. mathematics ﬁw\o\w

Review

The Wright Functions of the Second Kind in
Mathematical Physics

Francesco Mainardi '* and Armando Consiglio 2

1
2

Dipartimento di Fisica e Astronomia, Universita di Bologna, Via Irnerio 46, I-40126 Bologna, Italy
Institut fiir Theoretische Physik und Astrophysik, Universitat Wiirzburg, D-97074 Wiirzburg, Germany;
armando.consiglio@physik.uni-wuerzburg.de

Correspondence: francesco.mainardi@bo.infn.it

Academic Editor: Francesco Mainardi ﬂ")edcgtfg;
Received: 18 April 2020; Accepted: 19 May 2020; Published: 1 June 2020

Abstract: In this review paper, we stress the importance of the higher transcendental Wright functions
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diffusion-wave equations. Indeed, we think that this approach is the most accessible point of view
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reader in this pathway towards the applications of the Wright functions of the second kind.
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1. Introduction

The special functions play a fundamental role in all fields of Applied Mathematics and
Mathematical Physics because any analytical results are expressed in terms of some of these functions.
Even if the topic of special functions can appear boring and their properties mainly treated in
handbooks, we would promote the relevance of some of them not yet so well known. We devote our
attention to the Wright functions, in particular with the class of the second kind. These functions,
as we will see hereafter, are fundamental to deal with some non-standard deterministic and stochastic
processes. Indeed, the Gaussian function (known as the normal probability distribution) must be
generalized in a suitable way in the framework of partial differential equations of non-integer order for
describing the anomalous diffusion and the transition from fractional diffusion to wave propagation.

Furthermore, their usefulness and meaningfulness also extends to other topics. For example,
these functions and their Laplace Transforms can be applied in electromagnetic problems, see the 1958
paper by Ragab [1] (where the Wright functions were used without knowing their existence) and the
recent 2020 paper by Stefariski and Gulgowski [2]. Recently, the Wright functions have been used in
the theory of coherent states by Garra, Giraldi, and Mainardi [3].

This survey article aims to discuss the relevance of the Wright Functions and also to focus on the
not well-known Four Sisters Functions and their importance in time-fractional diffusion-wave equations.

The plan of the paper is organized as follows. In Section 2, we introduce the Wright functions,
entirely in the complex plane that we distinguish in two kinds in relation to the value-range of the two
parameters on which they depend. In particular, we devote our attention to two Wright functions of
the second kind introduced by Mainardi with the term of auxiliary functions. One of them, known as
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M-Wright function, generalizes the Gaussian function so it is expected to play a fundamental role in
non-Gaussian stochastic processes.

Indeed, in Section 3, we show how the Wright functions of the second kind are relevant in the
analysis of time-fractional diffusion and diffusion-wave equations being related to their fundamental
solutions. This analysis leads to generalizing the known results r of the standard diffusion equation in
the one-dimensional case that is recalled in Appendix A by means of auxiliary functions as particular
cases of the Wright functions of the second kind known as M-Wright or Mainardi functions. For readers’
convenience, in Appendix B, we will also provide an introduction to the time-derivative of fractional
order in the Caputo sense We remind that nowadays, as usual, by fractional order, we mean a
non-integer order, so that the term “fractional” is a misnomer kept only for historical reasons.

In Section 4, we consider again the Mainardi auxiliary functions functions for their role in
probability theory and in particular in the framework of Lévy stable distributions whose general theory
is recalled in Appendix C.

In Section 5, we show how the auxiliary functions turn out to be included in a class that we denote
the four sister functions. On their turn, these four functions depending on a real parameter v € (0,1)
are the natural generalization of the three sisters functions introduced in Appendix A devoted to the
standard diffusion equation. The attribute of sisters was put in by one of us (F. M.) because of their
inter-relations, in his lecture notes on Mathematical Physics, so this is only a personal reason that we
hope to be shared by the readers.

Finally, in Section 6, we provide some concluding remarks paying attention to work to be done in
the next future.

We point out that we have equipped our theoretical analysis with several plots hoping they will
be considered illuminating for the interested readers. We also note that we have limited our review to
the simplest boundary values problems of equations in one space dimension referring the readers to
suitable references for more general treatments in Section 3.1.

2. The Wright Functions of the Second Kind and the Mainardi Auxiliary Functions

The classical Wright function that we denote by W) ,,(z), is defined by the series representation
convergent in the whole complex plane,

[e) Zn
Wyu(z) =) ———, A>-1, pneC, (1)
; n; nT(An + p) .
The integral representation reads as:
_ 1 rrzoA 40 _
W u(z) = 5o ./Ha e . A>-1, uecC, (2)

where Ha_ denotes the Hankel path: this one is a loop which starts from —oo along the lower side of
negative real axis, encircling it with a small circle the axes origin and ends at —oo along the upper side
of the negative real axis.

W), (2) is then an entire function for all A € (—1,+00). Originally, Wright assumed A > 0 in
connection with his investigations on the asymptotic theory of partition [4,5] and only in 1940 he
considered —1 < A < 0, [6]. We note that, in the Vol 3, Chapter 18 of the handbook of the Bateman
Project [7], presumably for a misprint, the parameter A is restricted to be non-negative, whereas the
Wright functions remained practically ignored in other handbooks. In 1993, Mainardi, being aware
only of the Bateman handbook, proved that the Wright function is entire also for —1 < A < 0 in his
approaches to the time fractional diffusion equation that will be dealt with in the next section.

In view of the asymptotic representation in the complex domain and of the Laplace transform for
positive argument z = r > 0 (r can be the time variable f or the space variable x), the Wright functions
are distinguished in first kind (A > 0) and second kind (=1 < A < 0) as outlined in the Appendix F of
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the book by Mainardi [8]. In particular, for the asymptotic behavior, we refer the interested reader to
the two papers by Wong and Zhao [9,10], and to the surveys by Luchko and by Paris in the Handbook
of Fractional Calculus and Applications, see, respectively, [11,12], and references therein.

We note that the Wright functions are an entire of order 1/(1 + A); hence, only the first kind
functions (A > 0) are of exponential order, whereas the second kind functions (-1 < A < 0) are
not of exponential order. The case A = 0 is trivial since Wy ,(z) = e*/T'(i). As a consequence of the
difference in the orders, we must point out the different Laplace transforms proved e.g., in [8,13],
see also the recent survey on Wright functions by Luchko [11]. We have:

o for the first kind, when A > 0

1 1
Wy u(£r) + gEMl <is> ; (3)
o for the second kind, when —1 < A < 0 and putting for conveniencev = —Aso0 <v <1
W—v,y(_r) - Ev,y+1/ (_S) . 4)

Above, we have introduced the Mittag-Leffler function in two parameters « > 0, € C defined
as its convergent series for all z € C

[e9) Zn

Eup(®) = L Tlan s gy ®)

For more details on the special functions of the Mittag-Leffler type, we refer the interested readers
to the treatise by Gorenflo et al. [14], where, in the forthcoming 2nd edition, the Wright functions are
also treated in some detail.

In particular, two Wright functions of the second kind, originally introduced by Mainardi and
named F,(z) and My(z) (0 < v < 1), are called auxiliary functions in virtue of their role in the time
fractional diffusion equations considered in the next section. These functions, F,(z) and M,(z),
are indeed special cases of the Wright function of the second kind W) ,(z) by setting, respectively,
A= —vand y =0or u =1—v. Hence, we have:

F/(z) :=W_,0(—2z), 0<v<], 6)

and
My(z) :=W_1-(—2), 0<v <1 (7)

Those functions are interrelated through the following relation:
F,(z) = vzMy(z), 8

which reminds us of the second relation in (A9), seen for the standard diffusion equation.
The series representations of the auxiliary functions are derived from those of W, ,,(z). Then:

0 _S\n o ( \n—1
F(z) =Y, n'g"(i)vn) = Y %F(vn + 1) sin (7tvn) ©)

and n—1
(_Lf(vn) sin (7tvn), (10)
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where in both cases the reflection formula for the Gamma function (Equation (11)) it has been used
among the first and the second step of Equations (9) and (10),

T()T(1—¢) = 7/ sinnl. (11)

In addition, the integral representations of the auxiliary functions are derived from those of
W), u(z). Then:

o 1 o—zoV
F(z2) := o= /Ha e do, zeC, 0<v<1 (12)
and , p
v o
[ g—z0
My(2) = 5 — /Ha o=, 2€C, 0<v<l (13)

Explicit expressions of F,(z) and M,(z) in terms of known functions are expected for some
particular values of v as shown and recalled by Mainardi in the first 1990s in a series of papers [15-18]
that is,

1 —z
Ml/z(z) = ﬁe 2/4, (14)
M;3(z) = 32/3Ai(z/31/3). (15)

Liemert and Klenie [19] have added the following expression for v =2/3
M;/5(z) = 372/3 [31/32Ai (z2/34/3) _3AY (Zz/34/3>} e72z3/27’ (16)

where Ai and Ai’ denote the Airy function and its first derivative. Furthermore, they have suggested in
the positive real field R™ the following remarkably integral representation

1 v/(1-v) T
Mu(x) = — 5 [Culg)exp (=Cu(g)) =1 ag, 17)
where /)
_sin(1—v) (sinvg\""
CU((P) - sin ¢ < sin¢ > (18)

corresponding to Equation (7) of the article written by Saa and Venegeroles [20] .

The Wright function of both kinds and in particular the Mainardi auxiliary functions considerd
in this paper turn out to be particular cases of more general transcendental functions as the Fox H
functions, the Fox-Wright functions and the multi-index Mittag-Leffler functions. The relations with
the classical Mittag-Leffler functions with two parameters have already been pointed out so; for more
parameters, we refer the interested reader, e.g., to the papers by Kiryakova [21], Kilbas, Koroleva,
Rogosin [22], and references therein.

We outline that for more Laplace transform pairs involving the Wright and the Mittag—Leffler
functions the reader is referred to Ansari and Refahi Sheikhani [23] and to the tutorial survey by
Mainardi [24].

3. The Wright Functions of the Second Kind and the Time-Fractional Diffusion Wave Equation

As we will see, the Wright functions of the second kind are relevant in the analysis of the
Time-Fractional Diffusion-Wave Equation (TFDWE).

We find it convenient to show the plots of the M-Wright functions on a space symmetric interval
of R in Figures 1 and 2, corresponding to the cases 0 < v <1/2and 1/2 < v < 1, respectively.

From these figures, we recognize the non-negativity of the M-Wright function on R for
1/2 < v < 1 consistently with the analysis on distribution of zeros and asymptotics of Wright functions
carried out by Luchko, see [11,25] and by Luchko and Kiryakova [26].
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M, (9

08" —=-y=2/3
’ - v=3/4

- —v=1

M (x)

Figure 2. Plots of the M-Wright function as a function of the x variable, for 1/2 <v < 1.

For this purpose, we introduce now the TFDWE as a generalization of the standard diffusion
equation and we see how the two Mainardi auxiliary functions come into play. The TFDWE is thus
obtained from the standard diffusion equation (or the D’ Alembert wave equation) by replacing the
first-order (or the second-order) time derivative by a fractional derivative (of order 0 < < 2) in the
Caputo sense, obtaining the following Fractional PDE:

oPu ’u

— =D— 0 <2, D>0, 19

ap Doz 05P= ~ 1)
where D is a positive constant whose dimensions are LT and u = u(x,t;B) is the field

variable, which is assumed again to be a causal function of time. The Caputo fractional derivative
is recalled in the Appendix B so that in explicit form the TFDWE (19) splits in the following
integro-differential equations:

1 t ou 0%u
B _ :
F(l—ﬁ)/o (t=1) (zn)dT_Daxz' 0<p<l; (20)
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1 t 1 o%u 0%u
t—-1)! P55 )dt=D-, 1<p<2 21
F(Z—ﬁ)/o (t=7) (872) t ox2’ <p= 1)
In view of our analysis, we find it convenient to put:
_b
1/—2, O<v<l. (22)

We can then formulate the basic problems for the Time Fractional Diffusion-Wave Equation using
a correspondence with the two problems for the standard diffusion equation.
Denoting by f(x) and g(t) two given, sufficiently well-behaved functions, we define:

(a) Cauchy problem

u(x,0%;v) = f(x), — 00 < x < 400; 23)
u(+oo, t;v) =0, t>0
(b)  Signalling problem
u(x,0t;v) =0, 0 <x < +oo; (24)
u(0t, tv) = g(t), u(4oo,v) =0, t>0

If1/2 < v <1 corresponding to 1 < B < 2, we must consider also the initial value of the first
time derivative of the field variable u;(x,0";v), since, in this case, Equation (19) turns out to be akin to
the wave equation and consequently two linear independent solutions are to be determined. However,
to ensure the continuous dependence of the solutions to our basic problems on the parameter v in the
transition from v = (1/2)~ tov = (1/2)", we agree to assume u;(x,0";v) = 0.

For the Cauchy and Signalling problems, following the approaches by Mainardi, see, e.g., [15]
and related papers, we introduce now the Green functions G.(x,t;v) and Gs(x,t;v) that for both
problems can be determined by the LT technique, so extending the results known from the ordinary
diffusion equation. We recall that the Green functions are also referred to as the fundamental
solutions, corresponding respectively to f(x) = d(x) and g(t) = 4(f) with J(-) is the Dirac delta
generalized function

The expressions for the Laplace Transforms of the two Green’s functions are:

~ 1 _ y
Ge(x,s;v) = We( |x|/vVD)s 25)

and

Gs(x, s;v) = e~ (x/VD)s" (26)

Now, we can easily recognize the following relation:

d

d—SQNS =—2uxG, x>0 (27)

which implies for the original Green functions the following reciprocity relation for x > 0’and t > 0 and

O<v<l:
x

/Dt

where z is the similarity variable and F,(z) and M, (z) are the Mainardi auxilary functions introduced in
the previous section. Indeed, Equation (28) is the generalization of Equation (A8) that we have seen for

2vuxGe(x, t;v) = tGs(x, v) = Fy(z) = vzM,y(z) z =

(28)

the standard diffusion equation due to the introduction of the time fractional derivative of order v.
Then, the two Green functions of the Cauchy and Signalling problems turn out to be expressed in
terms of the two auxiliary functions as follows.
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For the Cauchy problem, we have

£ x|
Gelx, tv) = M( ) —o<x< 40 t2>0 29
) =575 M\ Upe *)

that generalizes Equation (A5).
For the Signalling problem, we have:

vxt—v1

X
Gs(x, tv) = Nio MU(@H) x>0, t>0 (30)

that generalizes Equation (A7).

3.1. Complements to the Time-Fractional Diffusion-Wave Equations

The use of the Wright functions of the second kind in time fractional diffusion-wave equations has
appeared in several papers for a variety of different purposes, see, e.g., Bazhlekova [27], D’Ovidio [28],
Gorenflo, Luchko and Mainardi [29], Mentrelli and Pagnini [30], Mosley and Ansari [31], Pagnini [32],
Povstenko [33], and references therein.

The boundary value problems dealt with previously can be considered with a source data function
f(x) and g(t) different from the Dirac generalized functions, in particular with box-type functions as it
has been carried out recently by us, see [34].

An interesting generalization of the TFDWE is obtained by considering time-fractional derivatives
of distributed order. In this respect, we cite, e.g., the papers by Kochubei [35], Li, Luchko and
Yamamoto [36], Mainardi, Pagnini and Gorenflo [37], and Mainardi et. al [38].

The TFDWE can also be generalized in 2D and 3D space dimensions. so consequently the Wright
functions play again a fundamental role. However, we prefer to refer the interested reader to the
literature, in particular to the papers by Luchko and collaborators [11,25,39-43], by Hanyga [44] and
to the recent analysis by Kemppainen [45]. All of them are originated in some way from the seminal
paper by Schneider and Wyss [46]. In some of these papers, the authors have considered also fractional
differentiation both in time and in space, so that they have generalized to more than one dimension
the former analysis by Mainardi, Luchko, and Pagnini [47] on the space-time fractional diffusion-wave
equations.

4. The M-Wright Functions in Probability Theory and the Stable Distributions

We recognize that the Wright M-function with support in R can be interpreted as probability
density function (pdf) because it is non negative and also it satisfies the normalization condition:

/ My(x)dx =1. (31)
J0
We now provide more details on these densities in the framework of the theory of probability.

Theorem 1. Let M, (x) be the M-Wright function in R™,0 < v < 1and 6 > —1. Then, the (finite) absolute

moments of order 6 are given by:
0 _T0+1)
/0 x° My (x)dx = Twor 1)’ (32)
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Proof. The proof is based on the integral representation of the M-Wright function:

ad 00 1 r v odo
5 _ e o—X0"
/0 X Mv(x)dx—/O x Lm, /H’Le Ul_y}dx

S | [ ] A @)
27t JHa_ 0 oY

:r((s+1)/H ¢ T+

27 o 1Y T T+ 1)
O
The exchange between two integrals and the following identity contributed to the final result for
Equation (33):
/Ooo e " ¥y = 12((7(15/;;31)' (34)

In particular, for 6 = n € IN, the above formula provides the moments of integer order. Indeed,
recalling the Mittag—Leffler function introduced in Equation (5) witha = v and § = 1:

n

EV<Z) ::r;)m, V>0, ZE(C, (35)

the moments of integer order can also be computed from the Laplace transform pair
My (x) + E,(—s) (36)
proved in the Appendix F of [8] as follows:

too L a d" _ T(n+1)
/0 x™" My (x)dx = 1lim (—1) @EV(—S)—W.

s—0

(37)

4.1. The Auxiliary Functions versus Extremal Stable Densities

We find it worthwhile to recall the relations between the Mainardi auxiliary functions and the
extremal Lévy stable densities as proven in the 1997 paper by Mainardi and Tomirotti [48]. For readers’
convenience, we refer to Appendix C for an essential account of the general Lévy stable distributions
in probability. Indeed, from a comparison between the series expansions of stable densities in (A41)
and (A42) and of the auxiliary functions in Equations (9) and (10), we recognize that the auxiliary

functions are related to the extremal stable densities as follows:

_ 1 _ o _
LD("‘(x):;Pa(x “):WM,X(x Y 0<a<l x>0 (38)
a—2 1 1
L (x):;PU“(x):&Ml/a(x) l<a<2 —o0<x<+oo. (39)
In the above equations, for & = 1, the skewness parameter turns out to be 6§ = —1, so we get the
singular limit
L' (x) = My(x) = 6(x —1). (40)

Hereafter, we show in Figures 3 and 4 the plots the extremal stable densities according to
their expressions in terms of the M-Wright functions, see Equations (38) and (39) for « = 1/2 and
«x = 3/2, respectively.
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10°

| | |
-5 -4 -3 -2 -1 0 1 2 3 4 5
X

Figure 3. Plot of the unilateral extremal stable pdf for « = 1/2.

10°

Figure 4. Plot of the bilateral extremal stable pdf for « = 3/2.

We recognize that the above plots are consistent with the corresponding ones shown by
Mainardi et al. [47] for the stable pdf’s derived as fundamental solutions of a suitable space-fractional
diffusion equation.

4.2. The Symmetric M-Wright Function

We easily recognize that extending the function M, (x) in a symmetric way to all of R (that is
putting x = |x|) and dividing by 2 we have a symmetric pdf with support in all of R.

As the parameter v changes between 0 and 1, the pdf goes from the Laplace pdf to two half discrete
delta pdfs passing for v = 1/2 through the Gaussian pdf.

To develop a visual intuition, also in view of the subsequent applications, we show n Figures 5
and 6 the plots of the symmetric M-Wright function on the real axis at t = 1 for some rational values
of the parameter v € [0, 1]
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Figure 5. Plot of the symmetric M-Wright function M, (|x|) for 0 < v < 1/2. Note that the M-Wright

function becomes a Gaussian density for v = 1/2.

1 A I A
—y =12
L e [ e I E— E— E— v=>5/8
0.8 —==y = 3/4
—y = 1
0.7
»~
o™ EA
= /
=05 A
= J &
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0.2 >
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0.1 i -
pe* 4 ‘e
0 T v/ | ool e ™
-5 4 3 2 -1 0 1 2 3 4 5

X

Figure 6. Plot of the symmetric M-Wright type function M, (|x|)| for 1/2 < v < 1. Note that the
M-Wright function becomes a a sum of two delta functions centered in x = +1 forv = 1.

The readers are invited to look the YouTube video by Consiglio whose title is “Simulation of
the M-Wright function”, in which the author shows the evolution of this function as the parameter v

changes between 0 and 0.85 in a finite interval of R centered in x = 0.

Theorem 2. Let M, (|x|) be the symmetric M-Wright function pdf. Then, its characteristic function is:

F[5Mul1x])] = Ea(—%)

(41)
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Proof. The proof is based on the series development of the cosine function and on Equation (33):

Flamu)] =1 [ eremy (x)yax
= /Ooo cos (xx) M, (x)dx
00 2n 00 (42)
_HZO(—l)”(;n)!/O X" M, (x)dx
0 K2n
= rg(_l)nm = Ep(—x?)

O

4.3. The Wright Ml-Function in Two Variables

In view of time-fractional diffusion processes related to time-fractional diffusion equations, it is
worthwhile to introduce the function in two variables

M, (x,t) ==t ""My(xt™") O0<v<l xteR" (43)

which defines a spatial probability density in x evolving in time ¢ with self-similarity exponent H = v.
Of course, for x € R, we have to consider the symmetric version of the M-Wright function. Hereafter,
we provide a list of the main properties of this function, which can be derived from the Laplace and
Fourier transforms for the corresponding Wright M-function in one variable.

From Equations (39) and (43), we derive the Laplace transform of M, (x, t) with respect to t € R™,

LAM,(x,t);t —s} =s""le —xs’ (44)

From Equation (18), we derive the Laplace transform of M, (x, t) with respect to x € R™,
L{M,(x,t);x = s} =E, (—st") . (45)

From Equation (55), we derive the Fourier transform of M, (| x|, t) with respect to x € R,
F{M,(|x],£); x — k} = 2E3, (—KZtV) . (46)

Using the Mellin transforms, Mainardi et al. [49] derived the following interesting integral formula
of composition,

Mv(x,t):/OOOM/\(x,T)MH(T,t)dT v=Au. 47)

Special cases of the Wright M-function are simply derived for v = 1/2 and v = 1/3 from the
corresponding ones in the complex domain, see Equations (28) and (29). We devote particular attention
to the case v = 1/2 for which we get the Gaussian density in R,

1 2
Mip(xlt) = 5 e X7/ (4t) (48)

For the limiting case v = 1, we obtain

My(fxl, t) = 5 [0(x =) +6(x +1)] . (49)

NI~

We conclude this section pointing out that the M-Wright functions have been applied by several
authors in the theory of probability and stochastic processes, see, e.g., Beghin and Orsingher [50],
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Cahoy [51,52], Garra, Orsingher and Polito [53], Le Chen [54], Consiglio, Luchko and Mainardi [55],
Gorenflo and Mainardi [56], Mainardi, Mura and Pagnini [57], Pagnini [58], Scalas and Viles [59], and
references therein. Furthermore, these functions have been found in the first passage problem for Lévy
flights dealt by the group of Prof. Metzler, see e.g., [60,61].

5. The Four Sisters

In this section, we show how some Wright functions of the second kind can provide an interesting
generalization of the three sisters discussed in Appendix A. The starting point is a (not well- known)
paper published in 1970 by Stankovic [62], where (in our notation) the following Laplace transform
pair is proved rigorously:

AW, (xt) =s e ™ 0<v<l pu>0 (50)

where x and f are positive. We note that the Stankovic formula can be derived in a formal way by
developing the exponential function in positive power of s and inverting term by term as described in
the Appendix F of the book by Mainardi [8].

We recognize that the Laplace Transforms of the Three Sisters functions ¢(x,s), §(x,s) and x(x,s)
are particular cases of the Equation (50) for v = 1/2 that is of

1 W_1/0u(x,t) +s7F e ¥V5, (51)
according to the following scheme:
P(x,s) withu =1; ¢(x,s) withu =0; x(x,s) withy =1/2.
If v is no longer restricted to v = 1/2, we define Four Sisters functions as follows:

=0, e ™ =t W _,o(—xt7),

—xs¥

e _ —
p=1-v, = W (—xtTY),
e—xs" 1 (52)
]/[ =, oV - tv_ ny,y(*xt_v),
e—xs"
u=1, +~W_pi(—xt™").

S

Hereafter, in Figures 7-9, we show some plots of these functions, both in the f and in the x domain
for some valuesof v (v =1/4,1/2,3/4).

Note that for v = 1/2 we only find three functions, that is the Three Sisters functions of
Appendix A.
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Figure 7. Plots of the four sisters functions in linear scale with v

versus x (t =1).

Figure 8. Plots of the three sisters functions in linear scale with v = 1/2; top: versus ¢t (x = 1), bottom:

versus x (f = 1).
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Figure 9. Plots of the four sisters functions in linear scale with v = 3/4; top: versus f (x = 1), bottom:
versus x (f = 1).

6. Conclusions

In our survey on the Wright functions, we have distinguished two kinds, pointing out the
particular class of the second kind. Indeed, these functions have been shown to play key roles in
several processes governed by non-Gaussian processes, including sub-diffusion, transition to wave
propagation, Lévy stable distributions. Furthermore, we have devoted our attention to four functions
of this class that we agree to called the Four Sisters functions. All these items justify the relevance of the
Wright functions of the second kind in Mathematical Physics.
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Appendix A. The Standard Diffusion Equation and the Three Sisters

In this Appendix, let us recall the Diffusion Equation in the one-dimensional case

Ju %u

—~ —_D— Al

ot ox2 (A1)
where u is the field variable, the constant D > 0 is the diffusion coefficient , whose dimensions are

L?>T~!,and x, t denote the space and time coordinates, respectively.
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Two basic problems for Equation (A1) are the Cauchy and Signalling ones introduced hereafter
In these problems, some initial values and boundary conditions are set; specify the values attained
by the field variable and/or by some of its derivatives on the boundary of the space-time domain is
an essential step to guarantee the existence, the uniqueness and the determination of a solution of
physical interest to the problem, not only for the Diffusion Equation.

Two data functions f(x) and g(t) are then introduced to write formally these conditions; some
regularities are required to be satisfied by f(x) and g(t), and in particular f(x) must admit the
Fourier transform or the Fourier series expansion if the support is finite, while k() must admit
the Laplace Transform. We also require without loss of generality that the field variable u(x,t) is
vanishing for t < 0 for every x in the spatial domain. Given these premises, we can specify the two
aforementioned problems.

In the Cauchy problem, the medium is supposed to be unlimited (—co < x < +o0) and to be
subjected at t = 0 to a known disturbance provided by the data function f(x). Formally:

{limt_>0+ u(x,t) = f(x), —oo < x < +400; (A2)

limy 4o u(x,t) = t>0.

This is a pure initial-value problem (IVP) as the values are specified along the boundary ¢ = 0.

In the Signalling problem, the medium is supposed to be semi-infinite (0 < x < +o0) and initially
undisturbed. At x = 0 (the accessible end) and for ¢ > 0, the medium is then subjected to a known
disturbance provided by the causal function g(t). Formally:

{limHm u(x,t) =0, 0<x< 4o (A3)
lim, o+ u(x, t) = g(t), limyyoou(x,t) =0 £>0.

This problem is referred to as an initial boundary value problem (IBVP) in the quadrant {x, t} > 0.

For each problem, the solutions turn out to be expressed by a proper convolution between the
data functions and the Green functions G that are the fundamental solutions of the problems.

For the Cauchy problem, we have:

+oo
u(et) = [ (@ f(x— ) = Gelx, ) f(x) (A%)
with ,
_ —x%/(4Dt)
Ge(x, t) 5 nDte . (A5)

For the Signalling problem, we have:

u(x, t) = /Ot Gs(x,T)g(t —1)dT = Gs(x,t) % g(t) —o0o<x <400, t>0 (A6)

with

X 2
Gs(x,t) = ———e */UPY) x>0, ¢>0. (A7)
2V Dt3

Following the lecture notes in Mathematical Physics by Mainardi [63], we note that the following
relevant property is valid for {x,t} > 0:

xGc(x,t) = tGs(x,t) = F(z) (A8)

where
e 714, (A9)
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According to Mainardi’ s notations, Equation (A8) is known as reciprocity relation, F(z) and M(z)
are called auxiliary functions and z is the similarity variable.

A particular case of the Signalling problem is obtained when g(t) = H(t) (the Heaviside unit step
function) and the solution u(x, t) turns out to be expressed in terms of the complementary error function:

u(x,t) =Hg(x, t) = /(: Gs(x, T)dt = erfc( >0, t>0. (A10)

75)
2v/ Dt
As is well known, the three above fundamental solutions can be obtained via the Fourier and

Laplace transform methods. Introducing the parameter a = |x|/+/D, the Laplace transforms of these
functions turns out to be simply related in the Laplace domain Re(s) > 0, as follows:

1/2

¢(a, t) = erfc(zi\/{) 2 = P(a,s), (A11)

P(a,t) = #t_s/ze_“z/(‘“) T ¥(a,s), (A12)
1 2 e/’

X(a, t) = ﬁtil/Zeia /(4t) - S:LT = X(a, S) (A13)

where the sign =+ is used for the juxtaposition of a function with its Laplace transform. We easily
note that Equation (A11) is related to the Step-Response problem, Equation (A12) is related to the
Signalling problem and Equation (A13) is related to the Cauchy problem. Following the lecture notes
by Mainardi [63], we agree to call the above functions the three sisters functions for their role in the
standard diffusion equation. They will be discussed with details hereafter.

Everything that we have said above will be found again as a special case of the Time Fractional
Diffusion Equation where the time derivative of the first order is replaced by a suitable time derivative
of non-integer order.

It is easy to demonstrate that each of them can be expressed as a function of one of the two others
three sisters (Table Al).

Table Al. Relations among the three sisters in the Laplace domain.

¢ ¥y X
5 e Ve ¥ 1%
¢ S S s da
~ ~ ox
g X etV -2
. % 209 etV
X da a o0s NG

The three sisters in the t domain may be all directly calculated by making use of the Bromwich
formula taking account of the contribution of the branch cut of /s and of the pole of 1/s. We obtain:

§as) = plat) =1- 1 [“esinavi) T

Fla,s) = wiat) = L /0oo e~ sin(ay/r) dr

7T

1

x(a,s) =+ x(at) = — /O°° e " cos(av/r) &

NG
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Then, through the substitution p = /7, we arrive at the Gaussian integral and, consequently, we
find the previous explicit expressions of the three sisters that is:

a 2 a/2Vt 2
¢(a,t) —erfc(z—ﬁ) _1_ﬁ/0 e " du

l/J(a,t): a t—3/2€—u2/4t

2ym

1
xat) = o=t 12w/,
reminding us of the definition of the complementary error function.
Alternatively, we can compute the three sisters in the t domain by using the relations among the
three sisters in the Laplace domain listed in Table A1. However, in this case, one of the three sisters in
the t domain must already be known. Assuming to know ¢(a, t) from Equation (A11), we get:

- (a,t) from ¢(a,s) = s p(a,s). Indeed, noting

~ d
s 3(0,5) = 2 90,1
since ¢(a,0") = 0 we can obtain (A12), namely

Plat) = = 732 e/,

2ym

- x(a,t) from x(a,s) = — %5(11, s) where a is seen as a parameter. Indeed, it immediately follows
Equation (A13), namely

ad 1 .,
xab) = oo plat) = —= 17 2e

VT
For more details, we refer the reader again to [63].

Appendix B. Essentials of Fractional Calculus

Fractional calculus is the field of mathematical analysis which deals with the investigation and
applications of integrals and derivatives of arbitrary order. The term fractional is a misnomer, but it is
retained for historical reasons, following the prevailing use.

This appendix is based on the 1997 surveys by Gorenflo and Mainardi [64] and by Mainardi [65].
For more details on the classical treatment of fractional calculus, the reader is referred to the nice
and rigorous book by Diethelm [66] published in 2010 by Springer in the series Lecture Notes
in Mathematics.

According to the Riemann-Liouville approach to fractional calculus, the notion of fractional
integral of order « (¢ > 0) is a natural consequence of the well known formula (usually attributed to
Cauchy) that reduces the calculation of the n—fold primitive of a function f(t) to a single integral of
convolution type. In our notation, the Cauchy formula reads

JUE(E) == fult) = (nil)' /Ot(t —0)"lf(r)dt t>0 neN (A14)

where N is the set of positive integers. From this definition, we note that f, () vanishes at t = 0 with
its derivatives of order 1,2, ...,n — 1. For convention, we require that f(¢) and henceforth f,(f) is a
causal function, i.e., identically vanishing for t < 0.
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In a natural way, one is led to extend the above formula from positive integer values of the index
to any positive real values by using the Gamma function. Indeed, noting that (n — 1)! = I'(n) and
introducing the arbitrary positive real number «, one defines the Fractional Integral of order & > 0':

1 t
“ t::—/t—'r"‘*1 T)dt t>0 a€RT Al5
PR = g ) €= ) (A15)
where R is the set of positive real numbers. For complementation, we define J° := I (Identity

operator), i.e., we mean J? f(t) = f(t). Furthermore, by J*f(0"), we mean the limit (if it exists) of
J*f(t) for t — 07 ; this limit may be infinite.

We note the semigroup property J*JP = J**F a B > 0 which implies the commutative property
JBJ® = J*JB and the effect of our operators J* on the power functions

]“t“f:%ﬂ*“ «a>0 v>-1 t>0. (A16)
These properties are of course a natural generalization of those known when the order is a
positive integer.
Introducing the Laplace transform by the notation £ {f(t)} := [;e ™ f(t)dt = f(s) s € C and
using the sign + to denote a Laplace transform pair, i.e., f(t) < f(s), we point out the following rule
for the Laplace transform of the fractional integral,

rrn L s (A17)

s

which is the generalization of the case with an n-fold repeated integral.

After the notion of fractional integral, that of fractional derivative of order « (x > 0) becomes a
natural requirement and one is attempted to substitute « with —a in the above formulas. However,
this generalization needs some care in order to guarantee the convergence of the integrals and preserve
the well known properties of the ordinary derivative of integer order.

Denoting by D" with n € IN the operator of the derivative of order n, we first note that
D"J" =1 J"D" #1 n € N ie, D" is left-inverse (and not right-inverse) to the corresponding
integral operator |" . In fact, we easily recognize from Equation (A14) that

n—1 k
S ORYORD WACR I (A18)

As a consequence, we expect that D* is defined as left-inverse to J*. For this purpose, introducing
the positive integer m such that m —1 < a < m, one defines the Fractional Derivative of order & > 0 as

D® £(t) := D" J"=% £() ie.,

dm[ 1 ) e
D" f(t) := lf;: I'(m—a) /o (t— g)ati-m -
Arm (t) n=m.

Defining for complementation D = J% = [, then we easily recognize that D* J* = I « >0 and

I 1
Daﬂ:wtv—w €>0 7>-1 t>0. (A20)

Of course, these properties are a natural generalization of those known when the order is a
positive integer.
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Note the remarkable fact that the fractional derivative D* f is not zero for the constant function
f(t) =1ifa ¢ N.In fact, (A20) with ¢ = 0 teaches us that
o tilx
D*1 = —— > t . A21
T —a) a>0 >0 (A21)
This, of course, is = 0 for « € N, due to the poles of the gamma function in the points 0, -1, -2, .. ..
We now observe that an alternative definition of fractional derivative was introduced by Caputo in
1967 [67] in a geophysical journal and in 1969 [68] in a book in Italian. Then, the Caputo definition was
adopted in 1971 by Caputo and Mainardi [69,70] in the framework of the theory of Linear Viscoelasticity.
Nowadays, it is usually referred to as the Caputo fractional derivative and reads D% f(t) := J™ D™ f(t)
withm—-—1<a<m me&N ie,

1 fm)
/o(t—T)““*de m—1l<a<m

DY (1) = Zﬁn’” —%) (A22)
FIT (1) x=m.

We recall that there are a number of discussions on the priority of this definition that surely was
formerly considered by Liouville as stated by Butzer and Westphal [71]. However, Liouville did not
recognize the relevance of this representation derived by a trivial integration by part, whereas Caputo,
even if unaware of the Riemann-Liouville representation, promoted his definition in several papers
for all the applications where the Laplace transform plays a fundamental role. We agree to denote
Equation (A22) as the Caputo fractional derivative to distinguish it from the standard Riemann-Liouville
fractional derivative (A19).

The Caputo definition (A22) is of course more restrictive than the Riemann-Liouville definition
(A19), in that it requires the absolute integrability of the derivative of order m. Whenever we use the
operator D¥, we (tacitly) assume that this condition is met. We easily recognize that in general

DEf(t) := D" J"E f(t) # J" D™ f(t) := Di f(t) (A23)

unless the function f(t) along with its first m — 1 derivatives vanishes at t = 0" In fact, assuming that
the passage of the m-derivative under the integral is legitimate, one recognizes that, form —1 < a < m

andt >0
tkfoc

m—1
i P )
DO =D+ L gy SO0 (A24)

and therefore, recalling the fractional derivative of the power functions (A20),

m—1 ik
D* (f(t) -X o F <o+>> =D £(1). (A25)

The alternative definition (A22) for the fractional derivative thus incorporates the initial values of
the function and of its integer derivatives of lower order. The subtraction of the Taylor polynomial of
degree m — 1 att = 0" from f(t) means a sort of regularization of the Riemann-Liouville fractional
derivative. In particular, for 0 < a < 1, we get

D" (f(t) = f(07)) = DL f(t).

According to the Caputo definition, the relevant property for which the fractional derivative of a
constant is still zero can be easily recognized, i.e.,

D1=0 «>0. (A26)
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We now explore the most relevant differences between the two fractional derivatives (A19)
and (A22). We observe, again by looking at (A20), that D*t*~! = 0 a > 0 t > 0. From above,
we thus recognize the following statements about functions which for t > 0 admit the same fractional
derivative of order « withm —1<a <m m e N

D* f(t) = D*g(t) < f(t) )+ Zc] t2i (A27)
D f(t) = D g(t) <= F(t) = g(t) + Y cj" ) (A28)
j=1

In these formulas, the coefficients c; are arbitrary constants.
For the two definitions, we also point out a difference with respect to the formal limit as « —
(m —1)". From (A19) and (A22) we obtain, respectively,

& — (m—1)* = D*f(t) = D" ] f(t) = D" f(5); (A29)

= (m—1)" = DI f(t) = JD" f(t) = D" f(t) — F" D (07). (A30)

We now consider the Laplace transform of the two fractional derivatives. For the standard fractional
derivative D%, the Laplace transform, assumed to exist, requires the knowledge of the (bounded) initial
values of the fractional integral J"~* and of its integer derivatives of order k = 1,2,...,m — 1.
The corresponding rule reads, in our notation,

D* f(t) +s* f(s) — mi:l Dk jim=a) f(o+) s 1k —1 < a < m. (A31)
k=0

The Caputo fractional derivative appears to be more suitable to be treated by the Laplace transform
technique in that it requires the knowledge of the (bounded) initial values of the function and of its
integer derivatives of order k = 1,2,...,m — 1 analogous with the case when « = m . In fact, by using
Eqaution (A17) and noting that

m— k
JEDL () = J* ] DM f(t) = J" D™ f(t) = f(t) — Z FH (0+)k,‘ (A32)

k=0
we easily prove the following rule for the Laplace transform,

D% f(t) = Z Bt sk m—1<a<m. (A33)

Indeed, the result (A33), first stated by Caputo by using the Fubini-Tonelli theorem, appears as the
most “natural” generalization of the corresponding result well known for a = m.

In particular, Gorenflo and Mainardi have pointed out the major utility of the Caputo fractional
derivative in the treatment of differential equations of fractional order for physical applications. In fact,
in physical problems, the initial conditions are usually expressed in terms of a given number of
bounded values assumed by the field variable and its derivatives of integer order, no matter if the
governing evolution equation may be a generic integro-differential equation and therefore, in particular,
a fractional differential equation.

Appendix C. The Lévy Stable Distributions

We now introduce the so-called Lévy Stable Distributions. The term stable has been assigned by the
French mathematician Paul Lévy, who, in the 1920s, started a systematic research in order to generalize
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the celebrated Central Limit Theorem to probability distributions with infinite variance. For stable
distributions, we can assume the following DEFINITION: If two independent real random variables with the
same shape or type of distribution are combined linearly and the distribution of the resulting random variable
has the same shape, the common distribution (or its type, more precisely) is said to be stable.

The restrictive condition of stability enabled Lévy (and then other authors) to derive the canonic
form for the characteristic function of the densities of these distributions. Here, we follow the
parameterization by Feller [72,73] revisited by Gorenflo & Mainardi in [74], see also [47]. Denoting by
LY (x) a generic stable density in R, where a is the index of stability and and 6 the asymmetry parameter,
improperly called skewness, its characteristic function reads:

Li(x) = Lh0e) = exp [~yl(0)]  8(x) = |x|* e/ SigNK)OT/2 (A34)

0<a<2|6] < min{a,2—a}.

We note that the allowed region for the parameters a and 6 turns out to be a diamond in the
plane {«, 0} with vertices in the points (0,0) (1,1) (1, —1) (2,0), which we call the Feller-Takayasu
diamond, see Figure Al. For values of 6 on the border of the diamond (thatis § = £a if 0 < & < 1, and
0 =+(2—w)if 1 <wa < 2), we obtain the so-called extremal stable densities.

We also note the symmetry relation LY(—x) = L7%(x), so that a stable density with § = 0
is symmetric.

0.57

0.5 1 1.5

o

-1
Figure A1. The Feller-Takayasu diamond for Lévy stable densities.

Stable distributions have noteworthy properties of which the interested reader can be informed
from the relevant existing literature. Hereafter, we recall some peculiar PROPERTIES:

- The class of stable distributions possesses its own domain of attraction, see, e.g., [73].

- Any stable density is unimodal and indeed bell-shaped, i.e., its n-th derivative has exactly n zeros in R,
see Gawronski [75], Simon [76], and Kwasnicki [77].

- The stable distributions are self-similar and infinitely divisible.

These properties derive from the canonic form (A34) through the scaling property of the
Fourier transform.
Self-similarity means

Lo (x,t) +exp [—tlpZ(K)} = L(x,t) = 7V« LO(x/11/%)) (A35)
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where t is a positive parameter. If ¢ is time, then LY (x, t) is a spatial density evolving on time with
self-similarity.

Infinite divisibility means that, for every positive integer n, the characteristic function can be
expressed as the nth power of some characteristic function, so that any stable distribution can be
expressed as the n-fold convolution of a stable distribution of the same type. Indeed, taking in (A34)
8 = 0, without loss of generality, we have

*n

otk _ [e%f/n)\'fl“}" e 10(x, 1) = {Lg(x,t/n)} (A36)

where o
{Lg(x,t/n)} =L, t/n) « LY(x, t/n) % - % L (x,t/n)

is the multiple Fourier convolution in R with 7 identical terms.

Only for a few particular cases, the inversion of the Fourier transform in (A34) can be carried out
using standard tables, and well-known probability distributions are obtained.

For o = 2 (so 8 = 0), we recover the Gaussian pdf that turns out to be the only stable density with
finite variance, and more generally with finite moments of any order 6 > 0. In fact,

L9(x) = 2\1/Ee —x?/4 (A37)

All the other stable densities have finite absolute moments of order § € [—1,a) as we will
later show.
Fora =1and |6] < 1, we get

1 cos(07/2)

Li(x) = = A38
1) = B en(@/2) + [cos(@1/2) (A38)
which for 8 = 0 includes the Cauchy-Lorentz pdf:
1 1
O(x) = —
Li(x) = o e (A39)
In the limiting cases § = £1 for « = 1, we obtain the singular Dirac pdf’s

Lil(x) =6(x£1). (A40)

In general, we must recall the power series expansions provided in [73]. We restrict our attention
to x > 0 since the evaluations for x < 0 can be obtained using the symmetry relation. The convergent
expansions of LY (x) (x > 0) turn out to be:

for0<a<1l |0 <a:

Lo (x) = ni i(—x*“)" TA+na) g [%(9 —a)] ; (A41)

=

forl<a<2 || <2—a:

ni i M sin [ 50— )] - (A42)

From the series in (A41) and the symmetry relation, we note that the extremal stable densities for
0 < a < 1 are unilateral, precisely vanishing for x > 0 if # = «, vanishing for x < 0if 0 = —a.
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In particular, the unilateral extremal densities Ly *(x) with 0 < & < 1 have support in R™ and Laplace
transform exp(—s*). For « = 1/2, we obtain the so-called Lévy-Smirnov pdf:

~3/2
-1/2¢0. _ X —1/(4x
Lyf?) = 5= e /(4x) x>0, (A43)
As a consequence of the convergence of the series in (A41) and (A42) and of the symmetry relation,
we recognize that the stable pdf’s with 1 < a < 2 are entire functions, whereas with 0 < « < 1 have
the form:

L(x) =

{(1/x) Dy (x7%) forx >0 (Ad4)

(1/x]) D2(|]x|™*) forx <0

where @ (z) and P,(z) are distinct entire functions. The case « = 1 (|| < 1) must be considered in the
limit for @ — 1 of (A41) and (A42) because the corresponding series reduce to power series akin with
geometric series in 1/x and x, respectively, with a finite radius of convergence. The corresponding
stable pdf’s are no longer represented by entire functions, as can be noted directly from their explicit
expressions (A38) and (A39).

We omit to provide the asymptotic representations of the stable densities referring the interested
reader to Mainardi et al. (2001) [47]. However, based on asymptotic representations, we can state as
follows: for 0 < a < 2, the stable pdf’s exhibit fat tails in such a way that their absolute moment of
order ¢ is finite only if —1 < § < «. More precisely, one can show that, for non-Gaussian, not extremal,
stable densities the asymptotic decay of the tails is

L(x)=0 (|x|*<“+1>) X — too. (A45)

For the extremal densities with a # 1, this is valid only for one tail (as |x| — c0), the other
(as |x| — o0) being of exponential order. For 1 < a < 2, the extremal pdf’s are two-sided and exhibit
an exponential left tail (as x — —o0) if §# = +(2 — &) or an exponential right tail (as x — +o0)
if = —(2 — ). Consequently, the Gaussian pdf is the unique stable density with finite variance.
Furthermore, when 0 < a < 1, the first absolute moment is infinite so we should use the median
instead of the non-existent expected value in order to characterize the corresponding pdf.

Let us also recall a relevant identity between stable densities with index « and 1/« (a sort of
reciprocity relation) pointed out in [73], that is, assuming x > 0,

LT

WLl/m(x—"‘):L,?f(x) 1/2<a<16*=wa(0+1)—1. (A46)

The condition 1/2 < a < 1implies1 < 1/a < 2. A check shows that 0* falls within the prescribed
range |0%| < wif [0] <2—1/a.

We leave as an exercise for the interested reader the verification of this reciprocity relation in the
limiting casesa =1/2and a = 1.
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