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Abstract: In this paper, we establish new strong convergence theorems of proposed algorithms under
suitable new conditions for the generalized split feasibility problem in Banach spaces. As applications,
new strong convergence theorems for equilibrium problems, fixed point problems and split common
fixed point problems are also studied. Our new results are distinct from recent results on the topic in
the literature.
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1. Introduction

Let C and Q be nonempty closed and convex subsets of finite-dimensional Hilbert spaces
H1 and H2, respectively. The mathematical model about the split feasibility problem (SFP, in short),
originally put forward by Censor and Elfving [1], was introduced as follows:

(SFP) Find a point b∗ ∈ C such that A b∗ ∈ Q,

where A : H1 → H2 is a bounded linear operator. The solution set of (SFP) for A is denoted by
SFP(A ), i.e., SFP(A ) := {b∗ ∈ C : A b∗ ∈ Q}.

In fact, the split feasibility problem originated from modeling and inverse problems, phase
retrievals and in medical image reconstruction [2]. In the past more than two decades, the split
feasibility problem has been widely studied by many authors and has been applied in different
disciplines, including radiation therapy treatment planning, signal processing, image restoration,
computer tomography, and so forth. For details, see, e.g., [3–5] and the reference therein. Based on the
idea of split feasibility problem, split variational inclusion problem, split common null point
problem, split common fixed problem, split equilibrium problem, split equality problem and so
on were introduced by many authors and some iteration algorithms for the approximation of
solutions of these problems were established in Banach spaces or Hilbert spaces (see, e.g., [6–15]
and the reference therein).
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In 2014, Takahashi, Xu, and Yao [16] investigated the following generalized split feasibility
problem (GSFP, in short) in Hilbert spaces H1 and H2:

(GSFP) Find a point b∗ ∈H1, such that 0 ∈ Bb∗ and A b∗ ∈ F(T ),

where B : H1 → 2H1 is a maximal monotone operator, A : H1 → H2 is a bounded linear operator
and T : H2 → H2 is a nonexpansive mapping. We use Ω to denote the solution set of (GSFP), i.e.,
Ω := {b∗ ∈ B−10 : A b∗ ∈ F(T )}. The algorithm shown below was established to solve (GSFP)
and a weak convergence theorem was obtained under suitable control conditions as follows: for any
b1 ∈H1,

bn+1 = JB
λn
(I − γnA ∗(I −T )A )bn for all n ∈ N,

where JB
λn

is the resolvent operator of B, A ∗ is the adjoint of A . The research on (GSFP) has extended
from Hilbert spaces to Banach spaces, see, e.g., [12,17] and the reference therein.

In reality, strong convergence results are more useful and easily applied than the weak
convergence results in many practical applications. Motivated by that reason, in this paper, we establish
new strong convergence theorems of proposed algorithms under suitable new conditions for (GSFP)
in Banach spaces. Our results established in Section 3 can be applied to study for equilibrium
problems, fixed point problems and split common fixed point problems. These new results in this
paper are distinct from recent results on the topic in the literature.

2. Preliminaries

Let E be a real Banach space with the dual space E ∗. E is said to be strictly convex if ‖b+e‖
2 ≤ 1

for all b, e ∈ U := {z ∈ E : ‖z‖ = 1} with b 6= e. The modulus of convexity of E is defined as

δE (ε) = inf
{

1− ‖1
2
(b + e)‖ : ‖b‖ ≤ 1, ‖e‖ ≤ 1, ‖b− e‖ ≥ ε

}
for all ε ∈ [0, 2]. E is said to be uniformly convex if δE (0) = 0 and δE (ε) > 0 for all 0 < ε ≤ 2. Let p be
a real number with p ≥ 2. E is called p-uniformly convex if there exists a constant λ > 0 such that
δE (ε) ≥ λεp for all ε > 0.

The function ρE : [0, ∞)→ [0, ∞) is the modulus of smoothness of E and is defined as

ρE (t) = sup
{

1
2
(‖b + e‖+ ‖b− e‖)− 1 : b ∈ U, ‖e‖ ≤ t

}
.

E is called to be uniformly smooth if ρE (t)
t → 0 as t → 0. Let 1 < q ≤ 2. E is called q-uniformly

smooth if there exists a constant c > 0 such that ρE (t) ≤ ctq for all t > 0. It is generally known that
every q-uniformly smooth Banach space is uniformly smooth.

The normalized duality mapping J from E to 2E ∗ is defined as

J (b) = {b∗ ∈ E ∗ : 〈b, b∗〉 = ‖b‖2 = ‖b∗‖2} ∀ b ∈ E ,

where 〈·, ·〉 denotes the generalized duality pairing between E and E ∗.
As is known to all, if E is uniformly smooth Banach spaces, then J is uniformly norm-to-norm

continuous on each bounded subset of E .
Let E be a smooth, reflexive and strictly convex Banach space. Consider the functional ψ [18,19]

defined by
ψ(b, e) = ‖b‖2 − 2〈b,J e〉+ ‖e‖2 for all b, e ∈ E ,

where J is a normalized duality mapping. By the definition of ψ, we know that

(‖b‖ − ‖e‖)2 ≤ ψ(b, e) ≤ (‖b‖+ ‖e‖)2 for all b, e ∈ E .
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From Alber [18], the generalized projection ΠC : E → C is defined by

ΠC (b) = arg min
e∈C

ψ(e, b) for all b ∈ E .

That is, ΠC b = b, where b is the unique solution to the minimization problem ψ(b, b) =

infe∈C ψ(e, b).
The following useful existence and uniqueness results for the operator ΠC can follow from the

properties of the functional ψ and strict monotonicity of the mapping J (see, e.g., [16,18–20]).

Lemma 1 (see [19]). Let E be a smooth, strictly convex and reflective Banach space and C be a nonempty
closed convex subset of E . Then the following conclusions hold:

(A) ψ(b, ΠC e) + ψ(ΠC e, e) ≤ ψ(b, e) for all b ∈ C and e ∈ E ;
(B) If b ∈ E and v ∈ C , then v = ΠC b if and only if < v− e,J b−J v >≥ 0 for all e ∈ C ;
(C) For b, e ∈ E , ψ(b, e) = 0 if and only if b = e;
(D) For b, e ∈ E , λ ∈ [0, 1], ψ(b,J −1(λJ e + (1− λ)J v) ≤ λψ(b, e) + (1− λ)ψ(b, v) for all b, e ∈ E .

Assume E be a reflexive, strictly convex and smooth Banach space. The duality mapping J ∗ from
E ∗ onto E ∗∗ = E coincides with the inverse of the duality mapping J from E onto E ∗, i.e, J ∗ = J −1.

We will use the following mapping V : E × E ∗ → R, introduced in [18], to prove our main result:

V(b, b∗) = ‖b‖2 − 2〈b, b∗〉+ ‖b∗‖2

for all b ∈ E and b∗ ∈ E ∗. Obviously, V(b, b∗) = ψ(b,J −1(b∗)) for all b ∈ E and b∗ ∈ E ∗.

Lemma 2 (see [18]). Let E be a reflexive, strictly convex and smooth Banach space. Then

V(b, b∗) + 2〈J −1(b∗)− b, e∗〉 ≤ V(b, b∗ + e∗)

for all b ∈ E and b∗, e∗ ∈ E ∗.

In what follows, the symbols ⇀ and→ will symbolize weak convergence and strong convergence
as usual, respectively. The symbols N and R are used to denote the sets of positive integers and
real numbers, respectively. Let E be a smooth Banach space, C be a nonempty closed convex subset
of E , and let T be a mapping from C into itself. We use F(T ) to denote the set of all fixed points
of the mapping T . A point p ∈ C is called an asymptotically fixed point of T [21] if there exists
a sequence {bn} ⊂ C such that bn ⇀ p and ‖bn −T bn‖ → 0. We will use F̂(T ) denote the set of
asymptotical fixed points of T .

Definition 1. A mapping T : C → C is called

(i) τ-quasi-strictly pseudocontractive, if F(T ) 6= ∅ and there exists a constant τ ∈ [0, 1], such that

‖T b− p‖2 ≤ ‖b− p‖2 + τ‖b−T b‖2 for all b ∈ C and p ∈ F(T );

(ii) relatively nonexpansive [22], if F(T ) 6= ∅, F(T ) = F̂(T ) and ψ(p, T b) ≤ ψ(p, b) for all b ∈ C and
p ∈ F(T );

(iii) strongly relatively nonexpansive [23], if T is relatively nonexpansive and ψ(T bn, bn)→ 0 whenever
{bn} is bounded sequence in C with ψ(p, bn)− ψ(p, T bn)→ 0 for some p ∈ F(T ).
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Recently, the class of firmly nonexpansive type mappings have been introduced by Kohsaka
and Takahashi [24] in Banach spaces. Let C be a nonempty closed convex subset of a smooth Banach
space E , and let T be a mapping from C into itself. Then T is said to be f irmly nonexpansive type if

ψ(T b, T e) + ψ(T e, T b) + ψ(T b, b) + ψ(T e, e) ≤ ψ(T b, e) + ψ(T e, b)

for all b, e ∈ C . It is easy to see that if T is firmly nonexpansive type with I −T is demi-closed at
zero, then it is strongly relatively nonexpansive.

It is well know that if C is a nonempty closed convex subset of smooth, strictly convex
and reflexive E and A ⊂ E × E ∗ is a monotone operator such that D(A ) ⊂ C ⊂ J −1R(J + rA )

for all r > 0, then for each r > 0, the resolvent QA
r of A which is defined by QA

r b = (J + rA )−1J b
for all b ∈ C is firmly nonexpansive type mapping. In particular, if A ⊂ E × E ∗ is maximal
monotone operator, then R(J + rA ) = E ∗ for all r > 0, see [25]. In this case, the resolvent QA

r of
A is a firmly nonexpansive type mapping from E into itself [26,27] and A −10 is closed and convex
and F(QA

r ) = A −10.

Definition 2. A mapping T : C → C is called demiclosed at zero if for any sequence {bn} ⊂ C with
bn ⇀ b ∈ C and ‖bn −T bn‖ → 0 as n→ ∞, then T b = b.

The following known results are very crucial in our proofs.

Lemma 3 (see [27]). Let E be a uniformly convex and smooth Banach space, {bn} and {en} be two sequences
of E . If limn→∞ψ(bn, en) = 0 and either {bn} or {en} is bounded, then limn→∞‖bn − en‖ = 0.

Lemma 4 (see [28]). Let C be a nonempty closed convex subset of a real Banach space E and let T : C → C

be a τ-quasi-strictly psedocontractive mapping. If F(T ) 6= ∅, then F(T ) is closed and convex.

Lemma 5 (see [29]). If E be a 2-uniformly smooth Banach space, then for each k > 0 and each b, e ∈ E :

‖b + e‖2 ≤ ‖b‖2 + 2〈e,J b〉+ 2‖ke‖2.

Lemma 6 (see [30]). Let {ln} be a sequence of nonnegative real numbers satisfying the following relation:

ln+1 ≤ (1− ρn)ln + ρnσn + ωn, n ≥ 1,

where (i) {ρn} ⊂ [0, 1], ∑∞
n=1 ρn = ∞; (ii) lim supn→∞ σn < 0; (iii) ωn ≥ 0, ∑∞

n=1 ωn < ∞. Then ln → 0
as n→ ∞.

Lemma 7 (see [31]). Let {ln} be a sequence of real numbers such that there exists a subsequence {ni} of {n}
satisfying lni < lni+1 for all i ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞
and the following properties are satisfied for all (sufficiently large) numbers k ∈ N:

lmk ≤ lmk+1 and lk ≤ lmk+1.

In fact, mk = max{j ≤ k : lj < lj+1}.

3. Main Results

In this section, we first establish a new strong convergence iterative algorithm for the generalized
split feasibility problem.

Theorem 1. Let E1 and E2 be 2-uniformly convex and 2-uniformly smooth real Banach spaces with smoothness
constant k satisfying 0 < k ≤ 1√

2
. Let B ⊂ E1 × E ∗1 be a maximal monotone operator with B−10 6= ∅.
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Let QB
r = (J1 + rB)−1J1 be the resolvent of B. Let T : E2 → E2 be a τ-quasi-strict pseudocontractive

mapping such that F(T ) 6= ∅, and T be demiclosed at zero, A : E1 → E2 be a bounded linear operator.
Let {αn} be a sequence in (0,1). For any b1 = b ∈ E1 and a fixed u ∈ E1, let {bn} be a sequence defined by{

en = J −1
1 (J1bn − γA ∗J2(I −T )A bn),

bn+1 = J −1
1 [αnJ1u + (1− αn)J1QB

r en],
(1)

where J1 and J2 are the normalized duality mappings of E1 and E2, respectively. Suppose that {αn} and γ ∈ R
satisfy the following conditions:

(i) limn→∞ αn = 0 and ∑∞
n=1 αn = ∞,

(ii) 0 < γ < 1−τ
‖A ‖2 .

If Ω := {b∗ ∈ B−10 : A b∗ ∈ F(T )} 6= ∅, then the sequence {bn} converges strongly to a point
b∗ ∈ Ω, where b∗ = ΠΩu.

Proof. First, note that B−10 is closed and convex and from Lemma 4, we have Ω is closed and convex.
Let p ∈ Ω. Then QB

r p = p and T (A p) = A p. For any n ∈ N, from (1) and Lemma 5, we have

ψ(p, en) = ψ(p,J −1
1 (J1bn − γA ∗J2(I −T )A bn)

= ‖p‖2 − 2〈p,J1bn − γA ∗J2(I −T )A bn〉+ ‖J1bn − γA ∗J2(I −T )A bn‖2

≤ ‖p‖2 − 2〈p,J1bn〉+ 2γ〈A p,J2(I −T )A bn〉+ ‖bn‖2

− 2γ〈A ∗J2(I −T )A bn, bn〉+ 2k2γ2‖A ‖2‖(I −T )A bn‖2

≤ ψ(p, bn) + 2γ〈A p−A bn,J2(I −T )A bn〉+ γ2‖A ‖2‖(I −T )A bn‖2,

(2)

where

〈A p−A bn,J2(I −T )A bn〉 = 〈A p−T A bn +T A bn −A bn,J2(I −T )A bn〉
= −〈T A bn −A p,J2(I −T )A bn〉 − ‖(I −T )A bn‖2

≤ 1
2
‖(I −T )A bn‖2 + k2‖T A bn −A p‖2

− 1
2
‖A bn −A p‖2 − ‖(I −T )A bn‖2

≤ −1
2
‖(I −T )A bn‖2 +

1
2
‖T A bn −A p‖2 − 1

2
‖A bn −A p‖2

≤ −1
2
‖(I −T )A bn‖2 +

1
2
‖A bn −A p‖2

+
τ

2
‖(I −T )A bn‖2 − 1

2
‖A bn −A p‖2

= −1
2
(1− τ)‖(I −T )A bn‖2.

(3)

Substituting (3) into (2), and by condition (ii), we get

ψ(p, en) ≤ ψ(p, bn)− γ(1− τ)‖(I −T )A bn‖2 + γ2‖A ‖2‖(I −T )A bn‖2

≤ ψ(p, bn)− γ(1− τ − γ‖A ‖2)‖(I −T )A bn‖2

≤ ψ(p, bn),

(4)
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for all n ∈ N. Furthermore, because QB
r is the resolvent of a maximal monotone operator, it is a strongly

relative nonexpansive mapping. For any n ∈ N, by taking into account (1), (4) and Lemma 1(D),
we obtain

ψ(p, bn+1) = ψ(p,J −1
1 [αnJ1u + (1− αn)J1QB

r en])

≤ αnψ(p, u) + (1− αn)ψ(p, QB
r en)

≤ αnψ(p, u) + (1− αn)ψ(p, en)

≤ αnψ(p, u) + (1− αn)ψ(p, bn)

≤ max{ψ(p, u), ψ(p, bn)}
≤ max{ψ(p, u), ψ(p, b1)}.

(5)

Therefore, we prove that {ψ(p, bn)} is bounded. Consequently, {bn}, {en} and {QB
r en} are also

bounded. Next, according to Lemma 2, we get

ψ(p, en+1) ≤ ψ(p, bn+1)

= ψ(p,J −1
1 [αnJ1u + (1− αn)J1QB

r en])

= V(p, αnJ1u + (1− αn)J1QB
r en)

≤ V(p, αnJ1u + (1− αn)J1QB
r en − αn(J1u−J1 p))

− 2〈J −1
1 (αnJ1u + (1− αn)J1QB

r en)− p,−αn(J1u−J1 p)〉

= V(p, αnJ1u + (1− αn)J1QB
r en − αn(J1u−J1 p))

+ 2αn〈bn+1 − p,J1u−J1 p〉

= ψ(p,J −1
1 [(1− αn)J1QB

r en + αnJ1 p]) + 2αn〈bn+1 − p,J1u−J1 p〉

≤ (1− αn)ψ(p, QB
r en) + αnψ(p, p) + 2αn〈bn+1 − p,J1u−J1 p〉

≤ (1− αn)ψ(p, en) + 2αn〈bn+1 − p,J1u−J1 p〉.

(6)

The rest of the proof is going to be divided into two possible cases.

Case 1. Assume that there exists n0 ∈ N such that {ψ(p, en)} is monotonically decreasing as n ≥ n0.
Obviously, {ψ(p, en)} converges and

ψ(p, en+1)− ψ(p, en)→ 0 as n→ ∞. (7)

It follows (4) and (5) that

ψ(p, en)− ψ(p, QB
r en) = ψ(p, en)− ψ(p, bn+1) + ψ(p, bn+1)− ψ(p, QB

r en)

≤ ψ(p, en)− ψ(p, en+1) + ψ(p, bn+1)− ψ(p, QB
r en)

≤ ψ(p, en)− ψ(p, en+1) + αnψ(p, u)

+ (1− αn)ψ(p, QB
r en)− ψ(p, QB

r en)

= ψ(p, en)− ψ(p, en+1) + αn(ψ(p, u)− ψ(p, QB
r en)),

(8)

for all n ∈ N. In view of condition (i) and (7), we know

lim
n→∞

(ψ(p, en)− ψ(p, QB
r en)) = 0. (9)

Therefore, by the definition of strongly relatively nonexpansive mapping, we obtain

lim
n→∞

ψ(QB
r en, en) = 0. (10)
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Furthermore, by Lemma 3, we have

lim
n→∞

‖QB
r en − en‖ = 0. (11)

Since E is reflexive and {en} is bounded, there exists a subsequence {enj} of {en} such that {enj}
converges weakly to b ∈ E . Since QB

r is strongly relatively nonexpansive, from (11), we have QB
r b = b,

i.e., 0 ∈ B(b). For any n ∈ N, by taking into account (4), (6), (7) and conditions (i) and (ii), we get

0 < γ(1− τ − γ‖A ‖2)‖(I −T )A bn‖2

≤ ψ(p, bn)− ψ(p, en)

≤ (1− αn−1)ψ(p, en−1) + 2αn−1〈bn − p,J1u−J1 p〉 − ψ(p, en)

= ψ(p, en−1)− ψ(p, en)− αn−1ψ(p, en−1) + 2αn−1〈bn − p,J1u−J1 p〉
≤ ψ(p, en−1)− ψ(p, en) + 2αn−1〈bn − p,J1u−J1 p〉 → 0 as n→ ∞,

(12)

which implies
lim

n→∞
‖(I −T )A bn‖ = 0. (13)

Hence, from the definition of {en}, we obtain

0 ≤ ‖J1bn −J1en‖ ≤ γ‖A ∗‖‖(I −T )A bn‖ → 0 as n→ ∞. (14)

Because J1 is norm to norm uniformly continuous, we obtain

lim
n→∞

‖bn − en‖ = 0. (15)

By the continuity of A and (15), we obtain that A bnj ⇀ A b as j → ∞. Thus, by (13) and T is
demiclosed at zero, we get T (A b) = A b. Therefore, b ∈ Ω.

Next, we show that {bn} converges strongly to ΠΩu. Let b∗ = ΠΩu. For any n ∈ N, from (6),
we know that

ψ(b∗, bn+1) ≤ (1− αn)ψ(b∗, en) + 2αn〈bn+1 − b∗,J1u−J1b∗〉
≤ (1− αn)ψ(b∗, bn) + 2αn〈bn+1 − b∗,J1u−J1b∗〉.

(16)

Now, we observe that

ψ(en, bn+1) = ψ(en,J −1
1 [αnJ1u + (1− αn)J1QB

r en])

≤ αnψ(en, u) + (1− αn)ψ(en, QB
r en)→ 0 as n→ ∞.

(17)

Hence, limn→∞ ‖en − bn+1‖ = 0. Thus

‖bn − bn+1‖ ≤ ‖bn − en‖+ ‖en − bn+1‖ → 0 as n→ ∞. (18)

By choosing a subsequence {bnj} of {bn} and from Lemma 1(B), we obtain

lim sup
n→∞

〈bn − b∗,J1u−J1b∗〉 = lim sup
j→∞

〈bnj − b∗,J1u−J1b∗〉 = 〈b− b∗,J1u−J1b∗〉 ≤ 0.

By (18), we have

lim sup
n→∞

〈bn+1 − b∗,J1u−J1b∗〉 = lim sup
n→∞

〈bn − b∗,J1u−J1b∗〉 ≤ 0. (19)
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Therefore, in view of (16), (19) and Lemma 6, we conclude that limn→∞ ψ(b∗, bn) = 0,
which means limn→∞ ‖bn − b∗‖ = 0. Therefore, {bn} converges strongly to b∗.

Case 2. Let {ni} be a subsequence of {n} such that ψ(p, eni ) < ψ(p, eni+1) for all i ∈ N.
Therefore, from Lemma 7, there exists a nondecreasing sequence {mk} ⊆ N such that mk → ∞,

ψ(p, emk ) ≤ ψ(p, emk+1),

and
ψ(p, ek) ≤ ψ(p, emk+1).

Using the same lines of arguments as in (7)–(10), we can show that

lim
k→∞
‖QB

r emk − emk‖ = 0.

Similarly as in the proof of case 1, we get

lim sup
n→∞

〈bmk+1 − b∗,J1u−J1b∗〉 ≤ 0.

By (6), we have

ψ(b∗, emk+1) ≤ (1− αmk )ψ(b
∗, emk ) + 2αmk 〈bmk+1 − b∗,J1u−J1b∗〉, (20)

which deduces

αmk ψ(b∗, emk ) ≤ ψ(b∗, emk )− ψ(b∗, emk+1) + 2αmk 〈bmk+1 − b∗,J1u−J1b∗〉.

for all k ∈ N. Due to ψ(b∗, emk ) ≤ ψ(b∗, emk+1), we obtain

ψ(b∗, emk ) ≤ 2〈bmk+1 − b∗,J1u−J1b∗〉 for all k ∈ N.

Therefore limk→∞ ψ(b∗, emk ) = 0. Furthermore, it follows from (20) that limk→∞ ψ(b∗, emk+1) = 0.
Since ψ(b∗, ek) ≤ ψ(b∗, emk+1) for all k ∈ N, we conclude that ek → b∗ as k → ∞. On the other hand,
since ‖en − bn‖ → 0 as n→ ∞, we obtain bk → b∗ as k→ ∞. The proof is completed.

Remark 1.

(a) All results established in [16] were considered in the setting of Hilbert spaces. It is worth noting that
Theorem 1 is a strong convergence theorem for the generalized split feasibility problem in the setting of
Banach spaces, so it is different from any result in [16];

(b) Recently, Ansari and Rehan [17] studied (GSFP) and established weak convergence theorems of the iterative
algorithm shown below in the setting of two Banach spaces:

bn+1 = JB
λ (J −1

E1
(JE1

(bn)− γA ∗JE2(I −T )A bn)) for all n ∈ N,

where E1 and E2 are uniformly convex and 2-uniformly smooth real Banach spaces, B : E1 → E ∗1 be
a maximal monotone set-valued mapping such that B−10 6= ∅, T : E2 → E2 be a quasi-nonexpansive
mapping and A : E1 → E2 be a bounded linear operator whose adjoint is denoted by A ∗. JB

λ be the
resolvent operator of B for λ > 0, JE1

and JE2 be the normalized duality mappings on E1 and E2,
respectively. It is worth noting that Theorem 1 is distinct from any result in [17].

Let E be a smooth strictly convex and reflexive Banach space and let C be a nonempty closed
convex subset of E . Let iC be the indicator function of C ⊆ E , i.e., iC (b) = 0 if b ∈ C and ∞



Mathematics 2020, 8, 892 9 of 13

otherwise. Then iC : E → (−∞, ∞] is a proper lower semicontinuous convex function. Rockafellar’s
maximal monotonicity theorem [32] guarantees that the subdifferential ∂iC ⊂ B×B∗ of iC is maximal
monotone. In this case, it is known that ∂iC is reduced to the normality operator NC for C , i.e.,

NC (b) = {b∗ ∈ E ∗ : 〈e− b, b∗〉 for all e ∈ C }.

Indeed, for any b ∈ C ,

∂iC (b) = {b∗ ∈ E ∗ : iC (b) + 〈e− b, b∗〉 ≤ iC (e) for all e ∈ E }
= {b∗ ∈ E ∗ : 〈e− b, b∗〉 ≤ 0 for all e ∈ C } = NC (b).

We also know that ΠC is the resolvent of NC . In fact, ΠC = (J + 2−1NC )−1J (see, e.g., [24] for
more details).

Let C and Q be a nonempty closed convex subsets of E1 and E2, respectively. Consider K = ∂iC
and T = PQ , where PQ is the metric projection from E2 onto Q. Therefore, we have QK

r = ΠC and
Fix(T ) = Q. By virtue of Theorem 1, we can establish the following strong convergence algorithm of
the split feasibility problem for metric projections in Banach spaces.

Corollary 1. Let E1 and E2 be 2-uniformly convex and 2-uniformly smooth real Banach space with smoothness
constant k satisfying 0 < k ≤ 1√

2
, C and Q be nonempty closed convex subsets of E1 and E2, respectively.

Let PQ be the metric projection from E2 onto Q and A : E1 → E2 be a bounded linear operator. Let {αn} be
a sequence in (0,1). For any b1 = b ∈ E1 and a fixed u ∈ E1, suppose that {bn} is a sequence defined by{

en = J −1
1 (J1bn − γA ∗J2(I − PQ)A bn),

bn+1 = J −1
1 [αnJ1u + (1− αn)J1ΠC en],

(21)

where J1 and J2 are the normalized duality mappings of E1 and E2, respectively. Suppose that {αn} and
γ ∈ R satisfy the following conditions: (i) limn→∞ αn = 0 and ∑∞

n=1 αn = ∞; (ii) 0 < γ < 1
‖A ‖2 .

If Ω1 := {b∗ ∈ C : A b∗ ∈ Q} 6= ∅, then the sequence {bn} converges strongly to a point b∗ ∈ Ω1,
where b∗ = ΠΩ1 u.

4. Some Applications

In this section, we will show some applications of the generalized split feasibility problem and
Theorem 1.

(I) Equilibrium problem and fixed point problem

Let F : C × C → R be a bi-function. Recall that the classical equilibrium problem (EP, in short)
is defined as follows.

(EP) Find p ∈ C such that F (p, y) ≥ 0, ∀ y ∈ C .

The symbol EP(F ) is used to denote the set of all solutions of the problem (EP) for F , i.e.,

EP(F ) = {u ∈ C : F (u, v) ≥ 0, ∀ v ∈ C }.

Let us consider the following hybrid problem for equilibrium problem and fixed point problem
(HEFP, in short):

(HEFP) Find b∗ ∈ C , such that F (b∗, z) ≥ 0 and A b∗ ∈ F(T ) for all z ∈ C ,
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where C is a nonempty closed and convex subset of E1, E1 and E2 are 2-uniformly convex
and 2-uniformly smooth real Banach spaces with smoothness constant k satisfying 0 < k ≤ 1√

2
,

A : E1 → E2 is a bounded linear operator, T : E2 → E2 is a τ-quasi-strict pseudocontractive mapping
such that F(T ) 6= ∅.

Let F : C × C → R be a bi-function satisfying the following conditions (C1)–(C4):

(C1) F (b, b) = 0, ∀b ∈ C ;
(C2) F is monotone, i.e., F (b, e) +F (e, b) ≤ 0, ∀b, e ∈ C ;
(C3) For all b, e, z ∈ C , limt↓0 F (tz + (1− t)b, e) ≤ F (b, e);
(C4) For each b ∈ C , the function e 7−→ F (b, e) is convex and lower semi-continuous .

The resolvent mapping T Fµ of F is defined as

T Fµ (b) = {z ∈ C : F (z, e) +
1
µ
〈e− z,J p

E1
z−J p

E1
b〉 ≥ 0, ∀e ∈ C }, µ > 0.

It is known that the following assertions hold (see [33]):

(1) T Fµ is single-valued ;
(2) T Fµ is a firmly nonexpansive-type mapping;
(3) Fix(T Fµ ) = EP(F );
(4) EP(F ) is closed and convex.

The following result is a special case of the result by Aoyama et al. [34].

Lemma 8. Let F : C × C → R be bi-functions satisfying (C1)-(C4) and let BF : E1 → E ∗1 be a set-valued
mapping defined as follows:

• For any b ∈ C , BF (b) :=
{

b∗ ∈ E ∗1 : F (b, z) ≥ 〈z− b, b∗〉 for all z ∈ C
}

;
• For any b 6∈ C , BF (b) := ∅.

Then, BF is a maximal monotone operator with D(BF ) ⊆ C and EP(F ) = B−1
F 0. Furthermore,

for µ > 0, the resolvent T Fµ of F coincides with the resolvent (J + µBF )
−1J of BF , i.e.,

T Fµ (b) = (J + µBF )
−1J (b).

As a consequence of Theorem 1, we can get the following result for finding a solution of (HEFP).

Theorem 2. Let E1 and E2 be 2-uniformly convex and 2-uniformly smooth real Banach space with smoothness
constant k satisfying 0 < k ≤ 1√

2
. Let C and Q be nonempty closed and convex subsets of E1 and E2,

respectively. Let A : E1 → E2 is bounded linear operators. Let F : C × C → R be bi-function satisfying
the condition (C1)-(C4) and T Fµ be the resolvent mapping of BF defined in Lemma 8. Let T : E2 → E2

be a τ-quasi-strict pseudocontractive mapping with F(T ) 6= ∅, and T be demiclosed at zero. Let {αn} be
a sequence in (0,1). For any b1 = b ∈ E1 and a fixed u ∈ E1, let {bn} be a sequence defined by{

en = J −1
1 (J1bn − γA ∗J2(I −T )A bn),

bn+1 = J −1
1 [αnJ1u + (1− αn)J1T

F
µ en],

(22)

where J1 and J2 are the normalized duality mappings of E1 and E2, respectively. Suppose that {αn} and
γ ∈ R satisfy the following conditions: (i) limn→∞ αn = 0 and ∑∞

n=1 αn = ∞; (ii) 0 < γ < 1−τ
‖A ‖2 .

If Ω2 := {b∗ ∈ EP(F ) : A b∗ ∈ F(T )} 6= ∅, then the sequence {bn} converges strongly to a point b∗ ∈ Ω2,
where b∗ = ΠΩ2 u.
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(II) Split common fixed point problem

Since QB
r is the resolvent of a maximal monotone operator, we know that it is a strongly relative

nonexpansive mapping. Therefore the following result of split common fixed point problem for
τ-quasi-strict pseudocontractive mappings and strongly relatively nonexpansive mappings can be
established from Theorem 1 immediately.

Theorem 3. Let E1 and E2 be 2-uniformly convex and 2-uniformly smooth real Banach spaces with smoothness
constant k satisfying 0 < k ≤ 1√

2
. Let S : E1 → E1 be a strongly relatively nonexpansive mapping with

F(S) 6= ∅. LetT : E2 → E2 be a τ-quasi-strict pseudocontractive mapping such that F(T ) 6= ∅, and T

be demiclosed at zero, A : E1 → E2 be a bounded linear operator. Let {αn} be a sequence in (0,1). For any
b1 = b ∈ E1 and a fixed u ∈ E1, let {bn} be a sequence defined by{

en = J −1
1 (J1bn − γA ∗J2(I −T )A bn),

bn+1 = J −1
1 [αnJ1u + (1− αn)J1Sen],

(23)

where J1 and J2 are the normalized duality mappings of E1 and E2, respectively. Suppose that {αn} and
γ ∈ R satisfy the following conditions: (i) limn→∞ αn = 0 and ∑∞

n=1 αn = ∞; (ii) 0 < γ < 1−τ
‖A ‖2 .

If Ω3 := {b∗ ∈ F(S) : A b∗ ∈ F(T )} 6= ∅, then the sequence {bn} converges strongly to a point b∗ ∈ Ω3,
where b∗ = ΠΩ3 u.

The following conclusion is an immediate consequence of Theorem 3 due to the fact that PQ is
a special τ-quasi-strict pseudocontractive mapping.

Corollary 2. Let E1 and E2 be 2-uniformly convex and 2-uniformly smooth real Banach spaces with smoothness
constant k satisfying 0 < k ≤ 1√

2
. Let C and Q be nonempty, closed and convex subsets of E1 and E2

respectively. Let PQ be the metric projection from E2 onto Q and S : C → C be a strongly relatively
nonexpansive mapping with F(S) 6= ∅. A : E1 → E2 be a bounded linear operator. Let {αn} be a sequence in
(0,1). For any b1 = b ∈ E1 and a fixed u ∈ E1, let {bn} be a sequence defined by{

en = ΠCJ −1
1 (J1bn − γA ∗J2(I − PQ)A bn),

bn+1 = ΠCJ −1
1 [αnJ1u + (1− αn)J1Sen],

(24)

where J1 and J2 are the normalized duality mappings of E1 and E2, respectively. Suppose that {αn} and
γ ∈ R satisfy the following conditions: (i) limn→∞ αn = 0 and ∑∞

n=1 αn = ∞; (ii) 0 < γ < 1
‖A ‖2 .

If Ω4 := {b∗ ∈ F(S) : A b∗ ∈ Q} 6= ∅, then the sequence {bn} converges strongly to a point b∗ ∈ Ω4, where
b∗ = ΠΩ4u.

5. Conclusions

New strong convergence theorems of proposed algorithms under suitable new conditions for the
generalized split feasibility problem in Banach spaces are established in this paper. As applications,
we study new strong convergence theorems for equilibrium problems, fixed point problems and split
common fixed point problems. Our new results are distinct from recent results on the topic in
the literature.
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