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Abstract: In this paper, we study the oscillatory behavior of solutions for a type of generalized
proportional fractional differential equations with forcing and damping terms. Several oscillation
criteria are established for the proposed equations in terms of Riemann-Liouville and Caputo settings.
The results of this paper generalize some existing theorems in the literature. Indeed, it is shown that
for particular choices of parameters, the obtained conditions in this paper reduce our theorems to
some known results. Numerical examples are constructed to demonstrate the effectiveness of the
our main theorems. Furthermore, we present and illustrate an example which does not satisfy the
assumptions of our theorem and whose solution demonstrates nonoscillatory behavior.

Keywords: generalized proportional fractional operator; oscillation criteria; nonoscillatory behavior;
damping and forcing terms

1. Introduction

Fractional calculus is a mathematical branch investigating the properties of derivatives and
integrals of non-integer orders. The significance of this subject falls in the fact that the fractional
derivative has the feature of nonlocal nature. This property makes these derivatives suitable to simulate
more physical phenomena such as earthquake vibrations, polymers, and so forth; see, for example,
References [1-10] and the references cited therein.

In recent years, there have appeared different types of fractional derivatives. However, it has been
realized that most of these derivatives lose some of their basic properties that classical derivatives have
such as the product rule and the chain rule. Fortunately, Khalil et al. [11] defined a new well-behaved
fractional derivative, called the “conformable fractional derivative”, which depends entirely on the
classical limit definition of the derivative. Thereafter, researchers developed the conformable derivative
and obtained different results exposing its features [12-14]. Recently, Jarad et al. [15] introduced the
generalized proportional fractional (GPF) derivative of Caputo and Riemann-Liouville type involving
exponential functions in their kernels. The GPF derivative not only preserves classical properties but
also verifies semi group property and of nonlocal behavior. For recent results involving GPF derivative,
one can refer to References [16-18].

In 2012, Grace et al. [19] initiated the study of oscillation theory for fractional differential equations.
Thereafter, many researchers have investigated the oscillatory properties of fractional differential
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equations; see for instance References [20-25]. In 2019, Aphithana et al. [24] studied forced oscillatory
properties of solutions to the conformable initial value problem of the form

aDIPx(t) + p(H)aD™Px(t) +q(1) f(x(t)) = g(t), t>a,
{ lim ,J/~%Px(t) = by (j=12,...,m),

t—at
wherem = [a],0 < p<1,p,g € C(R",R), g € C(RT,RT), f € C(R,R) are continuous functions,
2D*F is the left conformable derivative of order a € C of x, Re(«) > 0 in the Riemann-Liouville setting
and , 7/~ is the left conformable integral operator of order j —a € C, bj eR,j=12,..., m
They also studied the forced oscillation of conformable initial value problems in the Caputo
setting of the form

GDFRx(t) + p(t)gDx(t) +q(t) f(x(t)) = g(t), t>a,
kDfx(a) =by (k=0,1,...,m—1),

where m = [a],0 < p <1, and ED”"p is the left conformable derivative of order « € C of x, Re(a) > 0
in the Caputo setting.

In 2020, Sudsutad et al. [26] established some oscillation criteria for the following generalized
proportional fractional differential equation

DYx(t) + G1(E x(8) = p(t) + 6ot x(1), t>a=0,
lim ,U~%Fx(t) =b; (j=1,2,...,n),
t—at
with n = [«a], ,D*F is the generalized proportional fractional derivative operator of order &« € C,
Re(x) > 0,0 < p < 1in the Riemann-Liouville setting and ,I*f is the generalized proportional
fractional integral operator.

In this paper, motivated by the above papers, we establish some sufficient conditions for forced
oscillation criteria of all solutions of the generalized proportional fractional (GPF) initial value problem
with damping term in the Riemann-Liouville type of the form:

{ DPY(1) + p(1)aD*y(1) + (1) f(y(1) = g(1), 1>a >0, @

lim ~%y(l) =b; (j=1,2,...,m),
[—at

where m = [a], 0 < p <1, ;,D*F is the left GPF derivative of order « € C of y, Re(x) > 0 in the
Riemann-Liouville setting and ,I/~*# is the left GPF integral of order j — & € C, Re(j — &) > 0, b € R,
j=12,...,mand p,g € C(R",R), g € C(R",R"), f € C(R,R).

Moreover, we study the forced oscillation criteria of all solutions of the GPF initial value problem
with damping term in the Caputo type of the form

gDRy(1) + p(DED Fy(1) +a()f(y(D) =g(1), 1>a>0,

@)
D*y(a) =b; (k=0,1,...,n—1),
where n = [a],0 < p < 1,$D%F is the left GPF derivative of order « € C of y, Re(a) > 0 in the Caputo
setting and D’ = DPDF ... DF, and DF is the proportional derivative defined in Reference [13].

k times
We claim that the results of this paper improve and generalize previously existing oscillation

results in Reference [24].



Mathematics 2020, 8, 1037 30f18

Definition 1. The solution y of problem (1) (respectively (2)) is called oscillatory if it has arbitrarily large zeros
on (0, 00); otherwise, it is called nonoscillatory. An equation is called oscillatory if all its solutions are oscillatory.

2. Preliminaries

In this section, we provide some basic definitions and results which will be used throughout this
paper. For the justifications and proofs, the reader can consult References [13,15].

Definition 2. [15] (Modified Conformable Derivatives).
For p € [0,1], let the functions ko, k1 : [0,1] x R — [0, 00) be continuous such that for all | € R we have

lim ki(p,1) =1, lm ko(p,l) =0, lm ki(p,]) =0, lm ko(p,1) =1, 3)
p—0* p—1- p—1-

p—0F
and k1(p,1) # 0,0 € [0,1), ko(p,1) #0,p € (0,1].

Then, Anderson et al. [13] defined the modified conformable differential operator of order p by

DFf(1) = ka(p, D f (1) +ko(p, D) (1), 4)

provided that the right-hand side exists at/ € Rand f/(I) = % f. The derivative given in (4) is called
a proportional derivative. For more details about the control theory of the proportional derivatives
and its component functions ky and k;, we refer the reader to [27].

Of special interest, we shall restrict ourselves to the case when kq(p,!) = (1 — p) and ko(p, ) = p.
Therefore, (4) becomes

DEf(I) = (1= p)f() +pf (D). ®)
Notice that li%l Dff(l) = f(I) and 1ir{1 DPf(l) = f'(I). It is clear that the derivative (5) is
p—07t p—1"

somehow more general than the conformable derivative which does not tend to the original function
as p tends to 0.
To find the associated integral to the proportional derivative in (5), we solve the following equation

DPg(l) = (1 —p)g(l) +pg'(1) = f(I), 1>a.

The above equation is a first order linear differential equation and its solution is given by

_ Lt ety
s = [[e7 I foyas.

Define the proportional integral associated to Df by

umﬂ0=;LQ%W*V@%, ®)

where we accept that ,1%°f(I) = f(I).

Lemma 1. [15] Let f be defined on [a, 00) and differentiable on (a, co0) and p € (0,1]. Then, we have

—1
JPDPf() = £(1) 7 T f(a). @)
Definition 3. [15] Forp € (0,1] and « € C, Re(«) > 0, we define the left GPF integral of f by

1

s [ = s e e (), Y

(@I F)(1) =
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where 41* is the left Riemann-Liouville fractional integral of order «.
The right GPF integral ending at b, however, can be defined by

b p-1,. [ =
(1;2"Pf><1>—par1m>/z o7 s =y f(s)ds = pt e (7)), ©

where Ij) is the right Riemann-Liouville fractional integral of order a.

Definition 4. [15] For p € (0,1] and « € C, Re(a) > 0, we define the left GPF derivative of f by

(D) = DMy IR
D"* 11
= gty e s 00)

The right GPF derivative ending at b is defined by

(DA = D™ 1, " f()
— 9D7,p b E(5—1) n—a—1
= m/l er (s=1) f(s)ds, (11)

where n = [Re(a)] + 1.

If we let p = 1 in Definition 4 , then one can obtain the left and right Riemann-Liouville fractional
derivatives as in [6]. Moreover, it is clear that

lim D*"£(1) = £(I) and lim D* f(I) = D°f(1).

a—0
Lemma 2. [15] Let Re(a) > 0,n = —[—Re(a)], f € L1(a,b) and (,1*Ff)(I) € AC"[a, b]. Then,

(I —a)~i

. x, . _6"7’1(1711) Z i—o, i P S
(I*PaD¥ £)(1) = £(1) LGN Ty

j=1

(12)

Definition 5. [13] (Partial Conformable Derivatives). Let p € [0, 1], and let the functions ko, k1 : [0,1] x R —
[0, 00) be continuous and satisfy (3). Given a function f : R? — R such that & f(1,s) exists for each fixed
s € R, define the partial differential operator Df via

DIF(1,5) = ko 1S (1,5) + kol )y F(15) 13)

Definition 6. [13] (Conformable Exponential Function). Let p € (0, 1], the points s, 1, € Rwiths <1, and let
the function p : [s,1] — R be continuous. Let ko, ky : [0,1] x R — [0, 00) be continuous and satisfy (3),
with p/ky and ky /ko Riemann integrable on [s,1]. Then the exponential function with respect to DP in (4) is
defined to be

fl r@-kip7) 4 1 ky (p,7)

ep(l,s) :=e" Holer) Y oeo(ls)i=e koD T (14)

Using (4) and (14), we have the following basic results.
Lemma 3. [13] (Basic Derivatives). Let the conformable differential operator DF be given as in (4),
where p € [0,1]. Let the function p : [s,1] — R be continuous. Let ko, ki : [0,1] x R — [0,00) be

continuous and satisfy (3), with p/ko and k1 /ky Riemann integrable on [s,l]. Assume the functions f and g
are differentiable as needed. Then

(i) DPlaf 4 bg| =aDP[f]+bDP[g] forall a,beR;
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(ii) DPc = cky(p,-) forall constants c € R;

(iii) DP[fg] = fDP[g] + ¢DP[f] — feki(p,-);

(i) DPf/g) = LU+ Lo (o, ),

(v) for p € (0,1] and fixed s € R, the exponential function satisfies

Dilep(1,5)] = p(Dey(l,s)

forey(1,s) given in (14);
(vi) for p € (0,1] and for the exponential function eq given in (14), we have

o[t -s0

Definition 7. [15] For p € (0,1] and « € C with Re(a) > 0, we define the left GPF derivative of Caputo type
starting at a by

SDP) = WP D))
I p-1 s o
S el R L LI OTS 05)

The right GPF derivative of Caputo ending at b is defined by

("D H) = 1, " (D" f)(1)
b p-1,
- Pn—argn—tx)/z e'v (s — )TN (oD f) (s)ds, (16)

where n = [Re(a)] + 1.

Lemma 4. [15] Forp € (0,1] and n = [Re(a)] + 1, we have
—1 k, a p=1
A0S0 = £0) - 3 P a5 1 - a) 7

Proposition 1. [15] Let a, B € C be such that Re(a) > 0 and Re(B) > 0. Then, for any 0 < p < 1 and
n = [Re(w)] + 1, we have

-1 -1
(i al“'PepPl(l—ﬂ)ﬁ_1> ) = e 7Y (y — )P, Re(a) > 0.
-1 & -1
) (DT 1= 0P ) () = ey = )P, Rela) 20
(i) ($D"es (1 - a>’“) (1) = fF e T = a)f 1, Re(a) > n

3. Oscillation Results via Riemann-Liouville Operator

In this section, we establish the oscillation criteria for the GPF initial value problem (1). We prove
our results under the following assumption:

(H) p € C(RT,R),q € C(R*,R"), g € C(RT,R), f € C(R,R) with L4 > 0 forall u 0.

For our convenience, we set the following notations:
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o1 " o/bi(1 —a)*
() = 7 (=) 18
® ; (a+1—7j)’ (18)
P
L o— 7(5— 1)M Il,p vV
ALy = [T [ G OMOIR N (19)
a V(S)
'l _ _
V() = exp l me)p(lp)dT, (20)
A
M = | D**y(l;)V(l1), M isan arbitrary constant. (21)
Theorem 1. Assume that (H) holds. If
-1
lim infllfac /l e%(l—s) (l _ S)txfl e%(s_ll)M + Iy ILP (pg(S)V(S)) ds — —oo (22)
|—o0 L V(S) -
and
—1
g [ g et (€7 M1 (pg(9)V(5))
lim sup [ / er (I—s)" ds = oo, (23)
[—o00 L V(S)

for every sufficiently large L, where V(1) and M are defined as in (20) and (21) respectively, then every solution
of problem (1) is oscillatory.

Proof. Suppose that y(I) is a nonoscillatory solution of problem (1). Without loss of generality,
let L > a be large enough and I; > L such that y(I) > 0 for all | > [;. Using Lemma 3 (iii),
Equations (5) and (13), we have

DP[,D*y(V ()] = D*Py(1)DPV (1) + V(I)DP (,D*Fy(1)) — (1 — p) D% y(1)V (I)
= WDMPYWDPV()+ V() (1= p)uD (D) + o (D ()
(1= p)aD* YV (1)
= p[aDT (D) + p(1aD Y1) V(D)

= pl=q()fy(D) +gM] V(D)
< pg(HV (D).

Taking the proportional integral operator ;, I'* on both sides to the above inequality, we obtain
IV (DP [oD¥y(HV()]) < 4 I (pg(DV (1)) (24)

Using Lemma 1 on the L.H.S of (24), we have

el (I-1) 1
[ M+ IHP o nHv(l
uD“’py(l) < ¢ ll(z) ( g( ) ( ))

Taking the left GPF integral operator ,I**on both sides to the above inequality, we get

¢ M 1, 1 (0g(1V (1))
Z0)

I (;D*Py(l)) < (I (25)
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Using Lemma 2 on the L.H.S of (25), we have

- ) 1
1 U er " M4 I (pg(DV (D))
) —er St AR L7 1 . (26)
¥t Lot 1) < 70
Applying the left GPF integral formula on the R.H.S of (26) , we have
e1(1—g) bi(l — a)a—j
I < e ( —_— <
y) < e ]; P I (a+1— )
=1
Lt g et |67 0 ML I (pg(9)V(s))
er (I—s) ds,
o T@) Ja V(s)
for every sufficiently large L. If we multiply the above inequality by p*T'(a), we get
o1 (1_g) O PIbi(1 = a)*
“T(a)y(l) < T(a)er —_—
PTN) < T L R
b ) [T M 1 (o) V()
(1= AY. 1
—i—/a er (I—s) 70 ds
e 7MY (pg(5)V(5))
+ / er _S)(l —s)2 1 ! ds (27)
JL V(s)
o e [ e | €T M 1 o6V |
= o)+ AL+ [T s e 5
where ®(I) and A(I, L) are defined in (18) and (19), respectively.
Multiplying (27) by I'=%, we get
0 < I%T(@)y(l)
< () + 1AL L) (28)
=L (51
+11e /lep%(l_s)(l—s)"‘_1 e 7 M+, I (pg()V (5)) ds
L V(s) '

Let us consider the following two cases for L; > L.
o=l a—1
Case(i): Let 0 < & < 1. Then m = 1. Since |e ° ¢ u)‘ < 1 and the function £ (I) = (FTQ) is
decreasing forp > 0,0 <a <1,wegetfor! > L,

1 _ x—1

I —a a—1
<ol (M) =ait) 9)

]ﬂ*“cb(l)‘ -
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and
L et % MM 4, 1 (pg(5) V(5))
N | e A N (ED LR ds
a V(S)
< L E(Z—S) l —a a1 ep'n;l(S7ll)M + 11 Il,P (pg(s)v(s)) d 30
0 -
< () V(s) 00
—1| B (s—h) 1
< [F(Bme) T v,
s
- a Ll V(S)
= Cz(L, Ll)'
From (28), (29) and (30), we get, for I > L,,
= ¢ CTM 4 TV (pg(s)V(s))
zl—“/ o7 (791 _gyat h” " P8 ds > —[C1(L1) + Ca(L, Ly)]-
L V(s)
Since the R.H.S of the above inequality is a negative constant, it follows that
e 7 CTIIM + 10 (pg(5)V (s))
lim infll_"‘/ 7 91— gyt 1 ds > —oo,
|—o0 L V(S)
which leads to a contradiction with (22).
-1 -1
Case(ii): Let « > 1. Then m > 2 and (#)lx < 1fora >1andp > 0. Since ’eﬁT(l*a) <1land

the function h,(1) = (I — a)'~/ is decreasing for j > 1 and p > 0, for | > L1, we have

o1y 3L pbi(1 —a)* T

M=o = |rre7 0y Y

I O Gl

I—a\* " & pllbl (1 —a)'

r —_— 31

(“>( ! > j=1 r(’x+17]) ( )
. ity (Ly — a)!

A I'(a+1—7)

IN

IA
=
]

and

‘ll_"‘A(l,L)’ -

1

/L g (1=s\* T [0 CTIM g 1 (pg(s)V (s))
er — ds

g ] V(s)

L
= /
a

= C4(L)

T M 4 T (pg(s)V(s))
V()

ds (32)

From (28), (31) and (32), we conclude that for I > L,

. 1 epp;l(sill) ( S S
ll—a /LlepT(l_S)(l*S)a_l |: M—i-‘;l(]:)p (Pg( )V< ))] ds > —[C3(L1)+C4(L)].
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Since, the R.H.S of the above inequality is a negative constant, it follows that

lim inf
[—00

Ly
e [0 ge 7 ML (pgOVE) |
L

V(s)

which is a contradiction to (22).
Therefore, y(I) is oscillatory. If y(I) is eventually negative, by a similar argument, we get a
contradiction with condition (23). Hence the theorem. [

4. Oscillation Results via Caputo Operator

In this section, we establish the oscillation criteria for the GPF initial value problem (2) under the
assumption (H):

We set
m—1 —1
Y1) = T() Y 21— a)kes 9, (33)
=o P k!
p—1
L o1 7(5*11)M* ILe 74
o) = [T —g (N Al ) b e
Ja V(s)
M* = $D*y(a)V(a), M?* isan arbitrary constant. (35)

Theorem 2. Assume that (H) holds. If

p—1
I e m CTM 4 TV (0g(s)V (s))
. . 1—n 7(1—5) _o\a—1 h P8 = —
lli)rgomfl /L er (I—5) |: V) ds = —o0 (36)
and
Loy e%(s_ll)M* + 1,1 (0g(s)V (s))
lim supllfn/ el 75)(1 —s) 1 ! ds = oo, (37)
l—o0 L V(S)

for every sufficiently large L, where V (1) and M* are defined as in (20) and (35), respectively, then every solution
of problem (2) is oscillatory.

Proof. Suppose that y(!) is a nonoscillatory solution of problem (2). Without loss of generality,
let L > a belarge enough and I; > L such that y(I) > 0 for I > I;. Using Lemma 3 (iii), Equations (5)
and (13), we have

DP;D¥y()V(D)] = gD“Py(HDPV(I) + V(D (aCD”"Py(l)) — (1= p)g D*y(1)V (1)

= SD%y()DPV(1) + V(1) [<1 IS DMy (1) +p (EDWI))}
~(1=p)SD*Py V(1)

= p[SDM () + p()SEDy(1)] V(1)

= pl=af 1)+ V(1)

< pg(V(I).
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Taking the proportional integral operator ;, I L# on both sides to the above inequality, we obtain

W1 (DF [SDMy (V)] ) < o I (o3 )V (1)) (38)

Using Lemma (1) on the L.H.S of (38) , we have

e 1(1 1) p 1
e’ M+, I (pg(HV (1))

V()

DYy (D) <
Applying the left GPF integral operator ,I*fon both sides to the above inequality, we get

[e o (=)

1P (ED“/Py(l)) < I (39)

+hpp@ﬂUVU»]
V(D) '

Using Lemma 4 on the L.H.S of (39), we have

+, 17 (pg(HV (1))
V(D)

v (DY) (a)

(= a) ke =0 o pop

(40)

y(l) -

e%(l*ll)M*
k=0

Applying the left GPF integral formula on the R.H.S of (40), we have

P,%l(sfll)M*

+hﬂﬂmngwnlk
V) '

e}
=
|~
—
= :
SN—
—
2
Q AN
"Q
=
wn
&
—
=
9
S—
=
|
-
—
Y

for every sufficiently large L. If we multiply the above inequality by p“T'(x), we get

n—1

x x b 2 l(-a
PT(a)y(D) <fnw>zpwa—w%n“?
k=0

—i—/ePlS)

[

V(s)

. T CTME ) 1 (pg(s)V(s))

{%S“Aﬁ+lﬂpmﬂ> <»]%

+/ —(ls

= ¥()+Q(,L)

V(s)

-1
e 7 CTIME 4 TV (0g(s)V(s))

o _
+f ¢ ) (1 gy

V(s)

where ¥ () and (!, L) are defined in (33) and (34), respectively.
Multiplying (41) by I' ", we get

0 < IM"T(a)y(l)
< () + 10, L)

I
+ll_"/ e
L

e (1) a4 7Lp
1]e”’ M* + 1, I (pg(s)V(s))
V(s)

-1
T(Z—S)(l o s)zx—

ds

ds,

ds.

(41)

(42)
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Let us consider the following two cases for L; > L.

p—1

Case(i): Let 0 < @ < 1. Then n = 1. Since 7 """ < 1 and the function h3(l) = (I —s)*lis

decreasing for0 < « < 1,wegetfor! > Ly,

n—1 _
Plfnq%lw = [I""T(a) ¥ pkéik,a'—‘ﬁkepplaa) < p"T(«)|bg| := Cs(L), (43)
k=0 !
and
o) = llfn/Le”?(lfs)(l_s)afl ¢ TN 4 1 (p3(5)V (5)) i
S ‘ V(s)

p-1
0

(sfll)M* + L TLe (pg(S)V(S))
V(s)

< /L(l gt ds (44)

NGRS

C6(L/ Ll)

e TN 4 TV (pg(s)V(s))
V(s)

IA

ds

Then, from (42) and I > L1, we get

p—1
1 o = (5=1) p rx e v
ﬂnﬁgfuapﬂylkﬂ M+ g6V ()

:| ds > —[Cs(L) + Ce(L, Lq)].

Since, the R.H.S of the above inequality is a negative constant, it follows that

p—1
I p1 e ST 4 I (0g(s)V (s))
TS (I=s) /7 ya—1 h P8 —o00
lhrgomfl /L e’ (I—s) { 0] ds > —oo,

which leads to a contradiction with the condition (36).

n—1
Case(ii): Leta > 1. Thenn > 2 and (l%“) < 1forn >2and « > 1. Since

—1
epﬂ(l”)’ < 1and

the function hy(1) = (I — a)k="*+1 is decreasing for k > n — 1 and for | > L;, we have

nlop o1
1-n _ 1-n k Nk (I—a)
‘z ‘I’(l)‘ = I r(,x)kgopmk! (1—a)ke'
_ n—1n-1
— p“F(DC) (l a) Z ik (l a)k_n+16 7 (I-a)
! =0 k!
< o = ‘bk| I k—n+1 45
< P L - )
n—1 bol(Li —a k—n+1
< p“r(lx) Z | k|( 1 . )
k=0 O°K!
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and
—1
. o L) (€T ETIME 4 1 (pg(s)V(s))
o) = "/ e 9 (1 — gy 7 ds
a
L I) A e
= e e (L) (£ M 1 (g V)|
a (S)
E/’(S ll)M*+lIlp pg )

IN

/

= Cg(L).

() )

From Equations (42), (45) and (46), we conclude that for / > L,

Ly P %
on [ &0 e [ M A V)

] ds > —[C7(L1) + Cs(L)].

Since, the R.H.S of the above inequality is a negative constant, it follows that

p—1
I p—1 p’(S*ll)M* L v
lim infll_”/ ePT(l_S)(l—s)"‘_1 ‘ i 17 (03()V(S)) ds > —oo,
[—o00 L V(S)

which contradicts the (36).
Therefore, y(!) is oscillatory. If y(I) is eventually negative, by a similar argument, we get
a contradiction with condition (37). Hence the theorem. [

Remark 1. If we put p = 1 in Theorem (1) and Theorem (2), then they reduced to Theorem 3.1 and Theorem
4.1, respectively, of [24].

5. Examples

This section include some examples for the illustration of our main results.

Example 1. Consider the following GPF initial value problem

oD3y(1) — oD2Ay(1) + (1 +7)2(y + 3)e% = e?'sinl, >0,
(47)
lim 012 y( ) = bl-

=0+t

Settinga = 3, 0=1,a=0,p() = —1,9(1) = (1+7)2 f(y) = (y+3)e“>%, g(I) = ¢* sin] and
V(1) = e =, The assumption (H) is satisfied if y(I) > 0. Then,

1,0 1 /s E(sf"r)
W g6V ) = o [T pg(mv (e
1
= /lsell”sianT
1
ell+s 3211

= — (sins — coss) — - (sinly —cosly)

a5

21

(sinly —cosly).
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Set a point /; = 7. Hence, we compute that

V(s)

1! lgx e\ V2 x s
= ZZ/O(Z—S) 2¢°72 [(M—2>+2€2 sm(s—z> ds.

2

_ £ (s—h) ,
llfac/l u(lfs)(l_s)txfl [e ? o M—Fllllp(pg(S)V(S))] ds
0

By setting | —s =7

1ol lgx N V2 x s
12/0(1—5) ze” 2 [(M—z)—l-zeZ s1n<s—Z) ds

O T
l% 1 - l 2M > ﬁeYH*Tzsin (Z—Tz—n)l (—27)dt

, we can get the above integral as

( 2 4
v Vi
= (2M—¢") % 7/ _Tdr+\flfe2l/ e‘zfzsin(lfrzf—)dr
0 0
< (VI Vi
= (2M-—¢") % 7/ e Tdr + V212 s1n(l Z)/ e 27 cos T2dT
0

v/
\flieﬂcos (l g)/ ¢~27 sin T2dT.
Jo

272 2| < e—ZTZ |€—2T2 2| < 6—21'2

Let | — +4oo as the result of |e “T cosT , sinT
. 2 Nor . 2
and lim;_, fo\ﬂe’h dt = Y2  Thus, we know that lim/, fo\/le’h cos T2dT and
. 2 .
lim; 1 o foﬂ e 2" sin T2dT are convergent.

—272

Hence, we set lim;_, , o, foﬂe cos T2dT = A and lim;_, ,, fo\ﬁ ¢=2" sint2dt = B. Select the

sequence {l} = {37” + & + 2k — arctan (—%) }, lim; 4 o Iy = oo, then

1 e Vi
lim {126 | (2M —e™)e 2 / “e T dr + v2ek | sin (lk - E) / "2 cos T2t
k—+oc0 0 47 Jo

7T \/E —272 . 2
— cos (lk — Z) /0 e sin tdt . (48)
Firstly, we consider the following limit:

I I
lim {sin (lk - g) /0\/7(6_”2 cos T2dT — cos (lk - g) /()ﬁ€_2T2 sin T2dT}

k—+oc0
= A- lim sin 3—” + 2kt — arctan —E — B- lim cos 3—” + 2k7t — arctan —E
k—+o0 2 A k—+oc0 2 A

= A-sin 3—7-[—1‘tn _B —-B- 3—n—rtn _B
= s 5 —arcta 1 cos ( —- —arcta 1

—V/A2 1+ B2,
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Secondly, we know that limy_, , el = 400 and limy 4 oo 2Melke™ % Oﬂ e~ Tdt = 2Me~ % @ =

V/TMe™ % . Hence, for (48), we have

1 . ! l
lim {lkzelk l(ZM —e)e 2 /ﬂerzd7+ V2elk <sin (lk - E) /\/;e”2 cos T2dt
0 0

k—+o0 4

— cos (lk — %) /O\/Ee_hz sin Tsz>‘| }
= [VAMeE 4 (o) (VAT )]

= —00,

Then, we obtain

ds = —o0 < 0.

=151
i infr [ e 070 g1 | CTM I (0g(5)V(5))
" V()

|—o0

Similarly, selecting the sequence {I,} = { 3 + £ + 2r7 — arctan (— %) }, we can obtain

=

p—1
1 -1 E=(s—1) Il,p
[ g | MER L TESOVED g o
0 V(s)
Therefore, by Theorem 1 all solutions of the problem (47) are oscillatory.
Example 2. Consider the following GPF Caputo initial value problem
3 1
{ OCDZ’ly(l) — gDZ'ly(l) + el In(y? +¢) = e? cosl, >0, @9)
y(0) = bo.

Settinga = 1, p=1,a=0,p() = -1, 4q(I) = eF1? £(y) = In(y2 +¢), g(I) = ¢ cosl and
V(1) = e ~!. The assumption (H) is satisfied if y(I) > 0. Then, we get

Lo L[ (s
W36V ) = o [T pg(mv (e
1
s
= /ell+TcosrdT
1
ell+s 214

= (sins 4 coss) — % (sinly +cosly)

2 11+S 211
\[62 sin (s+g) f%(sinll +cosly).

Set Iy = 7 with n = 1. Hence, we can compute that

[t O N
pon [0 g [ Y ol <pg<s>v<s>>] .
0
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By setting | — s = 72, we can get the above integral as

! 1 hig e \/E g 7T
A P * v Ve, 5+ o3 i
/O(Z s) 2e° 2 [(M 2>—|— 5 e’ sm<s+ 4)

0 s *_ et s
[(me) + L g (124 T)

ds

T 7 4 (—27)dt

L VI Vi
= (2M* —eM)e 2 / e Tdr + \fZeZI/ e 27 gin (l . %) dt

0 0
. (VI Vi
= (2M* —eM)e 2 /0 e T dt + v/2¢% sin (l + %) /0 e 27 cos T2t

—v/2¢? cos (l + g) /O\ﬁehz sin T2dT.
Let | — 4o as the result of \e’ZTZ cost?| < e 27, |e’ZTZ sint?| < e 2T
and lim;_, o foﬂe_ZTsz = @. Thus, we know that lim; ., fo\ﬁ e 27 cos 2dT and
lim; fo\ﬂ =27 sin 72dT are convergent.

Hence, we can set lim;_, fo\ﬁ e~27 cost?dT = A and limy o fo\ﬂ e 2 sint?dt = B.
Select the sequence {l;} = {77” — & + 2k — arctan (—%) }, lim; , o [y = oo, then we compute
the following term:

. I I
(2M* —e™)e 2 /ﬂ e dT + V2l (sin (lk + E) /\/; e 2 cos T2t
0 0

lim { el
k—+oc0 { 4

l
— cos (lk + E) /ﬂ e 2% sin TZdT>1 } (50)
4/ Jo
Firstly, we consider the following limit:

1 1
lim {Sin (lk + E) /ﬂghz cos T2dT — cos (lk + ﬂ) /ﬂesz sin T2dT}
0 0

k—+o00 4 4
7 7

= A- lim sin —n+2k7rfarctan fE — B- lim cos £+2k7rfarctan fE

k—~+o0 2 A k—+o0 2 A
= A-sin 7—ﬂ—arc’fan —E — B - cos 7—ﬂ—arctan —E
o 2 A 2 A
= —\A2+B2

- I - o (VI 12

Secondly, we know that limj_, e* = +oo and limy_, 2M* ke 2 [V e Tdr =

2M*e~ 3 @ = /TM*e~ 2. Hence, for (50), we have

4

NG 1
2M* —e")e 2 /ﬂeTsz + V/2¢l (sin (lk + E) /\/TCEZTZ cos T2dt
0 0

lim { el
k—+-c0

— cos <lk + g) /O\/ﬁ e=2% sin Tsz>] }
= [vAMre 4+ (+o0) (- A2+ B2

= —0Q.
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Then, we obtain

lim inf
[—00

p—1
. S (5=h) prs ,
o [ g [ W +vléi>lp(pg(s)v(s))] PN

Similarly, selecting the sequence {I,} = {% — & +2rm — arctan (— %) }, we can obtain

[
) /‘le%(l—@(l—s)w—l e M 4 1Y (pg(s)V ()
V(s)

]ds:+00>0.

Therefore, by Theorem 2 all solutions of the problem (49) are oscillatory.

Example 3. Consider the following GPF Riemann-Liouville initial value problem

oDy (1) + VI (jE + 53”) =, 1>0,

1
(-y)4
lim oI2y(1) = 0.

=0+t

Settinga = 1, p=1,a=p(l) =0,9(1) = VI, f(y) = 7w gy =eland V(1) = 1.
The assumption (H) is satisfied if y(!) > 0. Then,

1 8 el s e e 1
1,0 _ = (s—1) — / 3T — _ v 2 (8 _ 3L
LI (0g(s)V(s)) ; /11 er pg(T)V(T)dT A e’tdt 3 "3 3 (e e )

By setting Iy = % and [ — s = 72, it follows that

However, the condition (22) does not holds since

p—1
I o £ (s—a) 1p
lim inﬂm/ S 0-5) ) _ gpaet [e O M1 (pg(s)V(s))] N
0

I—00 V(S)
= Jim inf {21% (M — g) VI+ %ey /O\ﬁe_“%dr] }
_ {(M_ g) (+00) + (+oo)‘/f] = .

Using Proposition 1 (ii) with &« = %, B=3andp =1, we get ,D*""y(l) = —4‘—£, it is easy to verify
that y(I) = —I? is a nonoscillatory solution of (51). Figure 1 demonstrates the solution y(I) = —I2.
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The solution y{l}
@

o 08 1 15 2 25 2 35 4
Walue of |

Figure 1. The nonoscillatory behavior of the solution y(I) = —I2.

6. Conclusions

In this paper, the oscillatory behavior of solutions of generalized proportional fractional initial
value problem is studied. Forced and damped oscillation results are obtained via GPF operators in
the frame of Riemann-Liouville and Caputo settings. The main theorems of this paper improve and
generalize some existing oscillation theorems reported in the literature. In particular, for the choice of
p = 1, our contributions obtained using GPF operators cover the results discussed in Reference [24]
which are obtained via conformable operators. At the end, we presented some numerical examples
with particular values of parameters to illustrate the validity of the proposed results. Interestingly,
we provided an example demonstrating that the failure of any condition forces the existence of
a nonoscillatory solution. This justifies the advantage of our findings.

We believe that the results of this paper are of great importance for the audience of interested
researchers. Several types of oscillation conditions could be generalized by considering respective
equations within GPF derivatives.
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