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Abstract: Under different criteria, we prove the existence of solutions for sequential fractional
differential inclusions containing Riemann-Liouville and Caputo type derivatives and supplemented
with generalized fractional integral boundary conditions. Our existence results rely on the endpoint
theory, the Krasnosel’skii’s fixed point theorem for multivalued maps and Wegrzyk's fixed point
theorem for generalized contractions. We demonstrate the application of the obtained results with
the help of examples.
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1. Introduction

Boundary value problems involving fractional differential equations and inclusions with a variety
of boundary conditions have been investigated in recent years. For application details, we refer
the reader to [1-7] and the references cited therein, while some recent results on boundary value
problems of fractional differential inclusions can be found in [8-21].

In a recent work [22], the authors studied the existence of solutions for a nonlinear sequential
Riemann-Liouville and Caputo fractional differential equation subject to generalized fractional
integral conditions. The objective of the present paper is to investigate the multivalued analogue of
the problem considered in [22]. Precisely, we consider the following inclusions problem:

RLpyq (CD’x> (t) € F(t,x(t)), 0<g<1,0<r<1,te(0,T), 1)
n 5 @ E ﬁ
x(0) = ,Z% Pilﬁ;:,(-i’x( ZU] PJL?/] ]] 5;), )

where RED9 and €D” denote the left Riemann-Liouville and left Caputo fractional derivatives of
order g and r, respectively; F : [0,T] x R — P(R) is a multivalued map; P(R) is the family of all

nonempty subsets of R; ? If;‘,f is the generalized fractional integral of order & > 0 with parameters

[AS {ﬁi,pj}, ae {Ozi,ﬂéj} > O,IB € {Eirﬁj}/ 7€ {171',77]'}, K e {Ki,Kj} € R, Yi 0 € R and (’fi,é]' S (O, T),
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foralli=1,2,...,m,j=1,2,...,n. For definitions of fractional derivatives and integrals involved
in the problem (1) and (2), see [22]. Here we emphasize that the boundary conditions (2) correspond
to different kinds of integral boundary conditions for appropriate choice of the parameters; for details,
see Remark 2 in [22].

In the sequel, we need the following known lemma.

Lemma 1. [22]Let0 < q < 1,0 <7 < 1,0, pj, q, 1, &, &; > 0, &, 6; € (0,T), Bi, i, i, Bj, 1,k € R
fori=1,2,...,m,j=1,2,...,n,and y € C([0, T], R). The unique solution of the following linear sequential
fractional differential equation

RL[ (CD’x) () =y(t), te(0,T), 3)

subject to the generalized fractional integral conditions

= 3y P Ide(e) Z 03 P/ x(5), @
is given by the formula
_ 1 T(9)  qrr—1\RL q4r
0 = gl ) ()

T'(q) gir1_ 0 BIRL gt s

+<02f(q+r)t ) ];U’ My )
[0 o) r(ﬂ) q+r—1 - i @, ,BzRLIq—&-r RLIq—i-r
+ 3 41—~(q+r)t Zlyl 7i/Ki y(g) + y(t)’
i=1

where it is assumed that Q) = Q0104 — 0, QO3 £ O,

0, = I'(q) i,y PirGiBili K &), Qo= Z,), PiriBirlis Ki(g)
r(q + r) ~ q+r_] 1)r 1750 1 /
i=1 i=1
T(q) (v~ pimibBimin _
O — PEIEI 8y — Tt 1
= (et )
Y ; F<pﬂ+p+m)
_ P B K PRBIK N =B P p(atn)+m-+x
(ON ;U]T[O (6;) =1, 7 (t)=p p——— t .
j=1 T I

In view of Lemma 1, we can define a solution of problem (1) and (2) as follows.

Definition 1. A function x € C'([0, T], ]R) is called a solution of problem (1) and (2) if there exists a function

v € LY([0,T),R) with v(t) € F(t,x(t)), a.e. in [0, T) such that x(0) = 'Zl vi Pil %”é’x(éi), x(T) =
i=

¥ 0 Py

i), and
j=1
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x(t) — (1)< (01 _ er(ll;(j_)r) tq+r—1> RLIq+rv(T)
r(q) g+r—1 _ . o Y%PIRL q+r .
+ (er e H)t o) ];g] 1Lyl 11T 0(6)) 5)

r(‘i) — ) Z 5: 10; B
O —0 7t£]+1‘ 1 . p,I_Ir_zRLIq+1’ . RLIq+r ).
+( ST Mg+ ) l.;% ki (&) | + o(t)

For the sake of computational convenience, we set

1 I'(q) -
= — = |10 Tq+r O T2q+27’ 1
T(g+r+1)Qf <| T+ 2|F(q+r)
I'(q) -1 - Pt joBj oK
+ 10, T =1 110 o | P (s 6)
{| |r(q+r) | 1| ]':1| ]‘ q+r (])
U(9)  gir—1] X (o | PiiBiii . o
" {|Qs| * ‘Q4|F(q+r)T i:1|%| T @) I(g+r+1)

2. Main Results

In this section, we present our main results in different subsections by applying a variety of fixed
point theorems for multivalued maps.

2.1. Existence Result via Endpoint Theory

Denote by Z := C([0,T|,R) the Banach space of all continuous functions from [0, T] into R
with the norm |[x|| = sup{|x(t)|, t+ € [0,T]}. The space of functions x : [0,T] — R such that
x|l = fOT |x(t)|dt is denoted by L([0, T], R).

Let (X, d) be a metric space induced from the normed space (X; || - ||). Consider H; : P(X) x
P(X) — RU{o} given by H;(A,B) = max{sup,.,d(a,B),sup,.5d(A,b)}, where d(A,b) =
inf,c o d(a;b) and d(a, B) = infycpd(a; b). Then (P ,(X), Hy) is a metric space (see [23]).

Now we state the endpoint fixed point theorem that will be applied to prove our first result.

Lemma 2. ([24]) Let (X, d) be a complete metric space and S : X — P pa(X) be a multifunction such
that Hy(Sx,Sy) < ¢(d(x,y)) forall x,y € X, where P ps(X) is the collection of all nonempty closed
and bounded subsets of X and 1 : [0,00) — [0,00) is an upper semi-continuous function such that
P(t) < tand iminf; oo (t — (t)) > Oforallt > 0. Then S has a unique endpoint if and only if S has
an approximate endpoint property.

For more details about endpoint theory, we refer the reader to the article [25].

By Lemma 1, we define an operator G : Z — P(Z) as follows:

he Z:
1 _ T(q) ger—1)\RLpger
r(ﬂ) r— a 1%, Bj r
90 =1 - |+ (e ) Loy 1 Te(8) 7)

+(0—0 F(Q) pat+r—1 i ,p,-lﬂfi,ﬁ_iRLIqur ( )
3 4r( + 7’) ’)/l ﬁj,K_i 4 51
q i=1

+ RLIq-HZ}(t),
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for v € Sg,,, where Sg ,, denotes the set of selections of F defined by
Sp, = {v € L}([0,T],R) : v(t) € F(t,u(t)) fora.e.t € [0,T]}.

Theorem 1. Suppose that i : [0,00) — [0,00) is a nondecreasing upper semi-continuous mapping such that
liminf; o (t — ¢(t)) > 0and (t) < t forall t > 0. Moreover, assume that F : [0, T] x R — Pcp(R) is an
integrable bounded multifunction such that F(-,u) : [0, T] = Pcp(R) is measurable for all u € R; here P, (R)
denotes the collection of all nonempty compact subsets of R. In addition, we assume that there exists a function
¢ e C([0,T],[0,00)) such that

Hy(F(t,u(t)) = F(t,0(1))) < (1€]®@) " e(6)p(|u(t) = o(1)]),

where ® is defined by (6). If the multifunction G (defined by (7)) has the approximate endpoint property, then
the inclusion problem (1) and (2) has a solution.

Proof. Our proof will be complete once it is shown that the multifunction G : Z — P(Z) defined
by (7) has an endpoint. To do this, we show that the operator G(u) is a closed subset of P(Z) for
all u € Z. Note that the multivalued map ¢ — F(t, u(t)) is measurable and has closed values for all
u € Z, and therefore has a measurable selection. So Sr, is nonempty for all u € Z. Let {z,},>1
be a sequence in G(u) with z, — z for u € Z. For every n € N, choose v, € Sr,, such that

n(t) = é((orwbngfﬂﬂ“1>ﬂwﬂwuy

+ (Qz r(q) tq-‘ri’—l _ Ql) ano.jpll:;‘]f]Rqu-i-rvn(é‘])
T(g+7) = K

I'(g) —1) Zm i 1%iBiRL
Qs — Qu——17 _patr . 0i [4iPiRL rq+r . RLIq+r ).
* ( ST+ ) P on(Gi) | + on(t)

In view of the compactness of F, we deduce that the sequence {v,},>1 has a subsequence which
converges to some v € L!([0, T]). Let this subsequence be denoted by {v, },,>1 again. Clearly v € Sg,
and forall t € [0, T},

n(t) = 2(t) = é<<0r4hn§fﬂﬂ“4)MHHMD

n (02 T'(q) ptr=1 _ Ql) impjlaf'ﬁ,jRquJrrU(&)
T(q+7) =1 T !

I'(q) - ) @B
O.—0 tq-i—r 1 ,plI_;,_;RLIq-i-r . RLIq-i-r £,
+( o= s Y o) ) + e

Thus z € G(u) and consequently G is closed-valued. On the other hand, G(u) is a bounded set for all
u € Z as F is a compact multivalued map.

Now we establish that H;(G(u), G(w)) < ¢(||lu —w]|). Letu,w € Z and h; € G(w). Choose
vy € Sp, such that
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1 I'(q) - )
z1(t) = 0Oy — Oy _patr=1) RLpg4ry, (T
10 (( =0 2 (T)

T _ n B
4 (Q2Iﬂ(q(j_)r)tq+r 1_ Ql> U].P] [%{IEJ_JRLIqurvl (5])

=1

+ (03 _ Q4wtq+rl> 1 v 5 I@’giRL Iq+rvl (gz) + RL IqurUl (t),
I(g+r) = Tjrki

for almost all t € [0, T]. Since
Ha(F(t,u(t)) = F(t () < (121®) et (Ju(t) = w(®)]), forallt € [0,T],
there exists z € F(t, u(t)) provided that
lo1(t) —z| < (||€||®)_1€(t)1p(|u(t) —w(t)]), forallt € [0, T].
Let us consider the multivalued map V : [0, T] — P(R) given by

V(1) = {z e R: Jor(t) — 2l < (J0) "By (fu(t) - w (B}

The multifunction V(-) N F(-,u(-)) is measurable, since v; and ¢ = (H€||<1>)71€1p(|u — w))
are measurable. Choose v, (t) € F(t,u(t)) such that

[o1(8) = 02(8)] < (J€l1®) LB p(|u(t) — (b)), forallt € [0, T].

We define the element h; € G(u) as follows:

Zz(t) — % ( (Ql _ er(rq(i)r) tq+rl> RLIqurvz(T)

+ (er(q)t‘?""’—l - Ql) i U'-Pflaf'ﬁfRqu+rvz(5')
T(qg+7) j=1 P !

+ O — 0 r(q) tli"rr—l “ . Pi I"Zi/,giRLIq-‘r}’ ( )
3 4 r( + 1’) Z ,YZ ﬁj/fi UZ Cl
q i=1

+ RL[+9, (1), forall t€[0,T].

Let sup;c( |¢(t)| = ||€||. Then, one can get
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|z1(t) — z2(t)]

1 _
< o ( 1]+ 1025 7971 R4 o — ol ()
r _ & o wi,Bi
oy T Kl T e
+ |Q |—|—‘Q | r( Ta+r— 1 - | ,|p, ﬂlengLIqur | )
3 4 w Z; Vil Tk (o1 —02|)(Gi
1=
+ R (Jog —02])(1)
1 I'(q) -
< /¢ _ S e Tq+r Q 7T2q+2r 1
< 1l Uz|{r(q+r+1)0| <| AT+ a2
I'(q) - }
O 7'1"11-&-7’ 1 Q
+ [| 2|T(q+r) + || x
PO +T
» i B (‘ﬂj)(spj(“j+’7j)+’(j+q+r (= Pj‘ )
&0 (PSP
= ;
I'(9) _}
O @) Tq+r 1
+ |10a] + 10 L
x il’ﬂ|p-(*Bi)g?i(vzz-+m)+ff+q+r L(eg) b
= HHE i r(Pi’?#Pi“;‘;PiHH) T(g+r+1)
< (le1e) Miel®)p(llu - wl))
= P(llu—wl)),

which implies that ||z; — z2|| < ¢(||u — w]|). Therefore H;(G(u),G(w)) < ¢(||lu —w||) forallu,w € Z.
Therefore there exists u* € Z such that G(u*) = {u*}, since the multifunction G (by the hypothesis)
has an approximate endpoint property. Therefore we deduce that the problem (1) and (2) has a solution
u*. The proof is complete. [

Example 1. Consider the following inclusions problem containing Riemann—Liouville and Caputo derivative
operators with generalized fractional integral boundary conditions

RLD3 (CD%x) (t) € F(t,x(t)), te02],

i iZ i+2 242i+1 .
L ( ) L e (l> 8
1+3 i242i 4
= \i+1 4 ®)

1+4 245

+2j+3 j+5 .
24 ] +1 ]+4 §2+]«]+10 §+7 X j+1
] +2 12+3/+1 2+j-1 3 :

j=1 2442’ 2441

Hereq—2/3 r=3/4T=2m=3n=4,v=(i/(i+1)),p; = (2/(1 +2)) i=(i+2)/(i+
5), Bi = (2 +2i+1)/(+3i+2)), 7 = ((i+3)/(i+4)), & = ((*+2i)/(*+5)), & = (i/4),
i =1,...,3, 05 = ((/? +1)/(j +2)), 0j = ((]'+3)/(]+4)) = ((7+2+3)/(f +j+10)),
B = ((G+5)/G+7) nj = (F+3j+ 1)/ (7 +4j +2)), x ((] +i=D/(P 4]+ )), 0j =
(j+1)/3),j=1,...,4 From the given data, we find that Ql ~ 0.7080014810, ), =~ —0.2503200083,
O3 =~ 4.305948722, Q4 3.462288181, () ~ 3.529170280 and ® ~ 4.519175132.

Let F: [0,2] x R — P(R) be a multi-valued map defined by

B t [ x?+2)x|
x— F(t,x) = [0,12< T3] >+ ] )
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Let us take ¥(y) = y/3 and note that it is nondecreasing upper semi-continuous on [0, 2] satisfying
liminf, ,eo(y — ¢(y)) > 0and ¢(y) < y forall y > 0. Set £(t) = t/6,t € [0,2] such that ||£|| = 1/3.
Therefore, we have

Hy(F(t,x) = F(£,%)) < Z|x =2 < ([|¢] @)~ élp(lx—fl),

N

for x, ¥ € R. Letting Z = C([0,2],R), define an operator G : Z — P(Z) by

G(u) = {z € Z : there exists v € Sg,, such that z(t) = w(t) forall t € [0,2]},

where
_ 1 I'(q) g+r—1\ RLyq+r
w(t) = Q( (Ql er(q—l—r)t I77y(T)
I'(q) -1 ) o1 BiRL
+{Q AR ¢ oL T REIT (6
(o 5 ) o)
“(o.—0 1"(‘7) pa+r—1 i,y, pill’_zi,!_ngLIqurv(c) —Q—RLIqurv(t)
3 4I-|(q + 7’) = i 17j,Ki i .
Observe that infycz sup,eg, |4 —s|| = 0 in view of sup,.g() [ul = 0. Therefore, the

operator G has the approximate endpoint property. Clearly the hypothesis of Theorem 1 is satisfied.
So the conclusion of Theorem 1 applies to the problem (8) with F(t, x) given by (9).

2.2. Existence Result via Krasnosel'skii's Multi-Valued Fixed Point Theorem

This subsection is concerned with the second existence result for the problem (1) and (2)
when the map F in (1) is L! —Carathéodory and convex valued. The proof of this result relies on
Krasnosel’skii’s fixed point theorem for multivalued maps [26].

In the following we need the following assumptions:

Hypothesis 1 (H1). F : [0,T] x R — Py c(R) is L'—Carathéodory multivalued map, where Pep(R)
is the collection of all nonempty compact and convex subsets of R;

Hypothesis 2 (H2). There exists a function p € C([0, T], R™) such that
|E(t,x)||p :=sup{|w| : w € F(t,x)} < p(t), foreach (t,x) € [0,T] xR;

Hypothesis 3 (H3). There exists a function k € Z satisfying Hy(F(t,x),F(t,y)) < |[k||[|x — y||, for a.e
t € [0,T)and all x,y € Z and that ||k|| < 1/A, where

_ 1 I'(q) g+r—1 g LB o
A = Q|{ DQZ|F(q+r)T +‘Ql| ];“T]’nq-&-r (5])
r(q) qg+r—1 - | O BT TI+r
L R Dol e A e S

Theorem 2. If the assumptions H1-H3 are satisfied, then the problem (1) and (2) have at least one solution
on [0, T].

Proof. Define the multivalued operators A : Z — P(Z) by
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n

1 r _ o, Bi
( (Oargg gt =) e oty
j=1

+ (QS —Q, r(q) tq—l—r—l) i% P_fI”-z?’,ngLl’”’v(Ci) ,
T'(g+7) 5 Tjrki

',k

S
I
Ol

and B: Z — P(Z) by

he Z:
+ RLIq—‘rrv(t)

Notice that G = A + B, where G is given by (7). In several steps, it will be shown that .4 and B satisfy
the hypothesis of Krasnosel’skii’s multivalued fixed point theorem.

Let B, = {x € Z: ||x|| < r} be abounded setin Z. The operators .A and B define the multivalued
operators A, B : B, — Pcpc(2). Observe that the operator B is equivalent to the composition £ o S,
where L is the continuous linear operator on L' ([0, T],R) into Z, defined by

,C(U) (t) _ % (Ql _ er(rq(j_)r) tq+r1> RLIqurU(T) + RLI‘”’U(t).

For an arbitrary element x € B, let {v,, } be a sequence in S¢ . Then v, (t) € F(t,x(t)) for almost
allt € [0, T]. As F(t,x(t)) is compact forall t € ], we can find a convergent subsequence of {v, ()} (also
labeled as {v,(t)}) converging in measure to some v(t) € Sg, for almost all t € [0, T]. On the other
hand, continuity of £ implies that £(v,)(t) — L(v)(t) pointwise on [0, T].

To ensure the uniform convergence, we have to establish that {L(v,)} is an
equi-continuous sequence. Take 7, 7 € [0, T] with 7y < 7» and x € B,. Then

|(Lx)(r2) = (£x) (7))

9] T(g+7) Tlg+r+1)

! r - -
< o (10 s — ) R 1)
1 /Tl {(Tz _ S)q+r—1 — (1 — s)‘ﬁr—l} v(s)ds + /72 (1 — s)q+r_1v(s)ds
T(g+7)|Jo a
1 r r
< ||p||{ (|Q2| (9) L T2q+r_1|)

+F(q+1r+1)[12q” — 0"+ 2(n — )T }

Obviously the right hand of the above inequality tends to zero as 7, — 77 independent of x € B,.
So {L(v,)} is an equi-continuous sequence. In consequence, the Arzeld-Ascoli theorem applies
and hence there exists a uniformly convergent subsequence {v, } (labeled as {v,} again) such that
L(vy) = L(v). So L(v) € L(Spy) and hence B(x) = L(Sfy) is compact for all x € B,. Therefore,
B(x) is compact.

In order to show that B(x) is convex for all x € Z, let z1,zp € B(x). We select v1,v; € Sp,
such that

1 r _ .
z(t) = 5 (01 — er(q(i)r) et 1> RLIFT(T) 4+ RLITHT0,(t), i = 1,2,
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for almost all t € [0, T]. Then, for 0 < A < 1, we have

Az 4+ (1= A)z](t) = REIT Aoy (s) + (1 — A)wva(s)](t)

(
x (nl -0 (E]@r) Wl) RLITH Aoy (s) + (1 — A)oa(s)](T).

So Sp, is convex as Avy(s) + (1 — A)va(s) € Spy. Thus Az; + (1 — A)zp € B(x). Therefore,
B is convex-valued. The proof for A is similar.
We split the remaining proof in several steps and claims.

Step 1: A is a multi-valued contraction on Z. Take x,y € Z and h; € Ax. Then, foreach t € [0, T],
there exists v1(t) € F(,x(t)) such that

h(t) = ;)((er(lt;(j_)r) patr=1_ )i P]I“J‘B/RLIq—i-r (5])

r r— irPi r
+(03—Q F(q(—i— ¢t 1)2%“ ISBRL [ty (Ci)>~

Since Hy(F(t,x),E(t,y)) < ||k||||x — y||, therefore, we can find @ € F(t,y) satisfying
o1(t) — @] < [[kl[llx = ylI.

Define K(t) = {0 € R: |v1(t) — @] < ||k||||x — y||}. Then the multivalued operator U defined
by U(t) = S Fy N K(t), is measurable and nonempty. Let v; be a measurable selection for U,
which exists by Kuratowski-Ryll-Nardzewski’s selection theorem [27]. Then v, (t) € F(t,y(t))
and for each t € [0, T], we have |v1(t) — v2(t)| < ||k||||x — y|| a.e. on [0, T].

For each t € [0, T], let us define

1

() = Q<<er(l;(j_)r) prirt )imwww (5

T'(q) 1) v i
+ (03 _Q4r(q_|_r) T l) l;,)/ fiT 2‘1 Bi RLyq+ry, ((31))

It follows that h; € Ay and
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|11 (t) — ha(t)]

1< [|Qz| @) _qoer |01|] Y los| PRI (o) — o)) ()
a M+ Lol Ty

IN

r m
RN e DAL S O —v2|><f;i>)

IN

1 r .
|k|||x—y|||ﬂ|{ 10al 2T o |

(Pj'?;+Pj+'7+V)

Pj

r ( pinjt+pjaj+pj+q+r )
Pj

« Z |U]| p( B;j) 5‘0](0( +17;) +xj+Hq+r

r _
¥ [|03| 10 L

m 1" (Pz’?z'*‘ﬂ_z'*"i"‘")
% 1 1 g, (—Bi) 70 (Ti+Ti) +Kitq+r Pi
; il o8 I (mﬁﬁmmmw)
0i

= [Ik[[Allx = yll-
Consequently,
11 = ha|| < [[k[|Allx = y]-

Interchanging the roles of x and y, we obtain an analogous inequality:
Ha(Ax, Ay) < [[k|[Allx = yll,

which, together with the condition ||k||A < 1, implies that A is a multivalued contraction.
Step 2: We show that B is compact and upper semicontinuous through certain claims.

CLAIM I: B maps bounded sets into bounded sets in Z.

Let B, = {x € Z: ||x|| < p} be abounded ball in Z with p > 0. Then, for each & € G(x),x €
By, we can find v € Sp, satisfying

”l(t) — 6 <Ql _ er'(ll;(_q'_)i’)tq-l-r—l) RLIq—I—rv(T) -I—RLID]'HU(t).

Then we have

TR (|01|+02| ) R o) 4 R o
TI+tr
< o)) TItr O, () T2q+2r1> },
= ”p|{ q+r+1 (' T Il TTGrr D
and consequently,
1 M) o i+
o < = (1047 + 1O 7T2'7+2V 1) }
Il < Wl ey (1T + 10el g s T

CLAIM II: B maps bounded sets into equi-continuous sets.



Mathematics 2020, 8, 1044 11 of 17

Let 1y, 2 € [0, T] with 7y < T, and x € By. For each i € G(x), we obtain

[h(72) = ()]

1 T(q) -1 -1\ RL
< q+r _ gqtr q+r
< (10alg 2 [t =y ) R 7

1 /OT1 [(Tz )t (g — s)"*’”} v(s)ds + /:(Tz — )T 1o(s)ds

NI —
1 T _ _ T9+r
S |P||{ (|02| (‘1) ‘qu-‘rr 1 _ T2q+r lD

T(g+r)
Q] T(g+r) T(g+r+1)
1

+m [ — T +2(n — 1)T"7] } —0asm—1 —0

independently of x € B,. Then, by the Arzeld-Ascoli theorem, we deduce that B : Z — P(Z)
is completely continuous.

Thus it follows by Claims I and II that B is completely continuous. Hence, by Proposition 1.2
in [28], it will be upper semicontinuous once it is shown to be closed graph. This will be shown
in the next claim.

CLAIM III: B has a closed graph.

Letting x, — x4, h, € B(x,) and hy, — h., we show that h, € B(xy). For h, € B(x,), we can
find v, € Sgy, such that, foreach t € [0, T},

_ 1 _ T'(q)  grr—1)RLygtr RL g+r
hn(t)—Q(Ql L 1970, (T) + RL 70, (),

We will show that there exists v, € Sp ,, such that for each t € [0, T],

_ 1 _ I'(q)  gr—1) RLyg+r RL q+r

If we consider the linear operator @ : L'([0, T],R) — Z given by

v O(0)(t) = % (01 . (rq(fr) W—l) RL13+7(T) 4 RL[1+ro(p),
then we note that
Vo —=hell = || REF (ou(s) = 04(5)) (1)
+ (=0 o 1) R (o, (9) — 0. 0,

as n — oo,

Thus, it follows by a closed graph result [29] that ® o S is a closed graph operator. Further,
let hy,(t) € ©(SEy, ). Since x, — x,, we have that

1 I'(q) -
() = =[O — Qr——12 a7 1 RLIq+T T RL1q+r ¢
for some v, € Sr,. Hence B has a closed graph. Thus, the operator B is compact and upper
semicontinuous.
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Step 3: Now, we establish that A(x) + B(x) C B, for all x € B,. Take arbitrary elements x € B, with
r > ||p||® (® defined by (6)) and h € B. Then, selecting v € Sg ,, we have

W) = é((ar*bngf”ﬂﬂl>mﬂﬂdn

I'(q) g+r—1 - p; 1%PiRL rq+r
+ er(it - Z;O'] JI’]j/Kj I Z)((S])
j=

q+r7)

I'(q) 1>m
+ [ Q5 — Q=TT
(3 ‘T(g+7) =

wmﬁﬁmﬂ“w@>+Mﬂ“wmtemn.

Then we have

1 I'(q) -
h < I ——.Te) Tq+r 0O 7T2q+2r 1
r(‘]) q+r—1
+ [02|F(q—i—r)T + || x
& (=B;) o ) (Pj'71+Pj+‘i+7>
1 B gpjlagt) g4y Pj
. Z‘ lojlej 9 I (Pf’?j+Pj“j+P/+q+r)
j=1 0

r
+ |10al+ 10 g 2T

% Y |l | g (M) LT
00 r (eatmpinny ) TG [
Pi
which leads to
IRl < [Ipll® < r. (11)

This shows that A(x) + B(x) C B, for all x € B,.

Thus, the operators .A and B verify the hypothesis of Krasnosel’skii’s multivalued fixed point
theorem and hence there exists a solution x € A(x) + B(x) in B,. Therefore there exists
a solution of the problem (1) and (2) in B, which completes the proof.

O

Example 2. Consider problem (8) with the multi-valued map F : [0,2] x R — P(R) defined by

) .2
sin“ ¢ 1 sin“ t
— F(t, = , tan lax+>——|. 12
x = F(tx) s R g T B (12)
Observe that
T sin? ]

= p(t),

= : < =

that A ~ 4.209846716. Setting ||k|| = 1/5, we find that ||k|A ~ 0.8419693432 < 1. Clearly all
the assumptions of Theorem 2 hold true, and consequently, problem (8) with F(¢, x) given by (12) has
a solution by Theorem 2 on [0, 2].

and Hy(F(t,x),F(t,y)) < (1/5)|]x —y|, for x,y € R. By using the data in problem (8), we find
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2.3. Existence Result via Wegrzyk’s Fixed Point Theorem

In this subsection we apply Wegrzyk’s fixed point theorem [30] to prove an existence result for
problem (1) and (2) when the right hand side of the inclusions (1) is not necessarily nonconvex valued.

Let us first recall that a multivalued operator Q : X — P (X) is a generalized contraction
if and only if there is a strict comparison function 6 : Ry — R, (continuous, strictly increasing
and ) ;7 0" (t) < oo, for each t > 0 [31]) satisfying H;(Q(x), Q(y)) < é(d(x,y)) foreach x,y € X.
Here P (X) = {Y € P(X) : Yis closed}.

Lemma 3. (Wegrzyk’s fixed point theorem [30]). Let (X,d) be a complete metric space. If Q : X — Py(X)
is a generalized contraction, then FixQ # @.

Theorem 3. Assume that

(A1) F : [0,T] x R = Pp(R) is such that F(-,x) : [0,T] — Pcp(R) is measurable for each x € R
(Pep(R) = {W € P(R) : W is compact});

(Az) Thereexists p € C([0, T],R™) with d(0, F(t,0)) < u(t) foralmost all t € [0, T| and a strictly increasing
function v : Ry — Ry such that

Hy(F(t,x),F(t,x)) < u(t)v(]x — %|), x,x € R.

Ifev : Ry — Ry is a strict comparison function, where ¢ = ||u||P (P is defined by (6)), then the boundary
value problem (1) and (2) has at least one solution on [0, T].

Proof. Suppose thatev : Ry — R is a strict comparison function. Notice that F(-, x(+)) is measurable
and has a measurable selection v(-) by the assumptions (A1) and (A;) (see Theorem IIL6 [32]).
As u € C([0, T],R), we have

[o(t)] < d(0,F(£,0)) + Ha(F(t,0), F(£,x(t))) < (1+v([|x][))p(8)-

Thus the set Sr . is nonempty for each x € Z.

Now we verify that the operator G satisfies the hypothesis of Lemma 3. Let us first show that
G(x) € Py(2) foreach x € Z. Let {u, },>0 € G(x) be such that u, - uin Zasn — . Thenu € Z
and we can find v, € Sp, such that, for each t € [0, T],

) = [ (on- ong L et s

+{0 F(‘?) tt]-H’—l -0 iU‘leaj,ﬁjRqu_‘_rU (5)
Tlg+7) PZ=0

T(9)  ger—1)\ N~ o pi 1®BiRL g4+ , RL yq+r
(0 = o Py ) L o) ) + o),

Since F is compact valued, we pass onto a subsequence (if necessary) to get that v, converges to v
in L1([0, T],R).So v € Sf and for each t € [0, T], we have
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() — o(t) = g( (01 - QZF(I;,(i)r)tW_l) RL[q+ry(T)

+(0 r(q) tq+rfl -0 < ,ij“i'/SjRquJrr <5>
Tlg+1) ) 2o TG
=1

T'(q) 1) v a; ﬁRL RL 1q+
+<03—04t‘f+’ Y PSBRL T () ) 4 R (),
I'(g+7) ZZ;

Therefore, u € G(x).
Next we establish that

H;(G(x),G(x)) <ev(||]x —x||) foreach x, % € Z.

Let x, X € Z and hy € G(x). Then there exists v1(t) € F(t,x(t)) such that, for each t € [0, T],

) = 1 (( i)r) tq+r1> RL[4+75, (T)
n
+ (QZ tq+r 1 Ql) ZO.],OJI /ﬁJRLIq-&-r (5j)
j=1
m
+ <03 04 )tq+r 1) Z'Yl oi uu ISzRLIq—&-r (C)) +RL1q+rvl(t)_
i=1

By (Az), we have
Hy(F(t,x), F(t,%)) < p(t)v([x(t) — x(¢)]).

In consequence, we can find w € F(t, ¥(t)) satisfying
o1 () —w(t)] < u(t)v(|x(t) — x(£)]), t € [0, T].
Introduce W : [0, T] — P(R) by
W(t) = {w € R: [v1(t) —w| < p(t)v(|x(t) —x(t)])}.

By Proposition IIL.4 [32], the multivalued operator W(t) N F(t, %(t)) is measurable and there exists
a function v, (t) which is a measurable selection for WW. Hence, v;(t) € F(t,x(t)) and we have

|01(£) —v2(8)| < u(t)v(|x(t) — x(t)|), for each t € [0, T.
For each t € [0, T], let us define

ho(f) — % ( <01 - er(z(i)r)ﬂ“l) RL [+, (T)

+ (er(q)tq‘*"—l — Ql) i U'-Pflaf'ﬁjRLIq+rvz(5'>
r(q + 7’) ]:1 ] W]/K] ]

I'(q) - ) u 5; 1B
Qs — Qy——1 _patr=1 i [5iPiRL gt (7 RLg+77, (1)
(0 Qupg Pt ) Lo ) ) + )

Thus,
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|hy(t) — ha(t)]

i ( 1]+ 102l 7971 | R84 o — ) (7

IN

I'(q) -1 - 4B RL
1k T ] 2 P o =)

I'(qg a
101+ 1ot 71| L P o —vz|><¢i>>
FELI oy — 2] (1)

||y||v<|x—azn){]r(ﬁfﬂﬂQI

IN

I'(q) _
O | T + | Q| —— L _T20+2r—1

+ [10al e st o

" pilljtpita+r
(=Bj) wpjlajtm;)+ucj+q+r Pj
x 2 Ichij 5]’ [ (Lteiteitatr
j=1 e

r
+ 10l + 0l Lot

Oilfi+pitq+r
xiw|p.(f/51->ge’f(v?i+ﬁi)+fi+q+r F( fi ) n T+
i=1 B : r(W) T(g+r+1)

Pi

= [ull@v(x — ).

Hence ||y — hy|| < ev(||x — %||). Analogously, one can obtain by interchanging the roles of x and ¥
that H;(G(x),G(x)) < ev(|]x — x||) for each x,¥ € Z. Thus G is a generalized contraction. So,
by Lemma 3, we deduce that G has a fixed point x, which corresponds to a solution of problem (1) and
(2). This finishes the proof. [

Example 3. Let us consider problem (8) with F(t, x) given by

1 t+1/2, _ 1
F(t,x) = {g,mtan 1X+§:|/ (13)

and note that

(t+1/2) t+1/2)

SuP{|x|/]/ € F(t/x)} S W +%/ Hd(F(t/x)/F(t/f)) S ( 1+i’2 (|X—JZ'|)

. t+1/2
Fix u(t) = <;r+t/2) such that d(0,F(t,0)) < u(t) for almost all t € [0,2] and ||u|| ~ 0.780330.
From Example 1, we have ® ~ 4.519175132. In consequence ¢ = ||u||P ~ 3.526448. Letting v(x) = x,
all the conditions of Theorem 3 are satisfied. Therefore the problem (8) with F(t, x) given by (13) has has at least

one solution on [0, 2] by the conclusion of Theorem 3.

3. Conclusions

In this paper, we presented three existence results for sequential fractional differential inclusions
involving Riemmann-Liouville and Caputo type derivatives, subject to generalized fractional
integral boundary conditions. These results provide different criteria for the existence of solutions
for the problem at hand. The first result (Theorem 1) is obtained with the aid of the endpoint theory,
while Krasnosel’skii’s fixed point theorem for multivalued maps is applied to derive the second result
(Theorem 2). In the third result (Theorem 3), we used Wegrzyk’s fixed point theorem for generalized
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contractions to establish the existence of solutions for the given problem. It is imperative to note that
Wegrzyk’s fixed point theorem is a generalization of Covit and Nadler’s fixed point theorem [33]
in the sense that it deals with the generalized contractions. Thus Theorem 3 holds for several values
of the function v (defined in (A,)); for example, v(t) = In(1+ t)3, v(t) = t (contraction case), etc.
Some interesting special cases of our results follow by fixing the parameters involved in the boundary
conditions (2). For instance, our results correspond to Dirichlet boundary conditions if we take
v =0foralli =1,2,...,m andaj =0forallj =1,2,...,n Fixingy; = 0foralli =1,2,...,m
and 0 # 0 for some j = 1,2,...,n, we obtain the existence results for the boundary conditions of

n . B
the form: x(0) = 0,x(T) = Y 0; ¥ I,‘;]]f/ x(J;). On the other hand, we obtain the existence results
j=1

m - Y 7.
for (1) associated with the boundary conditions: x(0) = Y ; i I;-‘l_’,’,élx(éi),x(T) =0, by letting 7; # 0
i=1

forsomei =1,2,...,m,ando; = Oforallj =1,2,.. .,;. We emphasize that the existence results
indicated for special forms of the boundary conditions are new.
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