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Abstract: Water distribution is fundamental to modern society, and there are many associated
challenges in the context of large metropolitan areas. A multi-domain approach is required for
designing modern solutions for the existing infrastructure, including control and monitoring systems,
data science and Machine Learning. Considering the large scale water distribution networks in
metropolitan areas, machine and deep learning algorithms can provide improved adaptability
for control applications. This paper presents a monitoring and control machine learning-based
architecture for a smart water distribution system. Automated test scenarios and learning methods
are proposed and designed to predict the network configuration for a modern implementation of
a multiple model control supervisor with increased adaptability to changing operating conditions.
The high-level processing and components for smart water distribution systems are supported
by the smart meters, providing real-time data, push-based and decoupled software architectures
and reactive programming.

Keywords: smart water networks; internet of things; deep learning; machine learning; multiple
model control supervisor

1. Introduction

Water distribution systems represent an integral part of modern society. There are many
challenges associated with the increased demand in large metropolitan areas and providing quality
of service and efficient operations. The effects of increased demand on existing infrastructure
can be more prominent in developing countries and regions, doubled by the rapid industrial
development, as described in [1,2]. Providing the quality of service for drinking water is also
affected by the geographical location and increased energy demand and cost of distribution
(reservoirs, pipes, treatment facilities, pumping stations) in expanding metropolitan areas [3].
Climate change is also an important factor for the increased demand, while the lack of high-level
information about water resources “may have severe economic and environmental consequences” [4].
Technical progress in control and information systems has defined well established topics for modeling
and simulation [5,6], SCADA (supervisory control and data acquisition) [7,8], machine learning [9]
and IoT (Internet of Things) solutions [10]. Modern solutions can be designed for multi-domain
applications and adapted for the renewal of old infrastructure and modern developments in the context
of smart cities.

Mathematics 2020, 8, 887; d0i:10.3390/math8060887 www.mdpi.com/journal/mathematics


http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-0792-3820
https://orcid.org/0000-0001-7292-4462
https://orcid.org/0000-0001-6397-4951
https://orcid.org/0000-0002-8305-2652
https://orcid.org/0000-0002-1008-1217
http://dx.doi.org/10.3390/math8060887
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/6/887?type=check_update&version=2

Mathematics 2020, 8, 887 2 of 28

Due to the complexity of real-world problems related to water distribution in large metropolitan
areas, modern solutions require the use of a combination of nature-inspired computational
methodologies and approaches [11]. Such problems include pump scheduling optimization, where
“it is generally considered virtually impossible to explicitly solve the scheduling problem using
mathematical techniques” [12].

SCADA systems enable operators to monitor pressures and flow rates in a WDN (Water
Distribution Network) and operate various control elements (pumps, valves). Optimal control targets
operational objectives: hydraulic performance (pressure levels, water quality, system reliability) and
economic efficiency (operation and maintenance costs). The least-expensive operation policy for pump
scheduling over time is of particular importance for sustainable development, while there are multiple
approaches to achieve improved efficiency for pumping stations. Hydraulic network models such
as mass-balance models are used for regional supply systems, rather than WDNs; regression models
are used for modeling nonlinearities, but full hydraulic simulations are more robust via handling
network reconfiguration scenarios, at the expense of greater computational effort. Most optimal control
algorithms have been developed for applications with fixed speed pumps, while little work has been
conducted on the possible use of expert-system technology or neural networks for optimal control
strategies [13].

WDNs consume a considerable amount of energy in a metropolitan area [12] with more than
90% being used for pumping. This accounts for the great deal of research into pump scheduling
optimization and methods to improve the energy efficiency and maintenance costs. Moreover, since
the early 1980s, there have been large scale deployments of SCADA systems, gathering large amounts
of data that can be used to improve future developments through actionable insights.

In modern water distribution systems, there is ongoing research for providing useful information
and decision support in large metropolitan areas. Machine learning techniques are being used in
the domain of water distribution networks for extracting relevant information from large amounts of
data generated by smart meters and human observations [14,15]. According to [16], “A truly smart
water network needs to be smart at each of the steps to achieve the best outcomes of water network
management and operation.” WDN models have evolved in the past few decades with increasing
support for decision making given the heterogeneity of consumers (e.g., residential, industrial,
commercial) and use cases (e.g., regional and metropolitan networks, agriculture and irrigation
systems), and demand variation during the day and time of year. General trends can be extracted, and
there is a high level of stability across different cities, as described in [17], showing the relevance of
developing a WDN model for each subgroup.

The global task of digitalization of the industry is captured by the Industry 4.0 concept
characterized by increased connectivity (i.e., Internet of Things), distributed computing
(i.e., Big Data, cloud computing), artificial intelligence and cybersecurity, while extending across
different domains of activity and requiring a more holistic approach for the interconnected nature of
modern systems [18].

There is an increased requirement of system integration, combining multiple domains
and technologies into scalable frameworks and design patterns, such as IoT and SCADA systems
for water distribution monitoring. In this sense, IoT systems represent the foundations of such
architectures.

While the concept of IoT started from the idea of connecting common physical appliances to
the internet, nowadays, the definition extends across a wide range of devices and includes sensors
and actuators, IoT platforms and mobile and cloud services that provide interfaces to the physical
world. In a broader sense, the IoT scope can extend to fit a large variety of interconnected devices
characterized by some key aspects, such as processing power, interaction with the environment
and smart capabilities. One of the main challenges in IoT is designing generic platforms that can
integrate a wide range of devices and workflows while being scalable, efficient and practical at the same



Mathematics 2020, 8, 887 3 of 28

time. The development of such platforms requires a deep understanding of software development
and user interaction as well as hardware and embedded devices.

Considering the actual trend in the software industry, the functional reactive pattern has shaped
the development of modern real-time applications, combined with a push-based data exchange
system. The asynchronous nature of IoT applications is captured by reactive programming, while
the integration of modern Al technologies represents the next challenge in this domain, requiring
a combination of high-performance, scalable solutions and high-level processing capabilities [19-21].

The integration of machine learning provides a foundation for a new paradigm, where
the high-level tasks can be delegated for improved data processing capabilities, by extracting relevant
information from vast amounts of data [9,16]. With the developments in ML (machine learning),
DL (deep learning) and RL (reinforcement learning), a data-driven approach has emerged as a flexible
and highly adaptable alternative to more traditional modeling in water distribution systems [22]. Deep
learning is recognized as a breakthrough technology, according to MIT Technology Review, allowing
the machines to experience a new level of intelligence [23]. While the idea of creating machines with
the cognitive abilities of the human brain is not new, with the increased processing power of modern
computers, Al already accounts for remarkable advances over a wide range of domains requiring high
level processing abilities such as speech and image recognition.

In the case of water distribution, as the consumer demand is of great variability during the day
and time of year, while there are multiple types of consumers (e.g., residential, industrial, commercial),
a clustering analysis can be used to extract the main characteristics [17,24]. Based on observed trends
and expert knowledge for labeling the data (known configuration of the network, human observations,
hydraulic models), a control strategy can be defined using multiple controllers for each representative
scenario. Therefore, the identification of the network configuration should provide a high-level
understanding of the WDN operating conditions at any given time, from which more fine-grained
models can be defined based on the actual demand patterns, in a multiple model control strategy.
This allows for a predictive control extension of the SISO (single input, single output) control systems
(and the adaptive form with multiple models and controllers), by evaluating the network configuration
within a regional WDN instead of relying on local feedback from measurement nodes only.

Therefore, the main objective in this article is to evaluate advanced learning methods for controller
selection in a multiple model control structure for pumping stations in a smart WDN. The secondary
objective is the integration of Al with loT technologies and control systems to provide a foundation for
modern architectures in this domain.

This paper provides a bridge between different approaches in this domain for improving
the quality of service for water distribution in residential areas: consumer demand estimation, expert
knowledge, analysis of network reconfiguration and advanced control strategies. The background for
smart WDNSs is described in Section 1. In Section 2, the multiple challenges, solutions and technologies
involved in the management of smart water infrastructure are presented. The theoretical background
for the advanced learning methods and multiple model control strategies required for the proposed
solution is described in Section 3. The architecture of the proposed solution and experimental
results are presented in Section 4 as follows: the implementation of a smart WDN experimental
model, IoT platform, evaluation of advanced learning methods for predicting network configuration
and the integration with a multiple model control structure. The results are summarized in Section 5
and the materials and methods for experimental data processing are presented in Section 6 with
references to the source code and experimental data repository. In Section 7, the conclusions are based
on the proposed solution and experimental results in the context of smart cities, control systems,
automated testing and evaluation of advanced learning models.

2. Related Work

In this section we present current solutions and challenges in the domain of smart WDNs in
regard to the integration of Al with IoT frameworks and supervisory control systems.
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In [9], the WATERNET European project is presented, with the main objective of developing
a system to control and manage WDNs. From the Al perspective, there are some key aspects
and associated challenges identified:

Identification of feasible learning tasks that can provide useful information for the users.
Selection of adequate machine learning algorithms for each task.

Preprocessing stage that is often particular to a given scenario.

Evaluation of generated knowledge.

Integration of Al with the monitoring and control system.

Simulation models for water distribution networks (WDNs) are used for a wide range of design
and planning applications as well as real-time monitoring and control frameworks, such as water
quality models in EPANET, as presented in [25]. From a topological point of view, WDNs are modeled
as graphs. Topology is essential for strategic design and evaluation of complex networks with
thousands of elements and layouts in large metropolitan areas. The redundancy and resilience of such
networks allow for adaptive reconfiguration for robust and efficient operation. In [26], topological
models are used to evaluate existing WDNSs in terms of number of nodes, link density, graph type,
number of loops and presence of hubs.

Pumping stations account for a significant cost of distribution and require design considerations
for operating efficiency. The configuration of high lift pumps (which pump directly into
the transmission lines) and water booster pumps (which are used for handling peak flows) require
consideration of demands, applications, pump types, variable speed drives, valves, flow meters,
controls and reliability factors. Lifetime is increased by operating pumps near the point of best
efficiency to prevent noise and vibrations [27]. The overall system and efficiency of operation can
be improved using variable speed pumps. The location, the size of the pump and the scheduling
algorithm are considered as optimization variables, while a different approach is required with variable
speed pumps, as continuous parameters are introduced [28]. In this paper we propose an extension of
pump scheduling optimization by using control systems for handling of transient consumer demands.

As discussed in [29], “variable speed pumps are now fitted to most new systems and many existing
water distribution systems are being retrofitted with variable speed pumps to improve the efficiency of
the operation. [...] variable speed drive pumps can enhance the ability of a water distribution network
to provide demand response [...] profitably across a wider range of operating scenarios compared to
a network equipped with only fixed-speed pumps.”

Pump scheduling has been implemented in Milan, to adapt the daily operations of the system to
seasonal variations of demand [30].

Leak detection and localization is of particular importance for water distribution systems while
being a very active area of research. The timing, accuracy, reliability and cost of each of the proposed
solutions are key factors for increasing the efficiency of maintenance operations [31,32].

The use of machine and deep learning solutions for smart water management systems has
increased significantly lately. In [33], an innovative approach is proposed for leak localization, creating
an image from pressure residuals and using a deep learning convolutional neural network (CNN) for
image classification [34].

2.1. Deep Learning Frameworks and Applications

Deep learning in the form of ANN (artificial neural networks) is highly effective for capturing
the input-output characteristic of complex nonlinear physical systems for which analytical modeling
is often difficult to implement in practical applications due to the large number of parameters
and uncertainties. Such is the case for WDNs where physical parameters (e.g., pipe diameters,
distances, materials), complex layouts (e.g., loop configuration) and parametric uncertainties given
by aging and environmental hazards (e.g., deposits, corrosion, leaks, blockages) account for difficult
prediction of various scenarios (e.g., proactive strategies for pipe renewal, leak detection and prediction,
evaluation of risk) [35].
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While deep learning has found a most successful use case in visual and speech recognition, DNNs
(deep neural networks) require large amounts of training data to be effective, which many applications
lack due to the high cost associated with data labeling. In this sense, machine learning methods can be
at least as good if not more suitable for other applications. In [36], the authors present an alternative
deep learning solution using decision trees rather than neural networks. While decision trees are useful
for predicting single output models, several methods exist to extend the use case towards multiple
output models such as presented in [37-39].

In the context of this paper, the applicability of both learning methods in different domains
and industries, as well as the many applications and scenarios in water distribution, lead to
an investigation of both deep learning methods and machine learning methods in the context of
detecting network configuration in a WDN [40].

The Keras framework provides high-level building blocks for developing DL models while
using specialized libraries such as TensorFlow for low-level operations. Models in Keras are defined as
a sequence of layers defined by type (input, dense, convolution, embedding, LSTM), size and activation
function (ReLU, tanh, softmax, argmax). The framework provides methods to create, train and use
DL models for making predictions and loading and exporting models. The Python programming
language is officially supported and third party libraries have been developed for other programming
languages as well [41].

2.2. IoT, Sensor Networks and Protocols

The IoT stack as compared to the OSI (Open Systems Interconnection) Model, is being
comprised of the physical/link layer (Ethernet 802.3, Wi-Fi 802.11, BLE, LTE), the Internet/network
layer (IPv4/IPv6), the transport layer (TCP, UDP) and the application layer (COAP, MQTT,
AMQP, WebSockets). In [42] is presented a literature review of the different data protocols
from the application layer, in which MQTT (message queue telemetry transport) is described as
a lightweight protocol over TCP (Transmission Control Protocol) with a publish-subscribe architecture;
CoAP (Constrained Application Protocol) as a request-response protocol for resource constrained
nodes over UDP (User Datagram Protocol); AMQP (Advanced Message Queuing Protocol) as similar
but more advanced than MQTT; and WebSockets as a full-duplex, flexible communication protocol
over TCP.

From an implementation perspective, the ESP8266 programmable Wi-Fi module has been used
in many IoT applications, while the MQTT architecture has proved to be efficient for data exchange
between nodes. At present, there is a wide range of hardware platforms that can be used for IoT nodes
(microcontroller-based development platforms) and gateways (system on a chip platforms capable of
running Linux and having built-in Ethernet and Wi-Fi).

In [43], an alternative MQTT architecture is presented, making use of actuator nodes that
can act as repeaters. The separation of concerns between sensors and actuators is key for energy
efficiency, as sensors can be powered by batteries while actuators are usually connected to mains
power. Therefore, the communication and data exchange system is a key aspect of IoT, requiring
a modern approach on each level of integration, from hardware to user interface.

2.3. Reactive Programming

Reactive programming is especially useful for the development of IoT platforms with modern
user interfaces, client-server communication and networked embedded systems, considering
the requirement of highly responsive, non-blocking and message-driven frameworks and applications.
Given the ubiquity of such applications, reactive extensions (ReactiveX) have been introduced to nearly
every modern programming language (RxJS, RxPY, RxJava, Rx.NET). A uniform architecture improves
development efficiency while keeping projects maintainable and extensible.

In [44], a state-of-the-art reactive platform was developed for real-time IoT applications,
from back-end (Node.js), message broker (MQTT, Kafka), client-server communication (WebSocket)
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and user interface (Angular). In the context of IoT platforms where scalability is of primary concern,
the functional reactive approach has been pushing both on the back-end and the front-end technologies
towards a simplified design and a more unified programming paradigm, reducing the development
time and effort.

2.4. Multiple Model Control

Advanced control systems for large-scale models are simplified with multiple model control
structures, where multiple linear models can be defined to cover the non-linear operating conditions
with an added supervisor for switching logic [45]. The transition between models is translated into
a manual-automatic transfer problem that is solved in [46]. In the context of complex WDN:s, it is,
however, difficult to differentiate between models and there can be overlaps between the outputs.
A solution is given through a blend of controller outputs using a weighted average at the supervisor
level [47].

In [47], the authors present an implementation of an IoT structure for controlling and monitoring
a WDN model using a multiple model control structure. While the proposed solution was good enough
for evaluating proposed scenarios, a more standardized and uniform architecture is required for
extending the platform with automated testing scenarios, responsive design and real-time integration
with data science frameworks.

3. Methodology

With the proposed experimental methods, the network configuration can be extracted based on
the measured parameters. The solution involves modern concepts from the domains of ICT and Al
and provides enhanced decision support for human operators as well as control systems for pumping
stations. An overview of the proposed solution pipeline featuring the main components is presented
in Figure 1.

Automated Test valve states 5 Advanced Learning network statea Multiple-Model
Scenarios Module Control Module

o

Design ) loT Solution / Control
KStfe/ Sensors Module Stage

_ « Experimental WDN _ Y,
valve sequence Model pump control

Figure 1. Proposed solution pipeline.

The design stage is represented by the automated test scenarios for training the Al models
on the experimental WDN, simulating consumer demand patterns and evaluating the network
configuration from sensor data; the experimental results are in Section 4.3. The control stage is focused
on the application of AI models in a multiple model control supervisor for regulating the pump
based on the predicted state of the network and real-time sensor data; see the experimental results in
Section 4.4.

The advanced learning module is based on machine learning and deep learning methods,
described in Sections 3.1 and 3.2. The multiple-model control module is based on the extension
of the adaptive control strategy described in Section 3.4. The consideration of hydraulic modeling
is presented in Section 3.3 and the evaluation methods include classification accuracy and control
evaluation metrics in Section 3.5. The IoT Solution and the experimental WDN model are described in
Section 4.1, and the automated test scenarios are defined in Section 4.3.
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The main challenge in this design process is given by the different types of consumers
and associated demand patterns during the day, accounting for a combination of operating conditions
which can be translated into different control parameters for efficient pump operation.

Machine and deep learning models can both be used for classification problems such as detecting
the network configuration in complex water distribution systems, as shown in the experimental results.
There are multiple algorithms and mathematical models for the internal representation of data in
the context of supervised learning and classification problems, such as decision trees and neural
networks. To cover a broad range of different classification techniques, we chose as follows:

e  For machine learning, we use a decision tree classification algorithm to have a baseline for
the performance evaluation. Then, we use the random forest classification algorithm to see
whether combining multiple classifiers using an ensemble method improves the accuracy of
prediction.

o  For deep learning, we use a multi-layer perceptron to have a baseline for the neural network
models and see if it outperforms the classic machine learning algorithms. Then, we use a recurrent
neural network (RNN) with multiple LSTM layers to determine whether a deep neural network
architecture is a good fit for our problem and whether it outperforms both classic machine learning
algorithms and the multi-layer perceptron.

For a given consumer node (or multiple consumers associated with a pumping station), it is
important to evaluate the state of the network and the general operating conditions, to be able to
predict the optimal control strategy with regard to the proposed control objectives (i.e., stability,
transient response, overshoot, steady-state error).

The hydraulic model of laminar flow through pipes is considered for controller design
and evaluation of results in terms of the equivalent process model. The consideration of the physical
dimensions of the experimental model defines the context of the results and the applications in large
scale WDN .

The multiple model control is a subset of adaptive control, based on a supervisor for
model/controller switching. Controller selection can be achieved using the model output error
in classical solutions based on control theory, as well as machine and deep learning models in data
science based solutions.

In the following subsections, we present the background for the algorithms and methods used in
this paper for the experimental results.

3.1. Machine Learning Models

Machine learning is a subset of Al with a focus on learning from experimental data. There are
multiple classes of algorithms for supervised (classification, regression) and unsupervised (clustering)
learning problems, based on different mathematical models for data representation.

3.1.1. Decision Trees

A classification model can be build in the form of a decision structure using a decision tree
classifier. The process of building such a tree includes the following steps: (i) break down each dataset
into smaller subsets; (ii) associate each node to the attribute for which the best split is found; (iii) add
a number of branches equal to the number of distinct values of that attribute for each node. When all
the observations in a subset or a majority of them have the same class, then the node becomes a leaf
labeled with the class name.

ID3 [48] is an algorithm that constructs a decision tree in a top-down manner by computing at
each split the homogeneity of similar values using entropy. Given a set of classes C = {c1, ¢y, ..., ¢k },
where k = ||C||, and a labeled dataset X = {x1,x2, ..., X, }, where n = || X|| with each observation
x; containing m = ||A|| attributes A = {ay,ay, ..., an }, the entropy is H(X) = YX_, p(c;) log, (p(c;))
with p(c;) the probability of class c; in the dataset X. If attribute A; having r distinct values is
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considered for branching, it will partition X in r disjoint sets X = N?_; X;. The entropy of the split

is given by H(X|a;) = ¥4 ‘I‘l}??\l\‘ H(X;) with ‘I“)}i"““ the proportion of elements in X; to the number
of elements in the dataset X. Because the purity of the datasets is increasing, H(X) is bigger than
H(Xla;). The difference between them is called the information gain IG(X,a;) = H(X) — H(X|a:).
The maximum gain determines the best attribute for the split. C4.5 [49] is the improved version of ID3
that handles numeric continuous attributes and missing values, and performs post-pruning to deal
with noisy data.

CART [50] (classification and regression tree) works on the same principles as C4.5 and ID3.

The main difference is in the function used for calculating the homogeneity of a sample to compute

the best attribute for the split. CART uses the Gini impurity: GI(X) = 1 — Z;‘:l(ﬂ()a? )2. The Gini

impurity for a split is GI(X|a;) = Y4 ||||)§i‘|‘| GI(X;). In the case of CART, the split is done for

the minimum Gini impurity.
Decision tree algorithms are greedy, meaning that they lead to a local optimum because attributes
with many values lead to a higher gain.

3.1.2. Ensemble Methods

Ensemble methods combine multiple classifiers to obtain a better one. Combined classifiers are
similar (use the same learning method) but the training datasets or the weights” examples are different.
Ensemble methods use Bagging (bootstrap aggregation) and boosting.

Bootstrap uses statistical methods (e.g., mean and standard deviation) for estimating a quantity
from a data sample. Given a sample of n values X = {x1,xp,..., X, } we can compute its mean as
X = %Z?Zl x;. If n is small, then the sample mean has an error. The estimate of the mean can be
improved by using bootstrap. Bootstrap will (i) create multiple random sub-samples of the initial
sample with replacement, meaning the same value can be selected multiple times, (ii) calculate
the mean for each sub-sample and (iii) calculate the average of all the sub-samples” means and use it
as the estimated mean for the initial sample.

Bootstrap aggregation (bagging) [51] is a machine learning ensemble algorithm designed to
improve the stability and accuracy of machine learning that constructs a training set from the initial
labeled data set by sampling with replacement. Bagging reduces the variance and helps to avoid
overfitting. Bagging consists of: (i) starting with the original dataset, building n training datasets by
sampling with replacement (bootstrap samples); (ii) for each training dataset, building a classifier
using the same learning algorithm; (iii) the final classifier is obtained by combining the results of each
classifier by voting for example.

The random forest classifier [52] is an ensemble classifier consisting of a set of decision trees.
The final classifier outputs the modal value of the classes output by each tree. The random forest
algorithm changes the selection of the split-point so that the learning algorithm, i.e., the decision
tree classifier, is limited to a random sample of features with which to search. Thus, the algorithm
constructs sub-trees that are less correlated.

3.2. Deep Learning Models

Deep learning is a subset of Al with a focus on learning from experience. Deep learning
architectures stack together multiple layers of processing units to construct a supervised or
unsupervised learning model. Depending on the number of states a processing unit incorporates, they
vary from simple to complex.

3.2.1. Deep Feed Forward Network

The perceptron is one of the simplest processing units. It processes the input data X, encoded
in a way that facilitates the computation, to predict an output y. For each features vector x; € X of

dimension 7, we can model a the predicted output ; of a perceptron as y; = 6(Li%; (wij - xij) + b)
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where w;; is a weight vector; b represents the bias; and ¢(-) is the activation function, which takes

the total input and produces an output for the unit given some threshold. The most popular activation

functions are (i) the sigmoid d(z) = 04(z) = H%’ (ii) the hyperbolic tangent 6(z) = tanh(z) =

%, (iii) the rectified linear unit (ReLU) §(z) = max(0,z) and (iv) softmax §(z) = Zmeizezl with
i=1

m the dimension of vector z. At each iteration, the loss or cross entropy function is used to adjust

the weights when the real labels y are known, as shown in Equation (1).

L(g,y) = —(ylogg+ (1 —y)log(1—7)) (1)

A multi-layer perceptron neural network is an artificial neural network architecture that stack
multiple layers of perceptrons. The basic architecture stacks three layers: (i) the input layer, (ii)
the hidden layer and (iii) the output layer. All the nodes in one layer are fully connected to
the neighboring layers using a certain weight wg, where i is the node and j is the layer. The multi-layer
perceptron architecture is feed forward because the connections between the layers are directed from
the input to the output. Each processing unit is a non-linear activation node. By adding multiple
hidden layers, the architecture becomes a deep feed forward neural network architecture.

3.2.2. Long Short-Term Memory

Recurrent neural networks are artificial neural network architectures derived from deep feed
forward neural network architectures and incorporating an internal state known as memory to process
sequences of inputs. Among the most used cells for constructing such a network are the recurrent unit
(RU) [53], the long short term-memory (LSTM) [54] and gated recurrent units (GRU) [55].

The LSTM uses two state components for learning the current input vector: (i) a short-term
memory component represented by hidden state and (ii) the long-term memory component represented
by internal cell state. The cell also incorporates a gating mechanism with three gates: (i) input gate
(it € R"), (ii) forget gate (fy € R") and (iii) output gate (0, € R"). Equation (2) presents the state
updates of the LSTM unit, where:

x; € R™ is the input features vector of dimension m;
h; € R" is the hidden state vector as well as the unit’s output vector of dimension n, where
the initial value is hg = 0;
) ¢ € R" is the input activation vector;
c; € R" is the cell state vector, with the initial value ¢y = 0;
Wi, Wg, W,, We € R ™ are the weight matrices corresponding to the current input of the input
gate, output gate, forget gate and the cell state;
oV, Vi V,, Ve € R"" are the weight matrices corresponding to the hidden output of the previous
state for the current input of the input gate, output gate, forget gate and the cell state;
° b;, b r bo, b, € R" are the bias vectors corresponding to the current input of the input gate, output
gate, forget gate and the cell state;
ds(+) = og(-) € [0,1] is the sigmoid activation function;
Op(+) = tanh(-) € [—1,1] is the hyperbolic tangent activation function;
© is the element wise product; i.e., Hadamard Product.

it = 0s(Wixt + Vihy 1 + by)
fi = 8:(Wpxi + Vyly_y + by)
0t = 8s(Woxt + Vohy—1 + by)
& = 0 (Wexy + Vehy 1 + be)
=1 O+ fi ©®cr

hy = 0t ® 8y (ct)

)
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3.3. Modeling of Laminar Flow in Pipes

Laminar flow is often encountered in WDNs and consists of a regular flow pattern that is
also easier to model than turbulent flow. The equations and methods presented can be found in
the literature in the context of hydraulic modeling and control systems for industrial applications,
as defined in [56,57].

Considering the following notations, the dynamic models of laminar flow through pipes are
classified by the physical characteristics into: laminar flow through short pipes (where L ~ D)
and laminar flow through long pipes (where L >> D), where:

L is the length of the pipe;

D is the diameter of the pipe;
p is the fluid density;

S is the pipe section.

The following notations are used to describe the equations for laminar flow:

F is the flow through the pipe;

AP is the reduction in pressure along the pipe;
« is the flow coefficient;

v= @ is the flow velocity;

M = pLs is the fluid mass;

Vo is the fluid volume in static conditions.

3.3.1. Laminar Flow in Short Pipes

The hydraulic resistance of a short pipe is defined as F = aS /282,

The equations in static and dynamic equilibrium describe the process of laminar flow through
a pipe segment:

Fp . _

ARS — 55655 =0 3)
P, d

AP(H)S — 55288 = = (Mu(t)) @)

The deviation from the static model can be written as follows:

AP(t) = APy + Ap(t)

®)
F(t) =FK+ AP(t)
Then, the equation for dynamic equilibrium is updated:
Cp(R+AF()? . d
(APy+ AP(t))S B Ve T R S = pLdt (Fo+ AF(t)) (6)

After replacing AP, from the static model, the quadratic term AF2(t) is reduced and the
equation becomes:
20FRAF(t) . d
o 0= pL= (AE(H)) @)
The input u(t) and output y(t) variables of the dynamic model are normalized based on
the static conditions:

AP(1)S —
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AF(t
y(p) = 2
0
®)
u(t) = AP(t)
AP
The dynamic model equation in differential form is then written as follows:
Vo dy(t 1
2 Vo dy(t)
OB L y(t) = Zu(t
w2 2Ly = ul) ©)
We apply the Laplace transform to obtain the transfer function of the process model:
K
_ p
Hy(s) = T 11 (10)

where:

e K, = 0.5 is the process gain;
o T,= ucz‘;—g is the time constant of the process.

3.3.2. Laminar Flow in Long Pipes

The hydraulic resistance of a long pipe is in this case mostly determined by the pipe length

and defined as F = LZ, / %—5 where k is the coefficient of friction.

The equations in static and dynamic equilibrium describe the process of laminar flow through
a long pipe:

5
ARoS —kpLS75 =0 (11)
F2(t), d
AP(H)S — kpLS—528 = - (Mu(1)) (12)

The deviation from the static model and reduction of the quadratic term is similar to laminar flow
through short pipes and the equation for dynamic equilibrium is updated:
2kpLSFyAF(t) d
— ————> =pL—(AF(t 1
2 pL4 (AE(1)) 13)

The dynamic input output model in differential form is then written as follows:

AP(t)S

L° dy(t) 1
We apply the Laplace transform to obtain the transfer function of the process model:
K
— p
Hp() = 757 (15)

where:

° K,, = 0.5 is the process gain;

T, = -k is the i tant of th
° p = 355 is the time constant of the process.
3.3.3. Consideration of Process Model

The process model is defined in the context of the experimental model as a combined model
of laminar flow through multiple pipes. As the consideration is for a laminar flow through short
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pipes, the process time constant for laminar flow is small when compared to that of the actuator
elements (pump, valves). It is also considered as a simplified model with reduced nonlinearities
(e.g., quadratic term) in the process model, which is commonly used for traditional controller design.
For the control model design, the transfer function of the fixed part is defined by the laminar flow
model (Hp(s), first order), actuator element (Hg (s), first order) and sensor model (Hr(s), constant).

Kg Ky

Hy(s) = He(s)Hp(s)Hr(s) = Kt Ts+1Ty5 11

(16)

In the context of large scale WDN, the design process is similar from the perspective of control
systems, in the sense that the time constant is adjusted according to the laminar flow model in
long pipes.

3.4. Multiple Model Control

In multiple model control strategies, the supervisor (switching block) has to ensure fast
and accurate switching of the control algorithm according to the current state and operating regime of
the process [58]. There are some additional requirements for smooth operation and scalability of such
architectures. A bump-less transition and an efficient strategy for activating the controllers is often
required for control applications.

The architectures for multiple model control can be classified as the traditional structure, based
on modeling and simulation and the proposed Al-based solution for implementing the supervisor, as
presented in Figure 10. In the traditional multiple model control structure, the first step is to evaluate
the static input-output characteristic of the process. The problem of nonlinearities and discontinuities,
given by, e.g., the different operating regimes is solved by constructing multiple models, each with

ZI’((SS)) given the piecewise linear approximation of the dynamic
Y(s)

input—output characteristic of the process H(s) = sy, Where i € {1..np} [59]. The model output
error is defined relative to the process output at sample k as in Equation (17). For each model, there
is an ideal controller that satisfies the control objectives while only some of the outputs are actually
applied on the real process according to the switching block. The objective function in Equation (18)
defines the ideal criterion for model selection in discrete time. In operating conditions, the selection is

based on the model output error, by comparing model outputs to the process output. The multiple

a different transfer function H;(s) =

model controller output is based on the evaluated outputs and weights for each associated controller,
as shown in Equation (19), where:

yk] is the process output at sample k;

y;[k] is the output of model i at sample k;

€;[k] is the output error of model i at sample k;

u;[k] is the controller output for model i at sample k;

wj k] is the controller weight for model i at sample k;

« > 0 is the weighting factor;

B > 0is the long term accuracy for instantaneous measurements;

A > 0 is the forgetting factor for active window limitation over the model error €;[k].

eilk] = y[k] — yilk] 17)

k
Jilk] = ae?[k] + B Y e MEDe2[j] (18)
j=1

M=

Il
—_

ulk] = ) _(w;[k] - ui[k]) (19)
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In the most simple form, a single controller is selected at any given time based on the output
error of the associated model. This method requires additional processing for the transition between
selected models to ensure robust operation and reduced discontinuities in the controller output [60].

With the Al-based supervisor, using the classification methods described in Sections 3.1 and 3.2,
the probability vector can be used directly to apply the model weights for mixing controller outputs,
ie, ulk] = XN, (pilk] - u;[k]), or adapted for switching strategies with a single active controller by

selecting the model having the highest probability j[k] = arg max p;[k].
ie{1..N}

3.5. Evaluation Methods

The following methods are used to evaluate the classification algorithms and the application of
Al methods in a multiple model control strategy for pumping stations.

3.5.1. Classification Evaluation Metrics

The network configuration is defined as a combination of valve states according to the consumer
demand patterns, and is translated into a multi-class classification problem in the context of model
selection for multiple model control.

In the context of machine learning, evaluation methods must be defined based on the type of
model employed by the machine learning task; i.e., classification, regression or clustering. To properly
evaluate a classification task, the type of classification must be identified using one of following four
categories [61]: (i) binary, (ii) multi-class, (iii) multi-labeled and (iv) hierarchical.

For binary classification, an observation is assigned to one of two classes: C; or Cy. The evaluation
is performed using the confusion matrix containing the following information: (i) TP (true positive)
and TN (true negative) are the observations labeled with C; and C;, correctly classified; (ii) FN (false
negative) is the number of observations labeled as C; classified as Cy; and (iii) FP (false positive) is
the number of observations labeled as C, classified as C;. Using the confusion matrix, the accuracy is

. _ TP+TN
defined as A = TPFFPATNTIN - o
For multi-class classification, a data point is assigned to one of multiple classes C;, withi =1,k
and k = ||C|| as the number of classes. A confusion matrix is built containing the values TP;, TN;, FP;

and FN; belonging to each class C;. In the case of multi-class classification, the accuracy is defined as
A= 1 Zk TP+TN;
T n i=1 Tpi+FP,'+TN,'+FNl"
The evaluation of multiple methods for detecting the network configuration is based on

the accuracy for each dataset and a cross-validation on the other datasets, as described in the results
section. The best model in terms of overall accuracy is evaluated on a random dataset with
consideration of real operating conditions in a WDN.

3.5.2. Control Evaluation Metrics

The classification model is used for controller selection in the proposed Al multiple model
controller for pumping stations. The evaluation metrics for the closed loop response are defined as
the steady state error (e in Equation (20)), overshoot (¢ in Equation (21)) and standard deviation
(04 (N) in Equation (22)) used for the evaluation of closed loop performance [62,63].

€st = Vst — Yst (20)
o= Ymax — Yst 100 (21)
Yst
1 N
au(N) = || 2 (ulk] — 02 @)
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where:

o is the overshoot;

€, is the steady state error;

rst is the (steady state) controller setpoint;

st is the steady state closed loop response;

Ymax is the maximum closed loop response with regard to the steady state;
0. (N) is the standard deviation of the controller output in discrete time;
ulk] is the discrete controller output at sample k;

i is the mean controller output.

4. Results

The results are based on the experimental water network model described in Section 4.1 with
applications including the evaluation of control algorithms for pumping stations, leak detection
and network configuration. We describe the multi-domain approach that combines IoT integration,
automated test scenarios for evaluation of advanced learning methods and the extension of multiple
model control for pumping stations as described in [47]. The scenarios cover the entire range of
consumer demand patterns that can be achieved by opening and closing the valves with binary
(gray code) sequence. However, there are other possible sequences, emphasized by the random
experiment in Figure 9, which can be defined upon initial evaluation of consumer demands in a real
WDN.

4.1. Experimental Model

The water network construction is based on detachable elements: PVC (polyvinyl chloride)
pipes, couplings, valves and water flow sensors that can simulate consumer demands and leaks, as
shown in Figure 2. The experimental WDN schematic in Figure 3 is designed for the evaluation of
multiple consumer demands with nodes, pipes and valves in a complex layout with several loops
(e.g., J1-J6-J11-J12), limited in scale by the dimensions of the board. A DC electrical pump (P0) is
used to provide the water supply for the entire network and a supply tank (TO0) is used for closed
loop operation. Valves (V1-V6) can be used to simulate both consumers and leaks, depending on
the evaluation scenario and the scope of the experiments. Sensors are mounted along the pipes (S0-59)
to measure the flow for both junctions (J0-J18) and consumer nodes (C1-C6). The configuration allows
for the evaluation of leak detection capabilities (e.g., leak sensitivity analysis), consumer demand
estimation (e.g., cluster analysis) and control algorithms (e.g., multiple model control), in the context
of water booster pumping stations for handling peak flows in residential areas.

The sensors, pump controller and servo-valves are connected to the IoT network using Arduino
boards and ESP8266 Wi-Fi modules. With large scale WDNSs that are geographically distributed
and placed underground, measurement nodes can be designed with GPS, local storage and long
distance network transceivers (e.g., LoRa, 5G); data aggregator nodes are often required for interfacing
with cloud platforms. Transmission errors, power outages and network availability have to be
considered for large scale deployments and continuous operation, while ensuring data retention
and synchronization [64].

For the experimental model, measurement nodes consist of YF-5201 flow sensors with a range
of 1 L/min to 30 L/min, connected to an Arduino board. The flow sensors contain a rotor and a
hall sensor which converts the water flow into electrical pulses. The sensor signal is then read by
the microcontroller using pin change interruptions and hardware timers for measuring the time
between consecutive pulses, as shown in Equation (23), for Timer1 of the Atmega328p, configured in
CTC mode with top at OCR1A. The timer units are converted to L/h using the linear approximation of
the static input-output characteristic of the sensor, i.e., Q = 7.77f, — 14.8605, as shown in Equation (24).
As the timer counter is reset every 10 ms, upon each interruption a software counter is incremented to
count larger periods of time for each connected sensor.
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Figure 3. Experimental model schematic.
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_ f osc .
Q[k] = 7.77- NS 14.8605 (24)

where:

QJk] is the flow in L/h at sample k;

N|[k] is the counter value at sample k;

fint is the timer interrupt frequency—i.e., 100 Hz;
fosc is the clock frequency—i.e., 16 MHz;

PS is the clock prescaler—i.e., 64;

TOP is the counter limit—i.e., OCR1A = 2499.

The choice of flow sensors is based on the higher accuracy when compared to pressure sensors
at this scale. The ESP8266 Wi-Fi adapters are connected to the Arduino boards and provide MQTT
connectivity for remote control and monitoring.

For the automated test scenarios required for the evaluation of advanced learning methods in
Section 4.3 and multiple model controller design in Section 4.4, the manual valves were converted to
servo-valves using Turnigy TGY-AN13 DC servos directly attached on top, which required adjustment
to the electrical wiring and using a dual supply for powering the sensors and control boards.
The mechanical design is reliable and provides good precision for automated testing involving on/off
operation of valves and incremental positioning, making the solution a good alternative to solenoid
valves. As there is inherently a moderate level of mechanical hysteresis, dynamic compensation was
added in software. An additional valve was added on the return path for increased control on the water
pressure across the entire network.

4.2. Reactive IoT Platform

For monitoring the parameters in the water network, and a real-time framework for control
applications, the IoT platform was designed with reactive components and publish—-subscribe
data exchange models. The platform provides interaction with the physical components
(pump, sensors, valves), real-time control and monitoring, automated testing and data
storage capabilities.

The IoT nodes are connected using a Wi-Fi access point and the MQTT broker installed on
a Raspberry Pi board. The data exchange is facilitated by the MQTT broker, using a publish-subscribe
model, allowing for a standard interface and interoperability with other services.

The application server is written in Python and handles the interaction with the IoT devices
through MQTT, providing data storage and automated testing capabilities as well as the integration
of high-level data processing frameworks such as TensorFlow, Keras and scikit-learn [65]. There
is, however, an inherent limitation for handling high throughput input/output operations; e.g.,
updating the database and running control loops on separate threads, given by the single-thread
global interpreter lock (GIL) in Python. With some adjustments and reactive programming patterns,
the sampling time of 100 ms was ensured during the experiments.

The Ul is implemented using Angular, providing an asynchronous framework based on TypeScript
that is more extensible and structured than other JavaScript-based frameworks. It is based on
the admin dashboard template ngx-admin that uses the Nebular Ul components, handling most visual
elements and themes on top of the Angular framework [66]. The main features include MQTT
connectivity; graphical widgets for interacting with sensors, valves and pumps; and the control panel
for experimental setup.

The real-time data exchange is implemented using WebSockets and reactive extensions. The Ul
and server are designed to support integrated push-based events, such as showing experimental
progress in real-time.
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4.3. Evaluation of Advanced Learning Methods

The primary objective of this stage is to evaluate the performance of advanced learning methods
for detecting the network configuration in real-time from smart meter measurements in terms of
the prediction accuracy, storage and processing requirements for real-time operation. The evaluation
is based on automated test scenarios for the water network model and provides initial results for
replacing the traditional multiple model control supervisor.

During the automated experiments, the data from measurement nodes and the state of
the actuators was collected in the database with the associated timestamps. The experimental data
generated in the first scenario (1-N) are shown in Figure 4. The sampling is time-based, capturing
the transient response and the steady state measurements.

valve sequence
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20
0
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Figure 4. Experimental data.

The scenarios involve programmed valve opening patterns to simulate changing network
configuration in terms of variable consumer demands. There are several patterns that are used for
extensive evaluation of learning capabilities in a complex network, from simulating single consumer
scenarios with only one active consumer, towards a full range of binary combinations involving the six
servo-valves that are installed on the experimental model. As the binary operation already provides
a wide range of combinations (2° = 64), the Al models are designed to predict the combination of
the on/off states of the valves for this scope.

Each scenario is run multiple times on the experimental model to achieve better results in terms
of overfitting, and between each step there is a constant delay of 10 seconds, which allows the entire
network to reach steady state in terms of water flow. However, there is no preprocessing involved,
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as each sample is used to train the models, including the transient states obtained when switching
valves.

The proposed scenarios for simulating consumer demand patterns are designed starting from
the most simple pattern represented by a single consumer node that is active at any given time,
and extended to include the entire range of binary combinations, with variable pump output to
provide better cross-validation and evaluation for real operating conditions:

e 1-N (one way single valve sequence). The valves are opened and closed in sequence, starting
from the first valve up to the last valve. The next valve is opened and the current valve is closed,
with no delay in between, accounting for the transient state in network reconfiguration. The pump

is set to 80% for the duration of the experiment.
e  1-N-1(single valve return sequence). The valves are opened and closed in sequence, starting from

the first valve up to the last valve, and then going back to the first valve. This case is evaluated

for 80% and 50% pump outputs.
e  GRAY (gray code valve sequence). The valves are opened and closed according to the 6-bit

gray code, so that consecutive combinations differ by a single valve and the entire range of
combinations is achieved. The pump is set to 80% for the duration of the experiment.

The next step involves evaluating advanced learning models using the experimental data to
predict the network configuration in real-time. The accuracy and processing requirements are evaluated
and the models are compared to provide insights about the performance that can be achieved in
the context of a complex network model. Flow measurements are input variables; valve states are
used as target variables for the models; and the dataset is divided into training, validation and test
samples. For each scenario, multiple models are trained, and the best model is presented, along with
the average model, in terms of prediction accuracy.

The classification problem implies that there are multiple classes and each input can belong to
exactly one class (multi-class classification). Therefore, the target datum is encoded, using integer
encoding and one-hot encoding of the binary combination of valves to represent each network
configuration. The models are representative of the major approaches to supervised learning which
we refer to as machine learning methods and deep learning methods.

In this multi-class classification problem with more than two exclusive, one-hot encoded classes,
the categorical cross-entropy loss function is used for training deep learning models. According to [67],
the number of hidden layers can be selected to “represent an arbitrary decision boundary to arbitrary
accuracy with rational activation functions.” A number of three hidden layers was found to provide
better results for cross-validation, when compared to a configuration with two hidden layers. The Keras
library was used with Python to train and evaluate deep neural network models:

e  Dense. For the deep feed forward network, i.e., a dense model, a multi-layer perceptron (MLP)
is used for multi-class softmax classification. Three hidden layers are used with a dropout rate
of 0.5 and 32 units. The hidden layers use a ReLu activation function, while softmax is used for
the output layer, which gives the outputs as probabilities. The model is implemented in Keras as
a Sequential model using dense layers. The model is trained in a maximum of 500 epochs with a stop
criterion implemented as EarlyStopping monitor based on the loss function (categorical _crossentropy

for multi-class classification).
e  RNN. A recurrent neural network (RNN) is implemented as a sequential model with three LSTM

hidden layers, while the output layer is a dense layer with a softmax activation function. The two
dimensional input data (samples, sensor nodes) are reshaped into a 3D representation that is
required for training the model. While the LSTM model has a higher learning rate when compared
to the dense model, it is more intensive in terms of computation, and therefore it is trained using
a fixed number of five epochs using the categorical_crossentropy loss function.

The multi-class classification problem is directly solved by using machine learning classifiers with
the integer encoding of network configurations; i.e., N € {1..64}. The multiple target variables
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in the case of one-hot encoding are translated into a single target classification problem with
integer encoding. The scikit-learn library is used with Python to train and evaluate supervised
and unsupervised learning models:

e DT. A decision tree classifier is implemented using the DecisionTreeClassifier in scikit-learn,
with a default splitting criterion based on the Gini Index. The accuracy is evaluated in terms of
the predicted classes for the integer encoded test dataset.

e RF. A random forest classifier is implemented using the RandomForestClassifier in scikit-learn, with
a default splitting criterion based on the Gini Index and 100 estimators. The accuracy is evaluated
in terms of the predicted classes for the integer encoded test dataset, while the model aims for
improved accuracy and reduced overfitting when compared to a single decision tree.

The comparison between the proposed learning methods on the matching dataset
(the same scenario is used for training and validation) is shown in Figure 5a for average model
evaluation and Figure 5b for best model evaluation.

1000 Average model accuracy (test) 100.0 Best model accuracy (test)
BN Dense EEm Dense
97.5{ mEE RNN 97.5{ mEE RNN
DT DT
95.0 RF 95.0 1 RF
X 925 X 9251
> >
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o I
3 3
O 87.51 O 87.51
© ©
85.0 1 85.0
82.5 1 82.5 1
80.0-
1-N-80 1-N-1-80 1-N-1-50 GRAY-80 1-N-80 1-N-1-80 1-N-1-50 GRAY-80
model model
(a) Average model (b) Best model

Figure 5. Accuracy evaluation.

The RNN model (blue) is superior to the dense model (purple), and the RF model (green)
shows higher accuracy than the DT model (yellow), as shown in Figure 5a. The dense model
shows unexpected results for the GRAY test scenario, showing considerably lower accuracy than
the other models for the classification problem. In the best model chart in Figure 5b, the results are
similar. The RNN model is more consistent and outperforms the other models in every scenario, for
both average and best model evaluations, while the RF model shows surprisingly good results in
this evaluation.

An interesting result was observed for each model with the 1-N-1 test scenario where the accuracy
is better for the dataset obtained with 50% pump output, which can be explained by the reduced
pressure and therefore less disturbance during transient state of valve switching.

An overview of the model evaluation is presented in Figure 6, with Figure 6a showing a combined
accuracy for each model resulting from the average of each matching dataset, with a side-by-side
comparison between the best (blue) and the average (purple) models. The average results for each
method are as follows: dense (average 68.76%, best 72.89%), RNN (average 99.61%, best 99.79%),
DT (average 86.11%, best 86.83%), RF (average 93.13%, best 93.35%). In Figure 6b, the combined
accuracy (circle size), training time (y axis, linear scale) and storage requirements (x axis, logarithmic
scale) are shown for each model as a 2D XY plot. The RNN model (blue) is the most expensive in
terms of computation (training time: 112 s) and the RF model (green) requires the most storage space
(28.3 MB). Machine learning models are generally less expensive in terms of computation time when
compared to deep learning models in this evaluation.
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Figure 6. Evaluation overview.

For an extensive evaluation and cross-validation, each model trained on a matching dataset
was tested on the other test scenarios as well. The results are presented in Figure 7 (the deep
learning models), and Figure 8, in which the machine learning models, in a colormap representation
(YIGnBu color scheme), show the model on the y axis and the dataset that is used for evaluation on
the x axis. Each model and dataset is labeled according to the coresponding test case. A higher accuracy
of a given combination of model and dataset is shown in blue and a lower accuracy is shown in yellow,
relative to the associated scale.

The dense model shows similar performance, with considerably lower accuracy, to the RNN
model for the classification problem. The results show higher overfitting for machine learning models
and comparable lower accuracy while the deep learning models are able to predict other datasets
with good accuracy. The RF classifier, however, shows good accuracy and less overfitting than the DT
classifier. In fact, the average accuracy for cross-validation test is as follows: dense with 47.87%, RNN
with 74.16%, DT with 65.15% and RF with 74.54%.
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Figure 7. Cross-validation (deep learning).

A general trend was observed: that a higher coverage of possible consumer demands is required
for predicting unknown test scenarios. The models that are trained on the single valve sequence
(1-N, 1-N-1) are not able to predict combinations of valves when compared to models that are trained
on the entire range of valve combinations (GRAY). However, with the RNN model, both the single
valve class of models and the GRAY model yield similar results on the 1-N and 1-N-1 datasets,
showing good adaptability to different scenarios having similar configurations. The RF classifier
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achieves good accuracy for the GRAY model across the experimental dataset, showing less overfitting
than the DT/GRAY model and comparable results to the RNN/GRAY model in this case.
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Figure 8. Cross-validation (machine learning).

The next step was to evaluate the model in a random test sequence in terms of accuracy in real
operating conditions. Unlike the automated test scenarios that were used to train the model, this is
a manual test that covers some additional characteristics, such as variable timing and random changes
between combinations of on/off valves, as shown in Figure 9.

v .-
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sample bins

Figure 9. Random test sequence evaluation.

The colormap representation of valve states and prediction accuracy is shown for a subset of
samples equally distributed across the dataset. The prediction accuracy is represented using different
shades of blue for each column as the average prediction accuracy for the associated samples (Blues
color scheme). The RNN model was considered for this evaluation—it was the most accurate to this
point—and the results show an average prediction accuracy of 70%. This leads to the conclusion that
the proposed test scenarios do not cover all possible situations that may be found in real operating
conditions; therefore, the model’s performance is limited by the dataset that is used for training.
Considering that the training datasets have a moderate amount of 10,000-20,000 samples, the model
performance shows promising results. A higher number of samples can be achieved by a random test
scenario with variable timings and combinations of valves.

The main scope of using machine learning and deep learning models in this article entailed
providing the current state of the network, described by the combination of valves, for multiple model
controller switching, as presented next in Section 4.4.
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4.4. Extension of the Multiple Model Control Structure

In the proposed scenario, with consideration of the process models and control systems, as
described in Sections 3.3 and 3.4, a multiple model control structure is used to control the pump,
regulating the pressure for a consumer node, providing increased adaptability to the network
configuration. As the configuration of the network is based on the complex structure and actual
demands during the day, there can be multiple models that characterize each operating condition,
with a supervisor that handles the selection of the most suitable controller.

The extension of the multiple model control supervisor is based on the learning models evaluated
in Section 4.3. The decision support provided by learning methods can be used to either enhance or
replace the more traditional supervisor based on the output errors of simulated models. The supervisor,
in this case, is represented by the learning model and an adaptation module. The inputs to
the supervisor are provided as real-time measurements from sensor nodes, and the outputs represent
the predicted network configuration in the form of one-hot encoded probability vectors, which are
then used to activate the controllers. In this case, the AI model replaces the real-time process model
evaluation, as shown in Figure 10. This method provides a decoupled architecture for the multiple
model control strategy as follows:

e  Controller design is based on experimental identification or closed-loop PID tuning strategies

for first and second order models. For first order models having the transfer function of Hy(s) =

_K_
Ts+17

and time constant T and using pseudorandom binary sequence (PRBS) applied to the process
for more advanced and automated identification. For PID tuning, the closed loop response
is evaluated, and the coefficients K;, T; and T, are adjusted to match the performance criteria
(asymptotic error €(t), settling time f; and overshoot).

e  Controller selection is based on learning from simulated scenarios, aiming at improved
adaptability and replacing or complementing the more traditional switching algorithm based on
model outputs. In this case, the RNN model returns the probabilities for each class at each sample
k, which are then used for switching (on/off, weighted output) the associated controllers. Classes
(cx € N) define network configurations, represented as one-hot encoded binary combinations of
valves; ie., y = 2%.

the methods include evaluation of step response for calculating the amplification factor K

The experimental setup consists of a target consumer node for which a reference flow has to be
maintained during changing operating conditions given by the network configuration. The other
valves, i.e., consumer nodes, are opened in sequence to simulate individual consumers that are active
at the same time.
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The results with RNN model supervisor and multiple PID controllers are shown in Figure 11.
The control data (measured flow and pump output) are represented on the plot with state transitions
shown by the vertical lines, while the predictions (predicted models and accuracy) are represented on

the colormap chart.
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In this evaluation, the switching is based on the best controller selection obtained using the highest
probability index, and the RNN is trained on the control scenario to obtain the required accuracy. Using
the previous models resulted in less accurate predictions, which can be explained by the different
operating conditions that were not captured in the automated test scenarios.

The controller shows improved transient response and adaptability to changing network
configuration when compared to a simple PID (proportional-integral-derivative) structure. The control
objective defined for disturbance rejection when switching valves, is satisfied with the multiple model
controller with a combined (calculated from each actual network configuration) zero steady state error;
an average overshoot within 5% of the target output—i.e., measured flow within the consumer node;
and an average standard deviation of 11.2% for the command—i.e., pump output [%].

5. Discussion

The results are promising for the adaptability of machine and deep learning models to
the complex problem of predicting the network configuration in complex WDNs. While the simulated
scenarios cover the possible configurations of the experimental model, there are many more
variables in the context of real operating conditions, as emphasized by the random test scenario.
Training the models often requires large amounts of data for achieving a good accuracy in practical
applications, which is important to consider in production environments.

While neural networks are able to represent complex models given large amounts of data
for training, the network architectures, activation functions, optimization algorithms, number
of nodes and hidden layers play important roles in achieving good accuracy and having
adaptability to changing operating conditions. Machine learning classifiers often require less tuning
and computational effort, and represent an alternative to more complex deep learning models that
often require large training sets to be effective.

With the experimental model, the conditions can be achieved for generating a large dataset with
variable configurations and timings, to allow for obtaining excellent prediction accuracy, while in large
scale WDNs there can be additional challenges and restrictions.

In the context of multiple model control for pumping stations, using machine and deep learning
models represents a shift from the traditional model identification and evaluation based on short-term
experimental data, to a more data-oriented solution for designing the supervisor, while covering
a broad range of operating conditions. Provided that the models are trained on a large enough
dataset, this method is superior from the perspective that it provides improved decision support for
the controller switching strategy. However, in large scale WDNs, this can require lots of experimental
data for training accurate models, including variable timings, operating conditions (e.g., pump output)
and valve sequences.

The controller selection is defined as a multi-class classification problem adapted for neural
networks using one-hot encoding and the predictions are used to activate the controllers according to
the probability vector. As each correct prediction assumes that a combination of valves is matched,
the categorical cross-entropy loss function leads to an accurate evaluation of accuracy in real operating
conditions, as demonstrated in the experimental results.

The process models obtained for different network configurations in the experimental WDN
are similar with regard to the transient response, and the controllers are simple to design, while this
may not be the case in large scale WDNs. This aspect is revealed by the physical characteristics with
laminar flow in short pipes, as presented in Section 3.3, while the same approach can be used for
more complex configurations as well. While a traditional approach based on experimental methods
for system identification in the case of controller design can prove to be a tedious task for complex
systems, there are some promising results from the domain of reinforcement learning that can provide
highly adaptable control structures [68].
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6. Materials and Methods

The hardware and mechanical design of the experimental model is presented in Section 4.1,
and the software components for real-time control and monitoring are based on the latest technologies
in web development, described in Section 4.2. The experimental data are collected into a MySQL
database and then extracted as CSV files for training the machine and deep learning models
and evaluating the prediction accuracy and control performance of the multiple model control
supervisor.

The source code, experimental data and results obtained during the experimental evaluation
are available on GitHub (WDN Model Experiments: https://github.com/alexp25/wdn-model-
experiments). The code is compatible with Python 3.6 and is organized into multiple independent
scripts, modules and configuration files for evaluating the experimental data from CSV files.
The deep learning models are trained using Keras and TensorFlow, while scikit-learn is used for
training the machine learning models. The Matplotlib library is used for visual representation of
the results as plots, bar charts and heatmaps, according to the evaluation type (raw data, comparison,
cross-validation and prediction).

7. Conclusions

Smart water networks represent the next step in the development of essential infrastructure in
the context of smart cities, requiring modern solutions and the convergence of multiple domains of
research for efficient management and operation. A literature review reveals some key aspects that
are subjects of ongoing research in the domains of IoT solutions, smart meters, advanced learning
methods and control systems.

Starting with the IoT infrastructure, the development of modern, streamlined platforms is based on
publish-subscribe and push-based architectures across the entire IoT stack, and reactive programming
patterns for real-time applications. Smart meters and actuators are presented in the context of
an experimental WDN. An alternative to the solenoid valves was developed by converting a manual
valve into a servo-valve with incremental positioning.

The proposed experimental WDN model also provides an excellent test bench for the evaluation
of control and prediction algorithms that exist in the literature. Automated testing is an important
component for the industry and the evaluation of the experimental WDN. The proposed test scenarios
were used to evaluate machine and deep learning models for predicting the network configuration
in the context of a multiple model control supervisor for pumping stations. A good accuracy was
obtained using the raw experimental data, and the models were compared in terms of the overall
accuracy, the cross-validation test and the processing and storage requirements, showing promising
results in terms of the adaptability of such models in complex WDNs.

The multiple model control strategy allows for a decoupled architecture with improved
adaptability for complex WDNSs of various configurations. Models and controllers were designed for
different operating conditions, and the closed-loop controller selection is handled by the proposed
supervisor using advanced learning methods.

Additional perspectives on the proposed experimental model include incremental positioning
of the valves, network reconfiguration, demand estimation and leak detection using advanced
learning algorithms.
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