5
v2 1.0 0.0 0.5 0.5
v3 0.5 0.5 0.0 0.1
v4 0.5 0.5 0.1 0.0

Table 9. Attribute value contradiction degree functions for t ∈ A (ct).

Vt w1 w2 w3 w4

w1 0.0 0.3 0.1 0.1
w2 0.3 0.0 0.0 0.1
w3 0.1 0.0 0.0 0.9
w4 0.1 0.1 0.9 0.0

In particular,
c j(u1, u3) = 1.0 indicates that schools and factories should not be in the same place, because it is

not healthy to the students.
c j(u1, u5) = 0.0 indicates that schools and clinics should be available together, so that any student

who falls ill can visit the clinic.
cs(v1, v2) = 1.0, because it is very inefficient for police to patrol only nearby a police station itself,

instead of places of a significant distance to a police station. This also ensures that police force will be
present in all places, as either a station or a patrol unit will be present.

ct(w1, w2) = 0.0, because all train stations must have buses going to/from it. On the other hand,
one must also be able to reach a train station from riding a bus.

ct(w3, w4) = 0.9 due to the conflicting nature of the two businesses.
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4.4. Two Plithogenic Sets Representing Two Towns

From all attributes of the two towns given, we thus form two plithogenic sets representing each
of them

(a) R = 〈P, A, V, d, c〉, which describes Town P
(b) T = 〈B, A, V, h, c〉, which describes Town B

Intuitively, it is therefore evident that the property buyer should choose Town P over Town B
as his living place. One of the many reasons being, in Town P schools and factories are unlikely to
appear near one address within the town, whereas in Town B there exist addresses where schools and
factories are both nearby (so both schools and factories are near to each other). Moreover, in Town P,
the police force is more efficient as they spread their manpower across the town, rather than merely
patrolling near their stations and even leaving some addresses unguarded as in Town B. On top of this,
there exists places in town where taxi and grab services are near to each other, which can cause conflict
or possibly vandalism to each other’s property. Town P is thus deemed less “chaotic”, whereas Town B
is deemed more “chaotic”.

As a result, our entropy measure must be able to give Town P as having lower entropy than Town
B, under certain choices of {m1, m2, m3, s1, s2, ∆,ω}which are customized for the particular use of the
property buyer.

4.5. An Example of Entropy Measure on Two Towns

Choose the following to form E : PLFT(U)→ [0, 1] in accordance with Theorem 1:

(a) ω(c) =

 0, 0 ≤ c < 1
2

2
(
c− 1

2

)
, 1

2 ≤ c ≤ 1
, for all c ∈ [0, 1].

(b) ∆(c) =
{

2c, 0 ≤ c < 1
2

2(1− c), 1
2 ≤ c ≤ 1

, for all c ∈ [0, 1].

(c) s1(K) = s2(K) = 1− |K|
√∏

k∈K(1− k), for all K ∈ Φ[0,1].

(d) m1(K) = m2(K) = m3(K) = mean(K), for all K ∈ Φ[0,1].

Then, by the calculation in accordance with Theorem 1 which is subsequently highlighted
in Figure 1.

We have E(R) = 0.05541+0.14126+0.25710
3 = 0.15126, and E(T) = 0.54868+0.43571+0.39926

3 = 0.46122.
Town P is concluded to have lower entropy, and, therefore, is less “chaotic”, compared to Town B.
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Figure 1. The entire workflow of determining the entropy measure R of a plithogenic set.

5. Conclusions

The plithogenic set R = 〈P, A, V, d, c〉 is an improvement to the neutrosophic model whereby
each attribute is characterized by a degree of appurtenance d that describes belongingness to the
given criteria, and every pair attribute is characterized by a degree of contradiction c that describes
the amount of similarity or opposition between two attributes. In Section 3 of this paper, we have
introduced new entropy measures for plithogenic sets E(R). The axiomatic definition of the plithogenic
entropy was defined using some of the axiomatic requirements of neutrosophic entropy and some
additional conditions. Some formulae for the entropy measure of plithogenic sets have been introduced
in Theorem 1 and these formulas have been developed further to satisfy characteristics of plithogenic
sets such as satisfying exact exclusion (partial order) and containing a contradiction or dissimilarity
degree between each attribute value and the dominant attribute value. The practical application of the
proposed plithogenic entropy measures was demonstrated by applying it to a multi-attribute decision
making problem related to the selection of locations.
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Future works related to the plithogenic entropy include studying more examples of entropy
measures for plithogenic sets with structures different from the one mentioned in Theorem 1, and to
apply the different types of entropy measure for plithogenic sets onto real life datasets. We are also
working on developing entropy measures for other types of plithogenic sets such as plithogenic
intuitionistic fuzzy sets and plithogenic neutrosophic sets, and the study of the application of these
measures in solving real world problems using real life datasets [36–43].
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read and agreed to the published version of the manuscript.
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