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Abstract: In this paper, based on the concept of complete-closed time scales attached with shift
direction under non-translational shifts (or S-CCTS for short), as a first attempt, we develop the
concepts of S-equipotentially almost automorphic sequences, discontinuous S-almost automorphic
functions and weighted piecewise pseudo S-almost automorphic functions. More precisely, some
novel results about their basic properties and some related theorems are obtained. Then, we apply
the introduced new concepts to investigate the existence of weighted piecewise pseudo S-almost
automorphic mild solutions for the impulsive evolution equations on irregular hybrid domains.
The obtained results are valid for q-difference partial dynamic equations and can also be extended
to other dynamic equations on more general time scales. Finally, some heat dynamic equations on
various hybrid domains are provided as applications to illustrate the obtained theory.
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1. Introduction

Almost automorphic functions, which are more general than the almost periodic functions,
were introduced by Bochner (see [1–3]) in relation to some aspects of differential geometry.
Almost automorphic solutions in the context of differential equations have been studied by several
researchers. For instance, pseudo and weighted pseudo almost automorphic mild solutions to
(fractional) evolution equations were investigated by Chang et al. [4–6], Ding et al. [7,8], Diagana [9,10].
Subsequently some interesting properties of the space of weighted pseudo almost automorphic
functions like the completeness and the composition theorem were reported in [11,12] by N’Guérékata
which have many applications in the context of differential equations. For more details about this
topic we refer to the recent books (see [10,11]), where the authors gave important overviews about the
theory of almost automorphic functions and their applications to differential equations.

Since time-scale calculus was proposed by Hilger [13], Bohner and Guseinov have extensively
developed this theory on the aspect of integral and dynamic equations (see [14,15]). To study the
approximation properties of time scales, some new concepts such as almost periodic time scales and
changing-periodic time scales were proposed and studied by Agarwal et al. (see [16,17]). In addition
to these fundamental results, there have been many works on different types of dynamic equations
on time scales. For example, the concept of variable time scales was introduced and a novel idea of
the mutual transformation between impulsive dynamic equations and dynamic equations on variable
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time scales was initiated by Akhmet et al. [18–20]. In the literature [21], Bohner et al. established
an SIR model on the general time scales and derived its exact solution. In [22], the existing ideas of
the univariate case of the time-scale calculus was generalized to the bivariate case and applied to
partial dynamic equations. In the stability analysis, Martynyuk and Stamova investigated the sets of
dynamic equations and hybrid dynamic systems on time scales (see [23,24]). In [25,26], two types of
new high order derivations were introduced and the existence of solutions for the type high order
fractional integro-differential equations was studied by Aydogan and Baleanu et al., and these types
of fractional corresponding derivatives were generalized to time scales by Mozyrska, Ortigueira and
Torres et al. (see [27,28]). In the field of studying functions and applications, it is a hot topic to study
the almost automorphic and almost periodic functions and applications to dynamic equations based
on time scales. For example, Hong investigated the almost periodic set-valued functions and almost
periodic set dynamic equations on time scales (see [29]). On almost automorphic functions and its
related problems, Kéré, Mophou, N’Guérékata et al. investigated (n-order ) almost automorphic and
asymptotically almost automorphic functions of n-order, some basic results were obtained and applied
to abstract dynamic equations (see [30–32]). In 2020, based on the concepts the authors introduced on
translation time scales, Wang et al. established a theory of closedness of translation time scales and
their applications to evolution equations and dynamical models (see the monograph [33]). In addition,
a new concept of periodic time scales and the notion of shift operators of time scales were proposed
and studied under the background of studying periodic functions (see Adıvar et al. [34,35]). It is easy
to observe that periodic time scales under translations have a nice closedness and their graininess
function µ is bounded.

However, some classical and important time scales are irregular and they have the unbounded
graininess function µ. For example, T = qN0 := {qt : t ∈ N0 for q > 1} ∪ {0}, where N0 is the
set of natural numbers or T = qZ := qZ ∪ {0} or quantum-like time scale T = (−q)Z (which has
applications in quantum theory) and other types of time scales like T = N2 and T = Tn the space of
the harmonic numbers (it is of interest to study almost automorphic dynamic behavior of solutions for
q-difference-like dynamic equations among others, see Wang et al. [36–38]). It is impossible to introduce
almost automorphic functions on such a type of time scale since the translation approximation of
functions will never be reached for the reason that the graininess function µ is a strictly increasing
function for time scales. In addition, many natural phenomena must be modeled as a process in which
continuous evolution is usually interrupted by an event (impulses, catastrophe, etc., see Stamova [39,40]
and Wang et al. [41–43]), which motivates us to investigate general evolution equations with impulses
on irregular hybrid domains.

In the present paper, for the first time, we study the existence of weighted piecewise pseudo
S-almost automorphic mild solutions for the impulsive evolution dynamic equations{

x∆(t) = A(t)xσ + f
(
t, x(t)

)
, t ∈ T, t 6= tk, k ∈ Z,

∆̃x(tk) = x(t+k )− x(t−k ) = Ik
(
x(tk)

)
, t = tk,

(1)

where A ∈ PCrd
(
T, B(X)

)
is a bounded linear operator in the Banach space X and f ∈ PCrd(T×

X,X), xσ = x
(
σ(t)

)
. f , Ik, tk satisfy suitable conditions that will be established later and T is a

complete-closed time scale attached with shift direction under non-translational shifts (S-CCTS).
In addition, the notations x(t+k ) and x(t−k ) represent the right-hand and the left-hand side limits
of x(·) at tk, respectively. In addition, some Lemmas are obtained and the exponential stability of
weighted piecewise pseudo S-almost automorphic mild solutions is also studied. Finally, we apply
these obtained results to study a class of ∆-partial differential equations on S-CCTS. The obtained
results in this paper are feasible and effective on q-difference partial dynamic equations and more.

For instance, in (1), by using the shift operators δ± in Section 2,
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(i) if we let T = N 1
2 = {

√
n : n ∈ N} and tk =

√
k2 + 1, k ∈ Z, then (1) turns into

x(
√

t2+1)−x(t)√
t2+1−t

= A(t)xσ + f
(
t, x(t)

)
, t ∈ T, t 6= tk, k ∈ Z,

∆̃x(tk) = x(t+k )− x(t−k ) = Ik
(
x(tk)

)
, t = tk;

(ii) if we let T = {qn : q > 1, n ∈ Z} = qZ and tk = qk3
, k ∈ Z, then (1) turns into

x(qt)−x(t)
(q−1)t = A(t)xσ + f

(
t, x(t)

)
, t ∈ T, t 6= tk, k ∈ Z,

∆̃x(tk) = x(t+k )− x(t−k ) = Ik
(
x(tk)

)
, t = tk;

(iii) if we let T = hZ, h > 0 and tk = hk3, k ∈ Z, then (1) turns into{ x(t+h)−x(t)
h = A(t)xσ + f

(
t, x(t)

)
, t ∈ T, t 6= tk, k ∈ Z,

∆̃x(tk) = x(t+k )− x(t−k ) = Ik
(
x(tk)

)
, t = tk;

(iv) if we let T =
{
(−q)n : q > 1, n ∈ Z

}
∪ {0, 1} and tk = (−q)3k, k ∈ Z, then (1) turns into

x(qtt)−x(t)
(qt−1)t = A(t)xσ + f

(
t, x(t)

)
, t ∈ T, t 6= tk, k ∈ Z,

∆̃x(tk) = x(t+k )− x(t−k ) = Ik
(
x(tk)

)
, t = tk,

where qt = q2 if t > 0 and qt = 1/q2 if t < 0, it is a classical q-dynamic system on quantum-like
hybrid domains.

We provide four types of impulsive evolution dynamic equations in the above, in fact, (1) will
turn into other different types of dynamic equations on different types of complete-closed time scales
attached with shift direction under translational or non-translational shifts.

The highlights of the paper can be summarized as follows

• We introduce the concept of S-equipotentially almost automorphic sequences under S-CCTS.
• We establish a theory of discontinuous S-almost automorphic functions and weighted piecewise

pseudo S-almost automorphic functions. Some new results about their basic properties and some
related theorems are obtained.

• The existence of weighted piecewise pseudo S-almost automorphic mild solutions for the
impulsive evolution equations on irregular hybrid domains is studied.

• The obtained results in this paper are effective for q-difference heat equations and other dynamic
equations on more general hybrid domains.

2. S-Equipotentially Almost Automorphic Sequence Under S-CCTS

In this section, we will introduce some knowledge of complete-closed time scales under
non-translational shifts (or S-CCTS for short) and then define S-equipotentially almost automorphic
sequence and study its properties. For more details about time-scale calculus and S-CCTS, one may
refer to the book [14,17].

For convenience, we introduce the notations. Let T∗ be the largest open subset of T, i.e., T∗ = T.

D± =
{
(s, t) ∈ T∗ ×T∗ : δ±(s, t) ∈ T∗

}
.

For any s ∈ T∗, denote

Tδs−∗ := δ−(s,T∗) :=
{

δ−(s, t) : (s, t) ∈ D−, ∀t ∈ T∗
}

, (2)
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Tδs+∗ := δ+(s,T∗) :=
{

δ+(s, t) : (s, t) ∈ D+, ∀t ∈ T∗
}

. (3)

Definition 1 ([36]). Let T be a time scale with the shift operators δ± associated with the initial point t0 ∈ T∗.
The time scale T is said to be bi-direction S-CCTS in shifts δ± if

Π± :=
{

p ∈ T∗ : (p, t) ∈ D± for all t ∈ T∗
}
6∈
{
{t0}, ∅

}
. (4)

Remark 1. Note that from (2) and (3), we obtain that (4) can be written into the equivalent form Π± =
{

p ∈

T∗ : T
δp±
∗ ⊆ T∗

}
6∈
{
{t0}, ∅

}
.

Example 1. According to Definition 1, we provide the following examples of S-CCTS. Let T = (−q)Z ={
(−q)n : q > 1, n ∈ Z

}
∪ {0}. We can obtain that Π± =

{
(−q)2n : q > 1, n ∈ Z

}
. For such a time scale,

for any t ∈ T∗, take t0 = 1, we attach the shift operators

δ+(s, t) =

{
st, t > 0,
t
s , t < 0,

δ−(s, t) =

{
t
s , t > 0,

st, t < 0.

Hence, there exists q2 ∈ Π± such that δ±(q2, t) ∈ T∗ for all t ∈ T∗, i.e., Π± 6∈
{
{1}, ∅

}
. From Definition 1,

T is a S-CCTS with bi-direction.

Remark 2. Note that if T is a periodic time scales under translations and Π± ⊆ T∗, then the shift operators
will fulfill δ±(τ, t) = t± τ ∈ T with the initial point t0 = 0. Hence, if Π± ⊆ T∗, then T-CCTS is included in
S-CCTS.

If T is a bi-direction S-CCTS and t0 is the initial point, then for any s ∈ Π±, we define a function
A : Π± → Π±,

A(s) =

{
δ+(s, t0), s > t0,

δ−(s, t0), s < t0,

which will be used later. Note that A(s) > t0 and A(s) ≥ s.

Remark 3. If Π± ⊂ T∗ and δ±(s, t0) = s± t0, let t0 = 0, then one can easily obtain A(s) = |s|.

In what follows, we will demonstrate some examples to show the almost automorphic phenomena
for functions on S-CCTS, which are completely different from the cases on periodic time scales
under translations.

Example 2. Let T = R and Π = [0,+∞), and we define the following operators:

δ+(τ, t) =

{
τt, if t ≥ 0,

t/τ, if t < 0,
for τ ∈ [1,+∞) ∩Π,

and

δ−(τ, t) =

{
t/τ, if t ≥ 0,

τt, if t < 0,
for τ ∈ [1,+∞) ∩Π.

Step 1. Periodic function construction. We know that the set of reals R is periodic under shifts δ±.
The function

fτ(t) = cos
(

ln |t|
ln(1/

√
τ)

π

)
, τ > 1 and t ∈ T∗ = R\{0}
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is periodic under shifts δ± with the period τ = P2, P > 1 since

fτ

(
δτ±1(t)

)
=

{
fτ(tP±2), if t ≥ 0,

fτ(t/P±2), if t < 0,
= cos

(
ln |t| ± 2 ln(1/P)

ln(1/P)
π

)

= cos
(

ln |t|
ln(1/P)

π ± 2π

)
= cos

(
ln |t|

ln(1/P)
π

)
= fτ(t).

Step 2. Almost periodic function construction. Based on Step 1, consider the function

F̃(t) = cos
(

ln |
√

2t|
ln(1/P1)

π

)
+ cos

(
ln |
√

3t|
ln(1/P2)

π

)
,

where P1 6= P2, P1, P2 > 1 and t ∈ T∗ = R\{0}. One can observe that F̃(t) is almost periodic under shifts δ±.
From Step 1, let

fP2
1
(
√

2t) = cos
(

ln |
√

2t|
ln(1/P1)

π

)
, fP2

2
(
√

3t) = cos
(

ln |
√

3t|
ln(1/P2)

π

)
,

we obtain that F̃(t) = fP2
1
(
√

2t) + fP2
2
(
√

3t), and note that fP2
1

and fP2
2

are periodic with different periods

P2
1 , P2

2 , respectively.
Step 3. S-almost automorphic function construction. According to the above, consider the function

F̂(t) = cos
(

1

2 +
[

cos
( ln |

√
2t|

ln(1/P1)
π
)
+ cos

( ln |
√

3t|
ln(1/P2)

π
)]),

where P1 6= P2, P1, P2 > 1 and t ∈ T∗ = R\{0}. One can observe that F̂(t) is almost automorphic under

shifts δ±. From Step 2, we can obtain that F̂(t) = cos
(

1
2+ fP2

1
(
√

2t)+ fP2
2
(
√

3t)

)
.

Example 3. The time scale qZ =
{

qn : n ∈ Z and q = 3
√

3
}
∪ {0} is periodic with period τ under the shift

operator δ±.
Step 1. Periodic function construction. The piecewise periodic function defined by

f1(t) =
[
θ(t)

] ln t
ln q , f2(t) =

[
θ(t)

] ln qt
ln q , θ(t) =

{
1, t > 1,

−1, 0 < t < 1.

Let τ = q4 and δ±(τ, t) = q±4t ∈ qZ\{0} = qZ, we have f1
(
δ±(τ, t)

)
=
[
θ(t)

] ln t
ln q±4

=
[
θ(t)

] ln t
ln q = f1(t)

for all t ∈ qZ. Hence, f1(t) is a periodic function with period q4. Similarly, let τ = q5, we can obtain
f2
(
δ±(τ, t)

)
= f2(t).

Step 2. Almost periodic function construction.
Through Step 1, we can obtain an almost periodic piecewise function

F(t) = f1(t) + f2(t) =
[
θ(t)

] ln t
ln q +

[
θ(t)

] ln qt
ln q

on qZ, where f1, f2 are periodic piecewise functions on qZ, respectively. Note that the periods of f1 and f2 are
completely different.

Step 3. Almost automorphic function construction.
According to the above, let

F̃(t) =
1

3 + F(t)
=

1

3 +
[
θ(t)

] ln t
ln q +

[
θ(t)

] ln qt
ln q

,
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which is an almost automorphic function on qZ.

Let
B =

{
{tk} : tk ∈ T : tk+1 > tk, k ∈ Z, lim

k→±∞
tk = ±∞

}
with θ = infk∈Z δ−(tk, tk+1) > 0.

Next, based on Definition 1, we will introduce the concept of S-equipotentially almost
automorphic sequence and study its properties.

Definition 2. Assume T is S-CCTS with shifts δ±. Let {tk} ∈ B, k ∈ Z. We say {tj
k} is a S-derivative

sequence of {tk} and
tj
k = δ−(tk, tk+j), k, j ∈ Z.

Remark 4. If T is a periodic time scale under translations, then one can obtain the classical derivative sequence
of {tk} satisfying tj

k = tk+j − tk by letting δ±(s, t) = t ± s. Particularly, if T = R, one can obtain the
derivative sequence of {tk} from [40] (pp. 191-194) immediately.

Lemma 1 ([37]). If T∗ be the largest subset of T and including a fixed number t0 ∈ T∗ such that there exist
operators δ± : T∗ → T∗, then

(1) δ−
(
s, δ+(u, t)

)
= δ+

(
δ−(s, u), t

)
, δ+

(
s, δ−(u, t)

)
= δ−

(
δ−(s, u), t

)
.

(2) δ−
(
s, δ−(u, t)

)
= δ−

(
δ+(s, u), t

)
, δ+

(
s, δ+(u, t)

)
= δ+

(
δ+(s, u), t

)
.

(3) δ+
(
δ−(u, s), δ−(s, t)

)
= δ−

(
δ+(u, s), δ+(s, t)

)
= δ−(u, t).

Lemma 2 ([37]). If tj
k = δ−(tk, tk+j) and k, j ∈ Z, then

δ−(t
j
k, tj

k+k1
) = δ−(t

k1
k , tk1

k+j), δ−(t
k1
k , tj

k) = tj−k1
k+k1

.

Based on the S-derivative sequence and its properties, we will propose the following definition.

Definition 3. Let T be a S-CCTS under shifts δ± and tj
k = δ−(tk, tk+j), k, j ∈ Z. The sequence {tj

k}, k, j ∈ Z
is said to be S-equipotentially almost automorphic if for any sequence {sn} ⊂ Z, there exists a subsequence {s′n}
such that

lim
n→∞

ts
′
n

k = γk

is well defined for each k ∈ Z and

lim
n→∞

γ
−s
′
n

k = tk

for each k ∈ Z.

Remark 5. In Definition 3, note that T is a closed subset of R, thus, for each k ∈ Z, one has γk ∈ T.

3. S-Almost Automorphic Functions and Weighted Pseudo S-Almost Automorphic Functions

Let X be a Banach space endowed with the norm ‖ · ‖. B(X,Y) denotes the Banach space of all
bounded linear operators from X to Y. This is simply denoted as B(X) when X = Y. BC(T,X) is the
space of bounded continuous function from T to X equipped with the supremum norm defined by
‖u‖∞ = supt∈T ‖u(t)‖.

In the following, we will give the definition of rd-piecewise continuous functions on time scales.

Definition 4. We say ϕ : T→ X is rd-piecewise continuous with respect to a sequence {tk} ⊂ T which satisfy
tk < tk+1, k ∈ Z, if ϕ(t) is continuous on [tk, tk+1)T and rd-continuous on T\{tk}. Furthermore, [tk, tk+1)T
are called intervals of continuity of the function ϕ(t).
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For convenience, PCrd(T,X) denotes the set of all rd-piecewise continuous functions with respect
to a sequence {tk}, k ∈ Z. For {tk}k∈Z ∈ B, let

BPCrd(T,X) =:
{

φ ∈ PCrd(T,X) :

‖φ‖ ≤ M, where M is a positive constant and φ(tk) = φ(t+k ), k ∈ Z
}

;

let Ω be a subset of X and

BPCrd(T×Ω,X) =:
{

φ ∈ PCrd(T×Ω,X) : ‖φ‖ ≤ M, where M is a positive constant

and φ(tk, x) = φ(t+k , x), k ∈ Z, φ(t, ·) is continuous at x ∈ Ω for any t ∈ T
}

;

UPC(T,X) =:
{

ϕ ∈ PCrd(T,X) :

ϕ is uniformly rd-continuous on the interval [tk, tk+1)T for k ∈ Z
}

.

Remark 6. ϕ ∈ Crd(T,X) is uniformly rd-continuous on the interval [a, b]T if and only if for any ε > 0, there
exists δ(ε) > 0 such that for all right dense points t1, t2 ∈ T and |t1 − t2| < δ implies ‖ϕ(t1)− ϕ(t2)‖ < ε

(see Definition 2.1 of [29]).

Now, let T, P ∈ B and let s(T ∪ P) : B → B be a map such that the set s(T ∪ P) forms a strictly
increasing sequence. For D ⊂ T and v > 0, we introduce the notations θv(D) = {δ−(v, t), t ∈ D},
Fv(D) = D ∩ {θv(D)}. Denote by φ̃ = (ϕ(t), T) the element from the space PCrd(T,X)×B. For every
sequence of real numbers {sn} ⊂ Π±, n = 1, 2, . . . with θsn φ̃ :=

(
ϕ(δ+(sn, t)), δ−(sn, T)

)
, we shall

consider the sets
{

ϕ(δ+(sn, t)), δ−(sn, T)
}
⊂ PCrd ×B, where

δ−(sn, T) =
{

δ−(sn, tk) : k ∈ Z, n = 1, 2, . . .
}

.

Definition 5. The sequence {φ̃n}, φ̃n =
(

ϕn(t), Tn
)
∈ PCrd(T,X) × B is convergent to φ̃∗ pointwise,

φ̃∗ =
(

ϕ∗(t), T∗),
(

ϕ∗(t), T∗) ∈ PCrd(T,X)× B, if and only if for any ε > 0 there exists n0 > 0 such that
n ≥ n0 implies

d(Tn, T∗) < ε, ‖ϕn(t)− ϕ∗(t)‖ < ε pointwise

for t ∈ T\Fε

(
s(Tn ∪ T∗)

)
, d(·, ·) is an arbitrary distance in B.

For convenience, consider the metric space BPCrd(T,X)×B with the metric

d∞ = sup
t∈T\B

d̃(φ̃t, φ̃∗t ),

where
d̃(φ̃t, φ̃∗t ) = max

{
d(T, T∗), ‖ϕ(t)− ϕ∗(t)‖

}
,

and φ̃ =
(

ϕ(t), T
)
, φ̃∗ =

(
ϕ∗(t), T∗

)
.

Theorem 1. The metric space
(

BPCrd(T,X)×B, d∞
)

is complete.

Proof. For any given Cauchy sequence
{

φ̃n =
(

ϕn(t), Tn
)}
⊂ BPCrd(T,X)× B, we can obtain that

the sequences {ϕn(t)} and {Tn} be the Cauchy sequences in the metric space (BPCrd(T,X), ‖ · ‖∞)

and (B, d) respectively. Hence, for any ε > 0, there exists some n0 > 0 such that n, m > n0 implies
d(Tn, Tm) < ε, which yields that |t(n)k − t(m)

k | < ε for any k ∈ Z. Thus there exists tk such that n > n0
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implies |t(n)k − tk| < ε. Therefore, there exists {tk} = T such that n > n0 implies d(Tn, T) < ε. Moreover,
for n > n0, we can obtain

δ−(tk, tk+1) =
(∣∣δ+(tk+1, δ−(t

(n)
k+1, δ−(tk, δ+(t

(n)
k , δ−(t

(n)
k , t(n)k+1))))

)∣∣
=

∣∣δ+(tk+1, δ−(t
(n)
k+1, δ+(δ−(tk, t(n)k ), δ−(t

(n)
k , t(n)k+1)))

)∣∣
=

∣∣δ−(δ−(tk+1, t(n)k+1), δ+(δ−(tk, t(n)k ), δ−(t
(n)
k , t(n)k+1))

)∣∣
=

∣∣δ+(δ−(δ−(tk+1, t(n)k+1), δ−(tk, t(n)k )), δ−(t
(n)
k , t(n)k+1)

)∣∣
≥

∣∣δ−(A(δ−(δ−(tk+1, t(n)k+1), δ−(tk, t(n)k ))), δ−(t
(n)
k , t(n)k+1)

)∣∣
=

∣∣δ−(A(t0) + o(α), δ−(t
(n)
k , t(n)k+1)

)∣∣ ≥ ∣∣δ−(A(t0) + o(α), θn
)∣∣,

where θn = infk∈Z δ−(t
(n)
k , t(n)k+1) > 0 and limn→∞ o(α) = 0, thus there exists some n0 > 0 such that

n > n0 implies
inf
k∈Z

δ−(tk, tk+1) ≥
∣∣δ−(A(t0) + o(α), θn

)∣∣ > 0,

so we obtain T ∈ B, which indicates (B, d) is complete.
For any fixed t ∈ T\Fε

(
s(Tn ∪ T)

)
, ϕn(t) ⊂ BPCrd(T,X) is a Cauchy sequence in the Banach

space X, hence for any ε > 0, there exists some ϕ(t) ∈ X such that n > n0 implies

‖ϕn(t)− ϕ(t)‖ < ε pointwise. (5)

We claim that ϕ(t) is also bounded on T\Fε

(
s(Tn ∪ T)

)
. In fact, there exists some n0 > 0 such that

n, m > n0 implies ‖ϕn − ϕm‖∞ < 1, so for all t ∈ T\Fε

(
s(Tn ∪ T)

)
we have

|ϕ(t)| < |ϕ(t)− ϕn0(t)|+ |ϕn0(t)| < ‖ϕ− ϕn0‖∞ + ‖ϕn0‖∞ ≤ 1 + ‖ϕn0‖∞.

To complete the proof, it is sufficient to show ϕn → ϕ in norm on T\Fε

(
s(Tn ∪ T)

)
, i.e., ‖ϕ−

ϕn‖ → 0 as n→ ∞. According to (5), there exists some n0 > 0 such that n, m > n0 implies

‖ϕ− ϕn‖∞ ≤ ‖ϕn − ϕn0‖∞ + ‖ϕ− ϕn0‖∞

≤ ‖ϕn − ϕn0‖∞ + lim
m→∞

‖ϕm − ϕn0‖∞ ≤ ε + ε = 2ε

for all t ∈ T\Fε

(
s(Tn ∪ T)

)
, so ‖ϕ− ϕn‖∞ ≤ ε. This completes the proof.

Definition 6. Let T be a bi-direction S-CCTS. A function ϕ ∈ BPCrd(T,X) is said to be rd-piecewise S-almost
automorphic if the following conditions are fulfilled:

(i) Let T = {tk} be a S-equipotentially almost automorphic sequence.
(ii) Let ϕ ∈ BPCrd(T,X) be a bounded function with respect to a sequence T = {tk}. Then ϕ is said to be

piecewise S-almost automorphic if from every sequence {sn}∞
n=1 ⊂ Π±, we can extract a subsequence

{τn}∞
n=1 such that

φ̃∗ =
(

ϕ∗(t), T∗
)
= lim

n→∞

(
ϕ(δ+(τn, t)), δ−(τn, T)

)
= lim

n→∞
θτn φ̃

is well defined for each t ∈ T and

φ̃ =
(

ϕ(t), T
)
= lim

n→∞

(
ϕ∗(δ−(τn, t)), δ+(τn, T∗)

)
= lim

n→∞
θ−τn φ̃∗

for each t ∈ T. Denote by AAS(T,X) the set of all such functions.
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(iii) A bounded function f ∈ BPCrd(T×X,X) with respect to a sequence T = {tk} is said to be piecewise
S-almost automorphic if f (t, x) is piecewise S-automorphic in t ∈ T uniformly for x ∈ B, where B is any
bounded subset of X. Denote by AAS(T×X,X) the set of all such functions.

Similarly, we can also introduce the concept of piecewise S-almost automorphic functions that
belong to PCrd(T,X).

Let U be the set of all functions ρ : T→ (0, ∞) which are positive and locally ∆-integrable over T.
For a given r ∈ (0, ∞)Π± and ∀t0 ∈ T∗, set

mS(r, ρ, t0) :=
∫ δ+(r,t0)

δ−(r,t0)
ρ(s)∆s (6)

for each ρ ∈ U.

Remark 7. Particularly, if we let T = {qn : n ∈ Z, q > 1} ∪ {0} and t0 = q, then (6) will turn into the
integral on the quantum time scale:

mS(r, ρ, t0) :=
∫ qr

q
r

ρ(s)∆s.

Moreover, let T = {±
√

n : n ∈ N} and t0 = 1, then the integral is

mS(r, ρ, t0) :=
∫ √1+r2

−
√

1+r2
ρ(s)∆s.

Define

U∞ :=
{

ρ ∈ U : lim
r→∞

mS(r, ρ, t0) = ∞
}

,

UB :=
{

ρ ∈ U∞ : ρ is bounded and inf
s∈T

ρ(s) > 0
}

.

It is clear that UB ⊂ U∞ ⊂ U. Now for ρ ∈ U∞ define

WPAAS
0 (T, ρ) :=

{
φ ∈ BPCrd(T,X) :

lim
r→∞

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ(s)‖ρ(s)∆s = 0, ∀t0 ∈ T, r ∈ Π±

}
.

Similarly, we define

WPAAS
0 (T×X, ρ) :

=

{
Φ ∈ BPCrd(T×Ω,X) : lim

r→∞

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖Φ(s, x)‖ρ(s)∆s = 0

uniformly with respect to x ∈ K, ∀t0 ∈ T, r ∈ Π±
}

.

We are now ready to introduce the sets WPAAS(T, ρ) and WPAAS(T×X, ρ) of weighted pseudo
S-almost automorphic functions:

WPAAS(T, ρ) =
{

f = g + φ ∈ BPCrd(T,X) : g ∈ AAS(T,X) and φ ∈WPAAS
0 (T, ρ)

}
,

WPAAS(T×X, ρ) =
{

f = g + φ ∈ BPCrd(T×X,X) : g ∈ AAS(T×X,X)
and φ ∈WPAAS

0 (T×X, ρ)
}

.
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Lemma 3. Let T be bi-direction S-CCTS under shifts δ± and φ ∈ BPCrd(T,X). Then φ ∈ WPAAS
0 (T, ρ)

where ρ ∈ UB if and only if for every ε > 0,

lim
r→∞

1
mS(r, ρ, t0)

µ∆
(

Mr,ε,t0(φ)
)
= 0,

where r ∈ Π±, µ∆(·) is the ∆-measurability function on the time scale T and

Mr,ε,t0(φ) :=
{

t ∈ [δ−(r, t0), δ+(r, t0)]T∗ : ‖φ(t)‖ ≥ ε
}

.

Proof.

(a) Necessity. For contradiction, suppose that there exists ε0 > 0 such that

lim
r→∞

1
mS(r, ρ, t0)

µ∆
(

Mr,ε0,t0(φ)
)
6= 0.

Then there exists δ > 0 such that for every n ∈ N,

1
mS(rn, ρ, t0)

µ∆
(

Mrn ,ε0,t0(φ)
)
≥ δ for some rn > n, where rn ∈ Π±.

So we get

1
mS(rn, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ(s)‖ρ(s)∆s

=
1

mS(rn, ρ, t0)

∫
Mrn ,ε0,t0 (φ)

‖φ(s)‖ρ(s)∆s +
1

mS(rn, ρ, t0)

×
∫
[δ−(r,t0),δ+(r,t0)]T∗\Mrn ,ε0,t0 (φ)

‖φ(s)‖ρ(s)∆s

≥ 1
mS(rn, ρ, t0)

∫
Mrn ,ε0,t0 (φ)

‖φ(s)‖ρ(s)∆s

≥ ε0

mS(rn, ρ, t0)

∫
Mrn ,ε0,t0 (φ)

‖φ(s)‖ρ(s)∆s ≥ ε0δγ,

where γ = infs∈T ρ(s). This contradicts the assumption.
(b) Sufficiency. Assume that lim

r→∞
1

mS(r,ρ,t0)
µ∆(Mr,ε,t0(φ)) = 0. Then for every ε > 0, there exists r0 > 0

such that for every r > r0, 1
mS(r,ρ,t0)

µ∆
(

Mr,ε,t0(φ)
)
< ε

KM , where M := supt∈T ‖φ(t)‖ < ∞ and
K := supt∈T ρ(t) < ∞.

Now, we have

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ(s)‖ρ(s)∆s

=
1

mS(r, ρ, t0)

( ∫
Mr,ε,t0 (φ)

‖φ(s)‖ρ(s)∆s

+
∫
[δ−(r,t0),δ+(r,t0)]T∗\Mr,ε,t0 (φ)

‖φ(s)‖ρ(s)∆s
)

≤ MK
mS(r, ρ, t0)

µ∆
(

Mr,ε,t0(φ)
)

+
ε

mS(r, ρ, t0)

∫
[δ−(r,t0),δ+(r,t0)]T∗\Mr,ε,t0 (φ)

ρ(s)∆s ≤ 2ε.
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Therefore, limr→∞
1

mS(r,ρ,t0)

∫ δ+(r,t0)
δ−(r,t0)

‖φ(s)‖ρ(s)∆s = 0, that is, φ ∈WPAAS
0 (T, ρ). This completes

the proof.

Lemma 4. Let T be bi-direction S-CCTS under shifts δ±. Then WPAAS
0 (T, ρ) is a shift invariant set of

BPCrd(T,X) with respect to Π± if ρ ∈ UB, i.e., for any s ∈ Π±, one has φ
(
δ+(s, t)

)
:= θsφ ∈WPAAS

0 (T, ρ)

if ρ ∈ UB.

Proof. For any s ∈ Π±, φ ∈WPAAS
0 (T, ρ), ε > 0, r > 0, we have

Mr,ε,t0(θsφ) =
{

t ∈ [δ−(r, t0), δ+(r, t0)]T∗ : ‖θs(t)‖ ≥ ε
}

=
{

t ∈ [δ−(r, t0), δ+(r, t0)]T∗ : ‖φ(δ+(s, t))‖ ≥ ε
}

=
{

t ∈ [δ+(s, δ−(r, t0)), δ+(s, δ+(r, t0))]T∗ : ‖φ(t)‖ ≥ ε
}

⊆
{

t ∈ [δ−(δ−(s, r), t0), δ+(δ+(s, r), t0)]T∗ : ‖φ(t)‖ ≥ ε
}

⊆
{

t ∈ [δ−(δ−(A(s), r), t0), δ+(δ+(A(s), r), t0)]T∗ : ‖φ(t)‖ ≥ ε
}

⊆
{

t ∈ [δ−(δ+(A(s), r), t0), δ+(δ+(A(s), r), t0)]T∗ : ‖φ(t)‖ ≥ ε
}

.

Hence

1
mS(r, ρ, t0)

µ∆
(

Mr,ε,t0(θsφ)
)
≤ 1

mS(r, ρ, t0)
µ∆
(

Mδ+(A(s),r),ε,t0
(θsφ)

)
=

mS
(
δ+(A(s), r), ρ, t0

)
mS(r, ρ, t0)

1
mS
(
δ+(A(s), r), ρ, t0

)µ∆
(

Mδ+(A(s),r),ε,t0
(φ)
)
.

Since φ ∈WPAAS
0 (T, ρ), then by Lemma 3, we have

1
mS
(
δ+(A(s), r), ρ, t0

) (Mδ+(A(s),r),ε,t0
(φ)
)
→ 0 as r → ∞.

Furthermore, limr→∞
mS(δ+(A(s),r),ρ,t0)

mS(r,ρ,t0)
= 1, thus

1
mS(r, ρ, t0)

µ∆
(

Mr,ε,t0(θs(φ))
)
→ 0, r → ∞.

Again, using Lemma 3, one can get θsφ ∈ WPAAS
0 (T, ρ) for any s ∈ Π±. This completes the

proof.

By Definition 6, the following two Lemmas are obvious.

Lemma 5. Let T be bi-direction S-CCTS under shifts δ± and φ ∈ AAS(T,X), then the range of φ, φ(T), is a
relatively compact subset of X.

Lemma 6. Let T be bi-direction S-CCTS under shifts δ±. If f = g + φ with g ∈ AAS(T,X), and φ ∈
WPAAS

0 (T, ρ), where ρ ∈ UB, then g(T) ⊂ f (T).

Lemma 7. Let T be bi-direction S-CCTS under shifts δ±. The decomposition of a weighted piecewise pseudo
S-almost automorphic function according to AAS ⊕WPAAS

0 is unique for any ρ ∈ UB.
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Proof. Let f ∈ WPAAS(T, ρ), if f = g1 + φ1 = g2 + φ2, then we have g1 − g2 = φ2 − φ1. Hence, we
obtain that there exists some positive constant c such that

c · sup
t∈T
‖g1(t)− g2(t)‖ ≤ lim

r→∞

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖g1(s)− g2(s)‖ρ(s)∆s

= lim
r→∞

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ1(s)− φ2(s)‖ρ(s)∆s

≤ lim
r→∞

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ1(s)‖ρ(s)∆s

+ lim
r→∞

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ2(s)‖ρ(s)∆s = 0,

so g1 − g2 = 0 = φ1 − φ2, i.e., g1 = g2 and φ1 = φ2. This completes the proof.

Lemma 8. Let {ϕn} ⊂ AAS(T,X) be a sequence of piecewise S-almost automorphic functions such that
limn→∞ ϕn = ϕ uniformly, then ϕ is piecewise S-almost automorphic.

Proof. From Definition 6, denote φ̃n =
(

ϕn(t), Tn
)

and φ̃∗ =
(

ϕ(t), T
)
. Let {τ′n} be an arbitrary

sequence of real numbers. Then we can extract a subsequence {τn} of {τ′n} ⊂ Π± such that

lim
n→∞

θτn φ̃i = φ̃∗i , (7)

for each i = 1, 2, . . . , pointwise.
We claim that the sequence of functions {φ̃∗i } is a Cauchy sequence. In fact, we can obtain

d̃(φ̃∗i , φ̃∗j ) ≤ d̃(φ̃∗i , θτn φ̃i) + d̃(θτn φ̃i, θτn φ̃j) + d̃(θτn φ̃j, φ̃∗j ). (8)

Let ε > 0. By the uniform convergence of {φ̃n} there exists a positive integer N such that for
all i, j > N implies d̃(θτn φ̃i, θτn φ̃j) < ε. By using (7), (8) and the completeness of the space X, we can
deduce the pointwise convergence of the sequence {φ̃n}, say to a function φ̃.

Now, we claim that limn→∞ φ̃τn = φ̃∗ and limn→∞ φ̃∗−τn = φ̃ pointwise on T.
Let ε > 0, there exists some positive integer M such that d̃(θτn φ̃, θτn φ̃M) < ε and d̃(φ̃∗M, φ̃∗) < ε

pointwise so that
d̃(φ̃τn , φ̃∗) ≤ 2ε + d̃(θτn φ̃M, φ̃∗M) pointwise,

since for each M, there exists some positive integer K = K(t, M) such that d̃(θτn φ̃M, φ̃∗M) < ε, then we
can obtain d̃(φ̃τn , φ̃∗) ≤ 3ε for n ≥ N0, where N0 is some positive integer depending on t and ε.

Similarly, the same step can be applied for limn→∞ φ̃∗−τn = φ̃ pointwise on T, thus, we can obtain
the desired result. This completes the proof.

Theorem 2. Let T be bi-direction S-CCTS under shifts δ±. For ρ ∈ UB,
(
WPAAS(T×X, ρ), ‖ · ‖∞

)
is a

Banach space.

Proof. For any convergent sequence { fn} ⊂ WPAAS
0 (T× X, ρ) with fn → f uniformly for t ∈ T,

we can obtain
limr→∞

1
mS(r,ρ,t0)

∫ δ+(r,t0)
δ−(r,t0)

‖ f (s, x)‖ρ(s)∆s

≤ limr→∞
1

mS(r,ρ,t0)

∫ δ+(r,t0)
δ−(r,t0)

‖ fn(s, x)‖ρ(s)∆s

+ limr→∞
1

mS(r,ρ,t0)

∫ δ+(r,t0)
δ−(r,t0)

‖ fn(s, x)− f (s, x)‖ρ(s)∆s,
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by letting n→ ∞ we have

lim
r→∞

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖ f (s, x)‖ρ(s)∆s = 0,

which indicates WPAAS
0 (T×X, ρ) is a closed subspace of BPCrd(T×Ω,X). Therefore, WPAAS

0 (T×
X, ρ) is itself a Banach space. Then by Lemmas 7 and 8, we have

(
WPAAS(T× X, ρ), ‖ · ‖∞

)
is a

Banach space. The proof is completed.

Definition 7. Let ρ1, ρ2 ∈ U∞. One says that ρ1 equivalent ρ2, written ρ1 ∼ ρ2 if ρ1/ρ2 ∈ UB.

Theorem 3. Let ρ1, ρ2 ∈ U∞. If ρ1 ∼ ρ2, then WPAAS(T, ρ1) = WPAAS(T, ρ2).

Proof. Assume that ρ1 ∼ ρ2. There exist a, b > 0 such that aρ1 ≤ ρ2 ≤ bρ1. So

amS(r, ρ1, t0) ≤ mS(r, ρ2, t0) ≤ bmS(r, ρ1, t0),

where r ∈ Π±, and

a
b

1
mS(r, ρ1, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ(s)‖ρ1(s)∆s ≤ 1

mS(r, ρ2, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ(s)‖ρ2(s)∆s

≤ b
a

1
mS(r, ρ1, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ(s)‖ρ1(s)∆s.

This completes the proof.

Lemma 9. Let T be bi-direction S-CCTS under shifts δ±. If g ∈ AAS(T× X,X) and α ∈ AAS(T,X),
then G(t) := g

(
·, α(·)

)
∈ AAS(T,X).

Proof. Let T = {tk}, φ̃ =
(

g(t, x), T
)
∈ AAS(T× X,X) × B, from every sequence {sn}∞

n=1 ⊂ Π±,
we can extract a subsequence {τn}∞

n=1 such that

φ̃∗ :=
(

g∗(t, x), T∗
)
= lim

n→∞
θτn φ̃ = lim

n→∞

(
g(δ+(τn, t), x), δ−(τn, T)

)
,

uniformly exists on PCrd(T×X,X)×B. Since α ∈ AAS(T,X), one can extract {τ′n} ⊂ {τn} such that

lim
n→∞

θ
τ
′
n
φ̃ = lim

n→∞

(
g
(
δ+(τ

′
n, t), α(δ+(τ

′
n, t))

)
, δ−(τ

′
n, T)

)
= lim

n→∞

(
g
(
δ+(τ

′
n, t), α∗(t)

)
, δ−(τ

′
n, T)

)
=
(

g∗(t, α∗(t)), T∗
)
.

Hence, G ∈ AAS(T,X). This completes the proof.

By Lemmas 3 and 9, one can get the following theorem immediately without proof.

Theorem 4. Let T be bi-direction S-CCTS under shifts δ± and f = g + φ ∈ WPAAS(T× X, ρ), where
g ∈ AAS(T×X,X), φ ∈WPAAS

0 (T×X, ρ), ρ ∈ UB and the following conditions hold:

(i)
{

f (t, x) : t ∈ T, x ∈ K
}

is bounded for every bounded subset K ⊆ Ω.
(ii) f (t, ·), g(t, ·) are uniformly continuous in each bounded subset of Ω uniformly in t ∈ T.

Then f
(
·, h(·)

)
∈WPAAS(T, ρ) if h ∈WPAAS(T, ρ) and h(T) ⊂ Ω.

Theorem 4 has the following consequence:
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Corollary 1. Let f = g + φ ∈WPAAS(T, ρ), where ρ ∈ UB. Assume that f and g are Lipschitzian in x ∈ X
uniformly in t ∈ T. Then f

(
·, h(·)

)
∈WPAAS(T, ρ) if h ∈WPAAS(T, ρ).

Next, we will show the following two Lemmas, which are useful in the proof of our results.

Lemma 10. Let T be bi-direction S-CCTS under shifts δ±. If ϕ ∈ PCrd(T,X) is an S-almost automorphic
function with respect to the sequence T and {tk} ⊂ T is S-equipotentially almost automorphic satisfying
infk∈Z tq

k = θ > t0, q ∈ Z, where t0 is an initial point, then
{

ϕ(tk)
}

is an S-almost automorphic sequence in X.

Proof. Let tj
k = δ−(tk, tk+j), k, j ∈ Z. Obviously, from the definition of Π±, it is easy to know that

tj
k ∈ Π±. Since ϕ ∈ PCrd(T,X) is an S-almost automorphic function and {tk} ⊂ T is S-equipotentially

almost automorphic, from Definitions 3 and 6, for any sequence {sn} ⊂ Z, there exists a subsequence
{s′n} such that

lim
n→∞

(
ϕ(tk+s′n

), δ−(t
s
′
n

k , T)
)

= lim
n→∞

(
ϕ(δ+(t

s
′
n

k , tk)), δ−(t
s
′
n

k , T)
)

=
(

ϕ∗(tk), T∗
)
=
(

ϕ
(
δ+(γk, tk)

)
, δ−(γk, T)

)
.

and from ts
′
n

k → γk (n→ ∞) for each k, we obtain

lim
n→∞

(
ϕ∗(tk−s′n

), δ+(t
s
′
n

k , T∗)
)

= lim
n→∞

(
ϕ
(
δ+(γk−s′n

, tk−s′n
)
)
, δ+(t

s
′
n

k , δ−(γk, T))
)

= lim
n→∞

(
ϕ
(
δ+(γk−s′n

, tk−s′n
)
)
, δ−
(
δ−(t

s
′
n

k , γk), T
))

=
(

ϕ(tk), T
)
.

Hence, {ϕ(tk)} is an S-almost automorphic sequence in X. This completes the proof.

Denote Π− = {s ∈ Π± : s ≤ t0} and Π+ = {s ∈ Π± : s ≥ t0}.
To prove the following basic Lemma, we introduce notations δ−(τ, t) := δτ−(t), δ−k

τ− (t) =

δ−
(
τ, δ−k−1

τ− (t)
)
, δ+(τ, t) := δτ(t), δk

τ(t) = δ+
(
τ, δk−1

τ (t)
)
,k ∈ Z+ and δ0

τ(t0) = δ0
τ−(t0) = t0.

Lemma 11. Let T be bi-direction S-CCTS under shifts δ± and δ+ be ∆-differentiable to its second argument
with δ∆

+(s, ·) < δ̃∆
+ (s ∈ Π−), where δ̃∆

+ is a positive number. A necessary and sufficient condition for a bounded
sequence {an} to be in WPAAS

0 (Z, ρ) is that there exists a uniformly continuous function f ∈WPAAS
0 (T, ρ)

such that f
[
δn

r(n)(t0)
]
= an, t0 ∈ T, n ∈ Z, ρ ∈ UB, where

r(n) =


r− if n < 0;

t0 if n = 0;

r if n > 0.

Proof. Necessity. We define a function

f (t) = an +
(
t− δn

r(n)(t0)
)
(an+1 − an), δn

r(n)(t0) ≤ t < δn+1
r(n+1)(t0), t ∈ T, n ∈ Z, t0 ∈ T∗.

Since f (t) has the bounded ∆-derivative, it is uniformly continuous on T. For each j ∈ Z, note that∣∣δj+1
r(j+1)(t0)− δ

j
r(j)(t0)

∣∣ = ∣∣δsgn(j)(r, δ
j
r(j)(t0))− δsgn(j)(t0, δ

j
r(j)(t0))

∣∣ ≤ ∣∣δ̃∆
+

∣∣ · rt0 ,

where rt0 := max
{
|r− t0|, |δ−(r, t0)− t0|

}
.
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We have f ∈WPAAS
0 (T, ρ) since

1
mS

(
δk−1

r (r),ρ,t0

) ∫ δk
r (t0)

δ−k
r− (t0)

‖ f (s)‖ρ(s)∆s

= 1
mS

(
δk−1

r (r),ρ,t0

) k−1
∑

j=−k

∫ δ
j+1
r(j+1)(t0)

δ
j
r(j)(t0)

∥∥aj +
(
s− δ

j
r(j)(t0)

)
(aj+1 − aj)

∥∥ρ(s)∆s

≤ 1
mS

(
δk−1

r (r),ρ,t0

)
ρ

k−1
∑

j=−k

(
‖aj‖µ(tj)ρ(tj)

∣∣δ̃∆
−
∣∣ · rt0

+‖aj+1 − aj‖
∫ δ

j+1
r(j+1)(t0)

δ
j
r(j)(t0)

(
s− δ

j
r(j)(t0)

)
ρ(s)∆s

)
≤ 1

ρmS

(
δk−1

r (r),ρ,t0

) k−1
∑

j=−k

∣∣δ̃∆
−
∣∣ · rt0‖aj‖µ(tj)ρ(tj) +

(‖ak‖+‖a−k‖)
(∣∣δ̃∆
−
∣∣·rt0

)2

mS

(
δk−1

r (r),ρ,t0

) ρ̄

≤ 1
ρ ∑

tj∈[δ
k
r− (t0),δ

k
r (t0)]T∗

µ(tj)ρ(tj)

k−1
∑

j=−k

∣∣δ̃∆
−
∣∣ · rt0‖ f (tj)‖µ(tj)ρ(tj)

+
‖ak‖+‖a−k‖

mS

(
δk−1

r (r),ρ,t0

) (∣∣δ̃∆
−
∣∣ · rt0

)2
ρ̄

= 1

ρ
k−1
∑

j=−k
µ(tj)ρ(tj)

k−1
∑

j=−k

∣∣δ̃∆
−
∣∣ · rt0‖ f (tj)‖µ(tj)ρ(tj)

+
‖ak‖+‖a−k‖

mS

(
δk−1

r (r),ρ,t0

) (∣∣δ̃∆
−
∣∣ · rt0

)2
ρ̄→ 0, as k→ ∞,

where ρ = inft∈T ρ(t), ρ̄ = supt∈T ρ(t).
Sufficiency. Let 0 < ε < 1, there exists δ∗ > 0, for t ∈ (tn, tn + δ∗)T, n ∈ Z, such that

‖ f (t)‖ρ(t) ≥ (1− ε)‖ f (tn)‖ρ(tn), n ∈ Z.

Without loss of generality, let tn ≥ t0, t−n < t0, n ∈ Z+ and

t−n < t−n+1 < . . . < t0 < t1 < . . . < tn−1 < tn,

there exists rn, r−n ∈ (t0,+∞)Π± such that δ+(rn, t0) = tn, δ−(r−n, t0) = t−n. Let r
′
n = max{rn, r−n} ∈

Π±. Therefore,

∫ δ+(r
′
n ,t0)

δ−(r
′
n ,t0)
‖ f (t)‖ρ(t)∆t ≥

∫ δ+(rn ,t0)
δ−(r−n ,t0)

‖ f (t)‖ρ(t)∆t =
∫ tn

t−n
‖ f (t)‖ρ(t)∆t

≥
n−1
∑

j=−n

∫ tj+1
tj
‖ f (t)‖ρ(t)∆t ≥

n−1
∑

j=−n

∫ σ(tj)

tj+δ∗ ‖ f (t)‖ρ(t)∆t

≥
n−1
∑

j=−n

(
µ(tj)− δ∗

)
(1− ε)‖ f (tj)‖ρ(tj)

≥ (1− ε)
n−1
∑

j=−n

(
µ(tj)− δ∗

)
‖ f (tj)‖ρ(tj),

so one can obtain

1
mS(r

′
n, ρ, t0)

∫ δ+(r
′
n ,t0)

δ−(r
′
n ,t0)

‖ f (t)‖ρ(t)∆t ≥ (1− ε)
1

mS(r
′
n, ρ, t0)

n−1

∑
j=−n

(
µ(tj)− δ∗

)
‖ f (tj)‖ρ(tj), (9)

it is easy to see that r
′
n is increasing with respect to n ∈ Z+, one can find some n0 > n such that

mS(r
′
n, ρ, t0) =

∫ δ+(r
′
n ,t0)

δ−(r
′
n ,t0)

ρ(s)∆s ≤ ∑
tj∈[δ−(r

′
n0 ,t0),δ+(r

′
n0 ,t0)]T∗

µ(tj)ρ(tj) =
n0−1

∑
j=−n0

µ(tj)ρ(tj), (10)
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from (9) and (10), we have

1
mS(r

′
n, ρ, t0)

∫ δ+(r
′
n ,t0)

δ−(r
′
n ,t0)

‖ f (t)‖ρ(t)∆t ≥ (1− ε)
1

n0−1
∑

j=−n0

µ(tj)ρ(tj)

n0−1

∑
j=−n0

(
µ(tj)− δ∗

)
‖ f (tj)‖ρ(tj), (11)

noting that n → ∞ implies n0 → ∞, since f ∈ WPAAS
0 (T, ρ), it follows from the inequality (11) that

f (tn) = an ∈WPAAS
0 (Z, ρ). This completes the proof.

By Lemma 11, we can straightly get the following theorem:

Theorem 5. Let T be bi-direction S-CCTS under shifts δ± and δ+ be ∆-differentiable to its second argument
with δ∆

+(s, ·) < δ̃∆
+ (s ∈ Π−), where δ̃∆

+ is a positive number. A necessary and sufficient condition for a bounded
sequence {an} to be in WPAAS(Z, ρ) is that there exists a uniformly continuous function f ∈WPAAS(T, ρ)

such that f
[
δn

r(n)(t0)
]
= an, t0 ∈ T, n ∈ Z, ρ ∈ UB.

Theorem 6. Let T be bi-direction S-CCTS under shifts δ± and δ+ be ∆-differentiable to its second argument
with δ∆

+(s, ·) < δ̃∆
+, where δ̃∆

+ is a positive number. Assume that ρ ∈ UB and the sequence of vector-valued
functions {Ik}k∈Z is weighted pseudo S-almost automorphic, i.e., for any x ∈ Ω, {Ik(x), k ∈ Z} is weighted
pseudo S-almost automorphic sequence. Suppose {Ik(x) : k ∈ Z, x ∈ K} is bounded for every bounded subset
K ⊆ Ω, Ik(x) is uniformly continuous in x ∈ Ω uniformly in k ∈ Z. If h ∈ WPAAS(T, ρ) ∩UPC(T,X)
such that h(T) ⊂ Ω, then Ik

(
h(tk)

)
is a weighted pseudo S-almost automorphic sequence.

Proof. Fix h ∈ WPAAS(T, ρ) ∩ UPC(T,X), first we show h(tk) is weighted pseudo S-almost
automorphic. Since h = φ1 + φ2, where φ1 ∈ AAS(T,X), φ2 ∈ WPAAS

0 (T, ρ). It follows
from Lemma 10 that the sequence φ1(tk) is S-almost automorphic. To show h(tk) is weighted
pseudo S-almost automorphic, we need to show that φ2(tk) ∈ WPAAS

0 (Z, ρ). By the assumption,
h, φ1 ∈ UPC(T,X), so is φ2. Let 0 < ε < 1, there exists δ∗ > 0 such that for t ∈ (tk, tk + δ∗)T, k ∈ Z,
we have

‖φ2(t)‖ρ(t) ≥ (1− ε)‖φ2(tk)‖ρ(tk), k ∈ Z.

Without loss of generality, let tn ≥ t0, t−n < t0, n ∈ Z+, there exists rn, r−n ∈ (t0, ∞)Π± such that
δ+(rn, t0) = tn, δ−(r−n, t0) = t−n. Let r

′
n = max{rn, r−n} ∈ Π±. Therefore, repeating the proof of

Lemma 11, we can obtain h(tk) is weighted pseudo S-almost automorphic.
Now, we show Ik

(
h(tk)

)
is weighted pseudo S-almost automorphic. Let

I(t, x) = Ik(x) +
(
t− δk

r(k)(t0)
)[

Ik+1(x)− Ik(x)
]
,

δk
r(k)(t0) ≤ t < δk+1

r(k+1)(t0), k ∈ Z, r ∈ Π±,

Φ0(t) = h(tk) +
(
t− δk

r(k)(t0)
)[

h(tk+1)− h(tk)
]
,

δk
r(k)(t0) ≤ t < δk+1

r(k+1)(t0), k ∈ Z, r ∈ Π±.

Since Ik, h(tk) are two weighted pseudo S-almost automorphic, by Lemma 11 and Theorem 5,
we know that I ∈ WPAAS(T×Ω, ρ), Φ0 ∈ WPAAS(T, ρ). For every t ∈ T, there exists a number
k ∈ Z such that

∣∣t− δk
r(k)(t0)

∣∣ ≤ r,

‖I(t, x)‖ ≤ ‖Ik(x)‖+
∣∣t− δk

r(k)(t0)
∣∣[‖Ik+1(x)‖+ ‖Ik(x)‖

]
≤

(
1 + r

)
‖Ik(x)‖+ r‖Ik+1(x)‖.
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Since {Ik(x) : k ∈ Z, x ∈ K} is bounded for every bounded set K ⊆ Ω, {I(t, x) : t ∈ T, x ∈ K} is
bounded for every bounded set K ⊆ Ω. For every x1, x2 ∈ Ω, we have

‖I(t, x1)− I(t, x2)‖ ≤ ‖Ik(x1)− Ik(x2)‖+
∣∣t− δk

r(k)(t0)
∣∣[‖Ik+1(x1)− Ik+1(x2)‖

+‖Ik(x1)− Ik(x2)‖]
≤

(
1 + r

)
‖Ik(x1)− Ik(x2)‖+ r‖Ik+1(x1)− Ik+1(x2)‖.

Noting that Ik(x) is uniformly continuous in x ∈ Ω uniformly in k ∈ Z, we then get that I(t, x)
is uniformly continuous in x ∈ Ω for t ∈ T. Then by Theorem 4, I

(
·, Φ0(·)

)
∈WPAAS(T,X). Again,

using Lemma 11 and Theorem 5, we have that I
(
δk

r(k)(t0), Φ0(δ
k
r(k)(t0))

)
is a weighted pseudo S-almost

autmorphic sequence, that is, Ik
(
h(tk)

)
is weighted pseudo S-almost automorphic. This completes

the proof.

From Theorem 6, one can easily get the following corollary:

Corollary 2. Let T be bi-direction S-CCTS under shifts δ± and δ+ be ∆-differentiable to its second argument
with δ∆

+(s, ·) < δ̃∆
+, where δ̃∆

+ is a positive number. Assume the sequence of vector-valued functions {Ik}k∈Z is
weighted pseudo S-almost automorphic, ρ ∈ UB, if there is a number L > 0 such that

‖Ik(x)− Ik(y)‖ ≤ L‖x− y‖

for all x, y ∈ Ω, k ∈ Z and h ∈ WPAAS(T, ρ) ∩ UPC(T, ρ) such that h(T) ⊂ Ω, then Ik
(
h(tk)

)
is a

weighted pseudo S-almost automorphic sequence.

4. Weighted Piecewise Pseudo S-Almost Automorphic Mild Solutions to the Impulsive
∆-Evolution Equations

In this section, we investigate the existence and exponential stability of a piecewise weighted
pseudo S-almost automorphic mild solution to Equation (1). For this, we will provide a Lemma that
will be used in our main results.

Lemma 12. Let T be bi-direction S-CCTS under shifts δ± and δ+ be ∆-differentiable to its second argument
with δ∆

+(s, ·) < δ̃∆
+ (s ∈ Π−), where δ̃∆

+ is a positive number. Assume that ω ∈ R+, for all t ∈ T, α ∈ Π−,
there exist constants β1,α, β2,α > 0 such that

β1,αµ(t) ≤ µ
(
δ+(α, t)

)
≤ β2,αµ(t). (12)

Then there exists positive constants K∗ and ω∗ such that

e	ω

(
δ+(α, t), δ+(α, s)

)
≤ K∗e	ω∗(t, s), t ≥ s.

Proof. Obviously, if µ = 0, T = R, the result holds. Assume that µ 6≡ 0. Since 	ω ∈ R+, one has

e	ω

(
δ+(α, t), δ+(α, s)

)
= exp

{
−
∫ δ+(α,t)

δ+(α,s)
1

µ(τ)
ln 1

1−µ(τ)ω
∆τ

}
= exp

{
−
∫ t

s
1

µ
(

δ+(α,τ)
) ln 1

1−µ
(

δ+(α,τ)
)

ω
δ∆
+(α, τ)∆τ

}
.
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Hence, by the Inequality (12), we can obtain

e	ω

(
δ+(α, t), δ+(α, s)

)
≤ exp

{
−
∫ t

s
δ̃∆
+

β2,αµ(τ)
ln 1

1−β1,αµ(τ)ω
∆τ

}

=

{
exp

{
−
∫ t

s
ln(1−µ(τ)(	β1,αω))

µ(τ)

}} δ̃∆
+

β2,α
.

Therefore, there exists a positive constant K∗ > 0 such that

e	ω

(
δ+(α, t), δ+(α, s)

)
=
[
e	β1,αω(t, s)

] δ̃∆
+

β2,α ≤ K∗e	ω∗(t, s),

where ω∗ = β1,αω. This completes the proof.

Remark 8. It is easy to observe that if µ(t) is bounded, then there exists a sufficiently small constant β1,α > 0
and a sufficiently large constant β2,α > 0 such that (12) is valid. Therefore, Lemma 12 holds when T is an
almost periodic time scale from [33].

For the time scale from (1) in Example 1, we can obtain that

µ
(
δ+(α, t)

)
=

q2αt− αt, t > 0,
t

αq2 − t
α , t < 0,

µ(t) =

q2t− t, t > 0,
t

q2 − t, t < 0,

{
β1,α = β2,α = α, t > 0,

β1,α = β2,α = 1
α , t < 0.

Hence, for all t ∈ T∗, α < 1, we can obtain αµ(t) ≤ µ
(
δ+(α, t)

)
≤ 1

α µ(t).

Consider the impulsive linear ∆-evolution equation

x∆ = A(t)xσ, t ∈ T, (13)

where A : T → B(X) is a linear operator in the Banach space X. We denote by B(X,Y) the Banach
space of all bounded linear operators from X to Y. This is simply denoted as B(X) when X = Y.

Definition 8 ([11]). T(t, s) : T×T→ B(X) is called the linear evolution operator associated to (13) if T(t, s)
satisfies the following conditions:

(1) T(s, s) = Id, where Id denotes the identity operator in X;
(2) T(t, s)T(s, r) = T(t, r);
(3) the mapping (t, s)→ T(t, s)x is continuous for any fixed x ∈ X.

Definition 9. A function x : T → X is called a mild solution of Equation (1) if for any t ∈ T, t > c, c 6=
tk, k ∈ Z, one has

x(t) = T(t, c)x(c) +
∫ t

c
T(t, s) f

(
s, x(s)

)
∆s + ∑

c<tk<t
T(t, tk)Ik

(
x(tk)

)
.

In the following, consider (1) with the following assumptions:

(H1) Let T be bi-direction S-CCTS under shifts δ± and δ+ be ∆-differentiable to its second argument
with δ∆

+(s, ·) < δ̃∆
+ (s ∈ Π−), where δ̃∆

+ is a positive number.
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(H2) The family {A(t) : t ∈ T} of operators in X generates an S-exponentially stable evolution system
{T(t, s) : t ≥ s}, i.e., there exist K0 > 1 and ω > 0 such that

‖T(t, s)‖B(X) ≤
K0

1 + µ(t)ω
e	ω(t, s), t ≥ s, ω ∈ R+. (14)

(H3) f = g + φ ∈WPAAS(T, ρ), where ρ ∈ UB and f (t, ·) is uniformly continuous in each bounded
subset of Ω uniformly in t ∈ T; Ik is a weighted pseudo S-almost periodic sequence, Ik(x) is
uniformly continuous in x ∈ Ω uniformly in k ∈ Z, infk∈Z t1

k = δ−(tk, tk+1) = θ > max{t0, 0},
where t0 is the initial point.

Remark 9. In the assumption (H2), let T = R, Equation (14) turns into

‖T(t, s)‖B(X) ≤ K0e−ω(t−s), t ≥ s.

Let T = hZ, h > 0 and Kp = K0
1+ω , it becomes

‖T(t, s)‖B(X) ≤ Kp
(

1− ωh
1 + ω

) t−s
h

, t ≥ s.

Moreover, let the time scale T be the quantum time scale qZ = {qn : q > 1, n ∈ Z}, then

‖T(t, s)‖B(X) ≤
K0

1 + ω(q− 1)t ∏
s∗∈[s,t)

1
1 + (q− 1)ωs∗

.

Let µ = inft∈T µ(t) and µ̄ = supt∈T µ(t). To investigate the existence and uniqueness of
a weighted piecewise pseudo S-almost automorphic mild solution to Equation (1), we need the
following Lemma:

Lemma 13. Assume v ∈ AAS(T,X), ω ∈ R+ and (H1)− (H3) are satisfied. If u : T→ X is defined by

u0(t) =
∫ t

−∞
T(t, s)v(s)∆s + ∑

tk<t
T(t, tk)Ik

(
v(tk)

)
, t ≥ s,

then u0(·) ∈ AAS(T,X).

Proof. Let {sn}∞
n=1 ⊂ Π−. Since v is almost automorphic, there exists a subsequence {τn}∞

n=1 ⊂
{sn}∞

n=1 such that h(t) := limn→∞ v
(
δ+(τn, t)

)
is well defined for each t ∈ T.

Now, we consider

u
(
δ+(τn, t)

)
=

∫ δ+(τn ,t)

−∞
T
(
δ+(τn, t), s

)
v(s)∆

s =
∫ t

−∞
T
(
δ+(τn, t), δ+(τn, s)

)
v
(
δ+(τn, s)

)
δ∆
+(τn, s)∆s

=
∫ t

−∞
T
(
δ+(τn, t), δ+(τn, s)

)
δ∆
+(τn, s)vn(s)∆s,

where vn(s) = v
(
δ+(τn, s)

)
, n = 1, 2, . . ..

Since ω ∈ R+, one can choose sufficiently small constant β1 > 0 such that ω∗ = β1ω is
also positive regressive. Further, noting that e	ω∗(t, s)

(
1 + µ(s)ω∗

)
= e	ω∗

(
t, σ(s)

)
, by (H1) and

Lemma 12, we have
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∥∥u
(
δ+(τn, t)

)∥∥ ≤
∫ t

−∞

∥∥T
(
δ+(τn, t), δ+(τn, s)

)
δ∆
+(τn, s)vn(s)‖∆s

≤
∫ t

−∞
δ̃∆
+

K0

1 + µ(t)ω
e	ω

(
δ+(τn, t), δ+(τn, s)

)
‖vn(s)‖∆s

≤
K0K∗ δ̃∆

+

1 + µω

∫ t

−∞
e	ω∗(t, s)‖vn(s)‖∆s

≤
K0K∗‖v‖∞ δ̃∆

+

1 + µω

∫ t

−∞

1
1 + µω∗

e	ω∗
(
t, σ(s)

)
∆s

=
K0K∗‖v‖∞ δ̃∆

+

−ω∗(1 + µω)

[
e	ω∗(t,−∞)− e	ω∗(t, t)

]
=

K0K∗‖v‖∞ δ̃∆
+

ω∗(1 + µω)
.

Therefore, by the condition (H1), (H2), we have T
(
δ+(τn, t), δ+(τn, s)

)
→ T∗(t, s), n → ∞.

Furthermore, it is easy to see that vn(s) → h(s) as n → ∞, ∀s ∈ T and for any t ≥ s, by Lebesgue’s
dominated convergence theorem, we get limn→∞ u

(
δ+(τn, t)

)
=
∫ t
−∞ T∗(t, s)δ∗(s)h(s)∆s.

Moreover, we consider

u
′(

δ+(τn, t)
)

:= ∑
tk<δ+(τn ,t)

T
(
δ+(τn, t), tk

)
Ik
(
vk(tk)

)
= ∑

tk<t
T
(
δ+(τn, t), δ+(τn, tk)

)
Ik
(
v(δ+(τn, tk))

)
= ∑

tk<t
T
(
δ+(τn, t), δ+(τn, tk)

)
Ik(vkn),

where v
(
δ+(τn, tk)

)
:= vkn. By Lemma 12, we can get

∥∥u
′(

δ+(τn, t)
)∥∥ =

∥∥∥∥ ∑
tk<δ+(τn ,t)

T
(
δ+(τn, t), tk

)
Ik
(
vk(tk)

)∥∥∥∥
=

∥∥∥∥ ∑
tk<t

T
(
δ+(τn, t), δ+(τn, tk)

)
Ik(vkn)

∥∥∥∥
≤ IK0

1 + µω ∑
tk<t

e	ω

(
δ+(τn, t), δ+(τn, tk)

)
≤ IK0K∗

1 + µω ∑
tk<t

e	ω∗(t, tk) ≤
IK0K∗

1 + µω

1
1− e	ω∗(θ, t0)

,

where supk∈Z e	ω∗(tk+1, tk) := e	ω∗(θ, t0).
Since v ∈ AAS(T,X), vkn → h(tk), n → ∞, ∀k ∈ Z. Hence, for any t > tk, k ∈ Z, by Lebesgue’s

dominated convergence theorem, we get limn→∞ u
′(

δ+(τn, t)
)
= ∑tk<t T∗(t, tk)Ik

(
h(tk)

)
. So we have

limn→∞ u0
(
δ+(τn, t)

)
= limn→∞ u

(
δ+(τn, t)

)
+ limn→∞ u

′(
δ+(τn, t)

)
is well defined for each t ∈ T∗.

Therefore, u0(·) ∈ AAS(T,X). This completes the proof.

Theorem 7. Assume that (H1) − (H3) are satisfied. Let f
(
·, ϑ(·)

)
∈ WPAAS(T, ρ), where ϑ ∈

WPAAS(T, ρ) and {T(t, s), t ≥ s} is exponentially stable, ρ ∈ UB. Then

F(·) :=
∫ (·)

−∞
T(·, s) f

(
s, ϑ(s)

)
∆s + ∑

tk<·
T(·, tk)Ik

(
ϑ(tk)

)
∈WPAAS(T, ρ).
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Proof. Fix ϑ ∈ WPAAS(T,X), then we have f
(
·, ϑ(·)

)
= φ1(·) + φ2(·), where φ1 ∈ AAS(T,X),

φ2 ∈WPAAS
0 (T,X), so

∫ t

−∞
T(t, s) f

(
s, ϑ(s)

)
∆s =

∫ t

−∞
T(t, s)φ1(s)∆s +

∫ t

−∞
T(t, s)φ2(s)∆s := I1(t) + I2(t)

and

∑
tk<t

T(t, tk)Ik
(
ϑ(tk)

)
= ∑

tk<t
T(t, tk)βk + ∑

tk<t
T(t, tk)γk := Υ1(t) + Υ2(t).

By Lemma 13, we can easily see that I1, Υ1 ∈ AAS(T,X).
Moreover, we have

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖I2(t)‖∆t

=
1

mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)

∥∥∥∥ ∫ t

−∞
T(t, s)φ2(s)∆s

∥∥∥∥∆t

≤ 1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
∆t
∫ t

−∞
K0e	ω(t, s)‖φ2(s)‖∆s

=
1

mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
∆t
( ∫ δ−(r,t0)

−∞
K0e	ω(t, s)‖φ2(s)‖∆s

+
∫ t

δ−(r,t0)
K0e	ω(t, s)‖φ2(s)‖∆s

)
=

1
mS(r, ρ, t0)

∫ δ−(r,t0)

−∞
‖φ2(s)‖∆s

∫ δ+(r,t0)

δ−(r,t0)
K0e	ω(t, s)∆t

+
1

mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ2(s)‖∆s

∫ δ+(r,t0)

s
K0e	ω(t, s)∆t := I0

1 + I0
2 .

Then

I0
1 =

1
mS(r, ρ, t0)

∫ δ−(r,t0)

−∞
‖φ2(s)‖∆s

∫ δ+(r,t0)

δ−(r,t0)

K0

1 + µ(t)ω
e	ω(t, s)∆t

=
1

mS(r, ρ, t0)

∫ δ−(r,t0)

−∞
‖φ2(s)‖∆s

∫ δ+(r,t0)

δ−(r,t0)
K0e	ω

(
σ(t), s

)
∆t

≤ K0

mS(r, ρ, t0)

∫ δ−(r,t0)

−∞
‖φ2(s)‖∆s

∫ δ+(r,t0)

δ−(r,t0)
eω

(
s, σ(t)

)
∆t

=
1

mS(r, ρ, t0)

K0

ω

∫ δ−(r,t0)

−∞
‖φ2(s)‖

[
eω

(
s, δ−(r, t0)

)
− eω

(
s, δ+(r, t0)

)]
∆s

≤ 1
mS(r, ρ, t0)

K0

ω
‖φ2‖

( ∫ δ−(r,t0)

−∞
e	ω

(
δ−(r, t0), s

)
∆s

−
∫ δ−(r,t0)

−∞
e	ω

(
δ+(r, t0), s

)
∆s
)

≤ 1
mS(r, ρ, t0)

−K0

ω
‖φ2‖

(
e	ω

(
δ−(r, t0),−∞

)
− e	ω

(
δ−(r, t0), δ−(r, t0)

)
−e	ω

(
δ+(r, t0),−∞

)
+ e	ω

(
δ+(r, t0), δ−(r, t0)

))
→ 0 as r → ∞,
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and

I0
2 =

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ2(s)‖∆s

∫ δ+(r,t0)

s

K0

1 + µ(t)ω
e	ω(t, s)∆t

≤ 1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ2(s)‖∆s

∫ δ+(r,t0)

s
K0e	ω

(
σ(t), s

)
∆t

≤ K0

mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖φ2(s)‖∆s

∫ δ+(r,t0)

s
eω

(
s, σ(t)

)
∆t

=
1

mS(r, ρ, t0)

K0

ω

∫ δ+(r,t0)

δ−(r,t0)
‖φ2(s)‖

[
eω(s, s)− eω

(
s, δ+(r, t0)

)]
∆s

≤ 1
mS(r, ρ, t0)

K0

ω

∫ δ+(r,t0)

δ−(r,t0)
‖φ2(s)‖∆s.

Since φ2 ∈WPAAS
0(T, ρ), we have limr→∞

1
mS(r,ρ,t0)

∫ δ+(r,t0)
δ−(r,t0)

‖φ2(s)‖∆s = 0. Hence, limr→∞ I0
2 = 0.

It remains to show Υ2 ∈WPAAS
0 (T, ρ). For any r > 0, there exist i(r), j(r) such that

ti(r)−1 < δ−(r, t0) ≤ ti(r) < . . . < tj(r) ≤ δ+(r, t0) < tj(r)+1.

Since γk ∈ WPAAS
0 (Z, ρ), Mγk = supk∈Z ‖γk‖ < ∞, noting that for a ∈ T, e	ω(t, a) = (1 +

µ(t)ω)eω

(
a, σ(t)

)
, then we can obtain

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖Υ2(t)‖∆t =

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)

∥∥∥∥ ∑
tk<t

T(t, tk)γk

∥∥∥∥∆t

≤ 1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
∑

tk<t

K0

1 + µ(t)ω
e	ω(t, tk)‖γk‖∆t

≤ 1
mS(r, ρ, t0)

∑
tk<δ−(r,t0)

e	ω

(
δ−(r, t0), tk

)
‖γk‖

×
∫ δ+(r,t0)

δ−(r,t0)

K0

1 + µ(t)ω
e	ω

(
t, δ−(r, t0)

)
∆t

+
1

mS(r, ρ, t0)
∑

δ−(r,t0)<tk<t<δ+(r,t0)

e	ω(t, tk)‖γk‖
∫ δ+(r,t0)

δ−(r,t0)

K0

1 + µ(t)ω
e	ω

(
σ(t), tk

)
∆t

≤ 1
m(r, ρ, t0)

∑
tk<δ−(r,t0)

K0

ω
Mγk e	ω

(
δ−(r, t0), tk

)
+

1
mS(r, ρ, t0)

∑
δ−(r,t0)<tk<t<δ+(r,t0)

K0

ω
‖γk‖e	ω

(
t, tk
)

≤ 1
mS(r, ρ, t0)

K0Mγk

ω

1
1− e	ω(θ, t0)

+
K0

ω

1
mS(r, ρ, t0)

j(r)

∑
k=i(r)

‖γk‖
1

1− e	ω(θ, t0)
.

Since γk ∈WPAAS
0 (Z, ρ), for r → ∞, mS(r, ρ)→ ∞, we have

lim
r→∞

1
mS(r, ρ, t0)

j(r)

∑
k=i(r)

‖γk‖ = lim
r→∞

1
j(r)
∑

k=i(r)
ρ(tk)µ(tk)

j(r)

∑
k=i(r)

‖γk‖ = 0.

Clearly, as r → ∞, one has

1
mS(r, ρ, t0)

K0Mγk

ω

1
1− e	ω(θ, t0)

→ 0.
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Hence

lim
r→∞

1
mS(r, ρ, t0)

∫ δ+(r,t0)

δ−(r,t0)
‖Υ2(t)‖∆t = 0.

Thus, ∑tk<· T(·, tk)Ik
(
ϑ(tk)

)
∈ WPAAS

0 (T, ρ), then F(·) ∈ WPAAS(T, ρ). This completes the
proof.

Theorem 8. Assume (H1)− (H3) are satisfied and the following conditions hold:

(A1) The family {A(t) : t ∈ T} of operators in X generates an δ-exponentially stable evolution system
{T(t, s) : t ≥ s}, i.e., there exist K0 > 1 and ω > 0 such that

‖T(t, s)‖B(X) ≤
K0

1 + µ(t)ω
e	ω(t, s), t ≥ s.

(A2) f ∈WPAAS(T×Ω, ρ), and f satisfies the Lipschitz condition with respect to the second argument, i.e.,

‖ f (t, x)− f (t, y)‖ ≤ L1‖x− y‖, t ∈ T, x, y ∈ Ω,

(A3) Ik is a weighted pseudo S-almost periodic sequence, and there exists a number L2 > 0 such that

‖Ik(x)− Ik(y)‖ ≤ L2‖x− y‖,

for all x, y ∈ Ω, k ∈ Z.

Assume that
K0L1

ω(1 + µω)
+

K0L2

1− e	ω(θ, t0)
< 1,

then Equation (1) has a unique weighted piecewise pseudo S-almost automorphic mild solution.

Proof. Consider the nonlinear operator Γ given by

Γϕ =
∫ t

−∞
T(t, s) f

(
s, ϕ(s)

)
∆s + ∑

tk<t
T(t, tk)Ik

(
ϕ(tk)

)
.

By Theorem 7, we see that Γ maps WPAAS(T, ρ) into WPAAS(T, ρ).
It suffices now to show that the operator Γ has a fixed point in WPAAS(T, ρ). For ϕ1, ϕ2 ∈

WPAAS(T, ρ), one has the following:

‖Γϕ1(t)− Γϕ2(t)‖ =
∥∥∥∥ ∫ t

−∞
T(t, s)

[
f
(
s, ϕ1(s)

)
− f

(
s, ϕ2(s)

)]
∆s

+ ∑
tk<t

T(t, tk)
[
Ik
(

ϕ1(tk)
)
− Ik

(
ϕ2(tk)

)]∥∥∥∥
≤

∫ t

−∞

K0

1 + µ(t)ω
e	ω(t, s)

∥∥ f
(
s, ϕ1(s)

)
− f

(
s, ϕ2(s)

)∥∥∆s

+ ∑
tk<t

K0

1 + µ(t)ω
e	ω(t, tk)

∥∥Ik
(

ϕ1(tk)
)
− Ik

(
ϕ2(tk)

)∥∥
=

∫ t

−∞

(
− K0

ω(1 + µ(t)ω)

)
(	ω)e	ω

(
t, σ(s)

)
L1‖ϕ1(s)− ϕ2(s)‖∆s

+ ∑
tk<t

K0

1 + µ(t)ω
e	ω(t, tk)L2‖ϕ1(tk)− ϕ2(tk)‖

≤
[

K0L1

ω(1 + µω)
+

K0L2

1− e	ω(θ, t0)

]
‖ϕ1 − ϕ2‖.
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Since K0L1
ω(1+µω)

+ K0L2
1−e	ω(θ,t0)

< 1, Γ is a contradiction. Hence, Γ has a fixed point in WPAAS(T, ρ),

then Equation (1) has a unique weighted piecewise pseudo S-almost automorphic mild solution. This
completes the proof.

5. Applications

In this section, three examples are demonstrated as the applications of our obtained results.

Example 4. Let T1 be S-CCTS under shifts δ± and u : T1 ×T2 → R, where the hybrid domain T1 is the time
scale in Example (1) and T2 is a discrete time scale with a forward jump operator σ2 and 0, π ∈ T2, i.e.,

T1 = (−q)Z =
{
(−q)n : q > 1, n ∈ Z

}
∪ {0}, where q =

√
3.

Consider the following system:

u(qtt,x)−u(t,x)
(qt−1)t =

µ(x)u(qtt,σ2
2 (x))−(µ(x)+µ(σ(x)))u(qtt,σ2(x))+µ(σ(x))u(qtt,x)

µ(σ(x))µ2(x) + 1
18
(

sin
√

2t + g(t)
)

cos u(t, x),

t ∈ T1, t 6= tk, x ∈ [0, π]T2 ,

∆̃u(tk, x) = βku(tk, x), k ∈ Z, x ∈ [0, π]T2 ,

u(t, 0) = u(t, π) = 0, t ∈ T1,

(15)

where g ∈ UPC(T1,R) satisfies |g(t)| ≤ 1, (t ∈ T1) and ρ(t) = | sin t|+ 1, βk = 1
450
(

sin k + cos
√

2k +
g(k)

)
and tk = q6k, t−k = (−q)6k+1, k ∈ Z+ ∪ {0}.

Define X = L2[0, π]T2 , let

Au =
µ(x)u(qtt, σ2

2 (x))− (µ(x) + µ(σ(x)))u(qtt, σ2(x)) + µ(σ(x))u(qtt, x)
µ(σ(x))µ2(x)

,

where u ∈ D(A) = H1
0 [0, π]T2 ∩ H2[0, π]T2 . Clearly, it follows from the same discussion as

Section 3.1 in [22], one can easily observe that the evolution system {T(t, s) : t ≥ s} satisfies ‖T(t, s)‖ ≤
1/2

1+µ(t)(1/2) e	 1
2
(t, s) (t ≥ s) with K0 = 1/2, ω = 1/2. Furthermore, we obtain that {tj

k} =

{δ−(tk, tk+j)} ⊂ {tk}, k, j ∈ Z, by Definition 3, we can obtain {tj
k}, k, j ∈ Z, is an equipotentially S-almost

automorphic sequence and for k ∈ Z+, we have

t1
k = δ−(tk, tk+1) =

tk+1
tk

= q6, t1
−k = δ−(t−k, t−k−1) =

t−k−1
t−k

=
1
q6 .

Let f (t, u) = 1
18
(

sin
√

2t + g(t)
)

cos u, Ik(u) = βku. Noticing that f and Ik satisfy the assumptions
given in Theorem 8 with L1 = 1

3 and L2 = 1
300 , we obtain

K0L1

ω(1 + µω)
+

K0L2

1− e	ω(θ, 1)
=

K0L1

ω
+

K0L2

1− supk ∏s∈[tk ,tk+1)

(
1−

√
3−1

1+q2 s
) ≤ 1

3
< 1.

In fact, noting that
K0L2

1− supk ∏s∈[tk ,tk+1)

(
1−

√
3−1

1+q2 s
) = 0

since that

∏
s∈[tk ,tk+1)

(
1−
√

3− 1
1 + q2 s

)
→ ∞ as k→ ∞.

Therefore, Equation (15) has a weighted piecewise pseudo S-almost automorphic mild solution.
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Example 5. Let T1 be S-CCTS under shifts δ± and u : T1 ×T2 → R, where the time scale T1 = hZ, h > 0
and T2 =

{
qn : q > 1, n ∈ Z

}
∪ {0, π}. Consider the following dynamic equation:

u(t+h,x)−u(t,x)
h = u(t+h,q2x)−(q+1)u(t+h,qx)+qu(t+h,x)

q(q−1)2x2 + 1
18 g(t) cos

√
2t cos u(t, x),

t ∈ T1, t 6= tk, x ∈ [0, π]T2 ,

∆̃u(tk, x) = βku(tk, x), k ∈ Z, x ∈ [0, π]T2 ,

u(t, 0) = u(t, π) = 0, t ∈ T1,

(16)

where g ∈ UPC(T1,R) satisfies |g(t)| ≤ 1, (t ∈ T1) and ρ(t) = e−t + 1, βk =
1

17 g(k) and tk = 4kh, t−k =

−4kh, k ∈ Z+ ∪ {0}.
Define X = L2[0, π]T2 , let

Au =
u(t + h, q2x)− (q + 1)u(t + h, qx) + qu(t + h, x)

q(q− 1)2x2 , u ∈ D(A) = H1
0 [0, π]T2 ∩ H2[0, π]T2 .

Clearly, through Section 3.1 in [22], we have the evolution system {T(t, s) : t ≥ s} that satisfies
‖T(t, s)‖ ≤ 1/2

1+µ(t)(1/2) e	 1
2
(t, s) (t ≥ s) with K0 = 1/2, ω = 1/2. Moreover, we have {tj

k} = {tk+j− tk} ⊂

{tk}, k, j ∈ Z, then {tj
k}, k, j ∈ Z, is an equipotentially S-almost automorphic sequence. For k ∈ Z+,

t1
k = tk+1 − tk = 4h = t−k−1 − t−k.

Hence, θ = infk∈Z
(
tk+1 − tk

)
= 4h > 0. Let f (t, u) = 1

18 g(t) cos
√

2t cos u, Ik(u) = βku. Clearly,
both f and Ik satisfy the assumptions given in Theorem 8 with L1 = 1

18 , L2 = 1
17 . Moreover,

K0L1

ω(1 + µω)
+

K0L2

1− e	ω(θ, 1)
=

K0L1

ω(1 + hω)
+

K0L2

supk
(
1− 1

2+h
)4 <

1
18(2 + h)

+
8

17
< 1.

Therefore, Equation (16) has a weighted piecewise pseudo S-almost automorphic mild solution.

Example 6. Let T1 be S-CCTS under shifts δ± and u : T1 ×T2 → R, where the hybrid domain T1 is the time
scale N2

0 and T2 = hZ∪ {0, π}. Consider the following dynamic equation:

u((
√

t+1)2,x)−u(t,x)
2
√

t+1
= u((

√
t+1)2,x+2h)−2u((

√
t+1)2,x+h)+u(x)

h2 + 1
21
(

sin t + cos
√

2t + g(t)
)

cos u(t, x),

t ∈ T1, t 6= tk, x ∈ [0, π]T2 ,

∆̃u(tk, x) = βku(tk, x), k ∈ Z, x ∈ [0, π]T2 ,

u(t, 0) = u(t, π) = 0, t ∈ T1,

(17)

where g ∈ UPC(T1,R) satisfies |g(t)| ≤ 1, (t ∈ T1) and ρ(t) = | sin t|+ 1, βk = 1
21
(

sin k + cos
√

2k +
g(k)

)
and tk = (k + 3)2, k ∈ Z+ ∪ {0}.

Define X = L2[0, π]T2 , let

Au =
u((
√

t + 1)2, x + 2h)− 2u((
√

t + 1)2, x + h) + u(x)
h2 , u ∈ D(A) = H1

0 [0, π]T2 ∩ H2[0, π]T2 .

Clearly, it follows from the same discussion as Section 3.1 in [22], one can easily observe that the evolution
system {T(t, s) : t ≥ s} satisfies ‖T(t, s)‖ ≤ 1/2

1+µ(t)(1/2) e	 1
2
(t, s) (t ≥ s) with K0 = 1/2, ω = 1/2. In addition,

we obtain an equipotentially S-almost automorphic sequence {tj
k} = {δ−(tk, tk+j)} ⊂ {tk}, k, j ∈ Z, with

t1
k = δ−(tk, tk+1) = (

√
tk+1 −

√
tk)

2 = 1.
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Hence, θ = infk∈Z
(
δ−(tk, tk+1)

)
= 1. Let f (t, u) = 1

21
(

sin t + cos
√

2t + g(t)
)

cos u, Ik(u) = βku.
Clearly, both f and Ik satisfy the assumptions given in Theorem 8 with L1 = L2 = 1

6 . Moreover,

K0L1

ω(1 + µω)
+

K0L2

1− e	ω(θ, 1)
<

1
6
+

1/2

6(1− e−
1
2 )
≈ 0.3785 < 1.

Therefore, Equation (17) has a weighted piecewise pseudo S-almost automorphic mild solution.

6. Conclusions and Open Problems

In this paper, we have introduced a concept of complete-closed time scales attached with a shift
direction under non-translational shifts (S-CCTS). This is the first attempt to introduce and study the
concepts of S-equipotentially almost automorphic sequence, discontinuous S-almost automorphic
functions and weighted piecewise pseudo S-almost automorphic functions. Then, we apply the
introduced concepts to investigate the existence of weighted piecewise pseudo S-almost automorphic
mild solutions for a class of evolution impulsive equations on hybrid domains. Finally, we apply the
obtained results to ∆-partial dynamic equations from which one can see the established results are
feasible and effective for q-difference partial dynamic equations among others. It is obvious that these
results are more general and comprehensive than previous literature.

On the other hand, by virtue of S-CCTS, the almost automorphic problems of q-difference partial
dynamic equations can also be introduced and studied. In fact, from the construction of almost
automorphy of functions in Section 3, one can also establish some new types of functions with almost
automorphy. Moreover, by introducing the concepts of almost automorphic functions and ∆-almost
automorphic functions and developing an appropriate approach, we will study almost automorphic
problems of ∆-partial dynamic equations on irregular time scales, which will be the topic of our
future work.

Based on our discussion, we introduce the following open problems:

(1) For the highly hybrid time scales such as T = qZ ∪ {hZ} ∪N
1
2
0 , how to provide an effective way

to construct the shift operators?
(2) How to establish a feasible method to study the almost automorphy of solutions to discontinuous

dynamic systems on highly hybrid time scales?
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