
mathematics

Article

A Simple Method for Network Visualization

Jintae Park, Sungha Yoon, Chaeyoung Lee and Junseok Kim *

Department of Mathematics, Korea University, Seoul 02841, Korea; jintae2002@korea.ac.kr (J.P.);
there122@korea.ac.kr (S.Y.); chae1228@korea.ac.kr (C.L.)
* Correspondence: cfdkim@korea.ac.kr

Received: 16 May 2020; Accepted: 19 June 2020; Published: 22 June 2020
����������
�������

Abstract: In this article, we present a simple method for network visualization. The proposed method
is based on distmesh [P.O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM Review
46 (2004) pp. 329–345], which is a simple unstructured triangular mesh generator for geometries
represented by a signed distance function. We demonstrate a good performance of the proposed
algorithm through several network visualization examples.

Keywords: Network; graph drawing; planar visualizations

1. Introduction

Since the formation of society, the relationships between its components have been significant.
These relationships become more complex as society progresses; in addition, the components of
society have also diversified. In sociology, a bundle of relationships is referred to as a network,
which became a central concept in sociology in the 1970s. In a modern society called an information
society, we have information regarding networks that has been transformed into concrete data. With a
vast amount of information, information visualization has been used to analyze network and is gaining
popularity. Techniques for information visualization have evolved, and they vary depending on
the type of data [1–4]. Among the methods, visualization using graphs is one of the most helpful
for understanding data and their relationships. The authors in [5] showed various graphs used
in information visualization including tree layouts, H-tree layouts, balloon layout, radial layout,
hyperbolic trees, fisheye graphs, and animated radial layouts (see Figure 1 as an example of network
plot). Furthermore, toolkits for information visualization such as Prefuse, Protovis, and GUESS
have been developed and widely used [1,6–8]. In several studies, nodes represent subjects, such as
people and businesses, whereas edges represent relationships, such as friendships and partnerships.
The scope of a network is not limited to people and institutions: if something is in an interactive
relationship, we can call it a network, and networks can be also graphically identified by data. Network
visualization is therefore being used in a variety of fields. For example, analysis for social and personal
networks [9], pharmacological networks [10], biological networks [11,12], financial networks [13],
and street networks [14] have been actively conducted.

Mathematics 2020, 8, 1020; doi:10.3390/math8061020 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-1120-2455
https://orcid.org/0000-0002-0484-9189
http://dx.doi.org/10.3390/math8061020
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/6/1020?type=check_update&version=2

Mathematics 2020, 8, 1020 2 of 13

Figure 1. Example of a circular network. Reprinted from Salanti et al. [15] with permission from
PLoS ONE.

Automatically drawing a network diagram requires algorithms. One of such algorithms is a
classical force-directed algorithm that employs straight-edges. The force-directed algorithm treats
edges as springs [16]. This algorithm turned the graph representation problem into a mathematical
optimization problem. In other words, by reducing the energy generated by the spring system, we can
find the equilibrium of the graph. The force-directed method has advantages such as simplicity to
use and a good theoretical basis. As a result, many new methods of graph representation have been
developed based on the method. As a typical example, Kamada and Kawai introduced an ideal distance
for drawing graphs [17]. Let {X1, X2, . . . , Xn} be n-vertices and assume that they are spring-connected.
The total energy of the spring is then expressed as follows:

E =
n−1

∑
i=1

n

∑
j=i+1

kij

2
(|Xi − Xj| − lij)2,

where lij is the desirable length of the spring between Xi and Xj, kij is a parameter representing the
strength of this spring, and | · | is the Euclidean norm. The desirable length represents the final length
after executing the algorithm, and the strength of the spring refers to the tension of the spring keeping
certain distance. The best graph is determined by minimizing E . Please refer to [17] for more details
about the algorithm and parameter definition. Another approach for automatically drawing a network
diagram is based on the algorithm presented by Hall [18]. The main idea of this algorithm is to find
the position of nodes {X1, X2, . . . , XN} which minimizes

E =
N

∑
i<j

aij|Xi − Xj|2, (1)

where aij ≥ 0 is the connection weight between Xi and Xj. This algorithm is suitable for application
to a structured data such as polyhedron [19]. However, it may not work well on actual data [20].
Rücker and Schwarzer et al. [20] introduced a method of automatically drawing network diagrams
using graph theory and studied network meta-analysis. Furthermore, the algorithm was applied to a
variety of examples from the literature. Another representative method for drawing network diagrams
is the stress majorization [21]. The objective function is defined as follows:

Mathematics 2020, 8, 1020 3 of 13

E =
N

∑
i 6=j

wij(|Xi − Xj| − dij)
2, (2)

where wij is the weight between Xi and Xj, and dij is an ideal distance. For additional details about the
algorithm, please refer to [21]. This algorithm was applied to real networks related to diseases and
implemented by using the function netgraph in the R package netmeta [20].

We propose a simple algorithm for network visualization based on the distmesh algorithm [22]
in this paper. The proposed method employs a distance dij, which is given by a reciprocal of weight
wij, hence the computing process is essentially simple. Furthermore, the position of nodes is renewed
proportionally by the net force, which is based on the gradient, therefore one can obtain an optimal
diagram to the given data. A two-step stopping criterion is applied to further maximize the visual
effect of the network diagram. Compared to other methods based on the gradient to optimize total
level of movements, for instance, the force-directed method, the stress majorization method, etc.,
our proposed algorithm is simple to implement.

The contents of this article are organized as follows. In Section 2, the proposed algorithm is
described. In Section 3, specific examples of network visualization are presented. Conclusions are
presented in Section 4.

2. Numerical Algorithm

2.1. Distmesh Algorithm

A brief introduction to the distmesh algorithm [22], which is employed to generate the triangular
mesh in domain with the level set representation, is presented in this section. We define the level set
representation in the two-dimensional domain which imposes that the interface structure is treated as
the zero-level set. The following procedure depicts the whole algorithm of the distmesh. A function
ψ(x, y) =

√
x2 + y2 − 1 is adopted to a sample level set description. Figure 2 depicts the overall

process of distmesh algorithm quite in detail.

Step 1. Generate the random nodes X0 in domain.
Step 2. Generate a level set function ψ in the bounding box which includes the domain. The boundary

of domain is regarded as the zero-level set.
Step 3. Perform the Delaunay triangulation with Xn if the maximal arrangement of nodes is greater

than certain level. If n = 0, an initial Delaunay triangulation is accomplished. For the next
step, compute the net force F in order to update the position of nodes.

Step 4. Renew the position of nodes to Xn+1/2 by adding ∆tF.
Step 5. Push back the nodes that are pushed out to the boundary into the interface using the

following equation

Xn+1
i = χ(Xn+1/2

i)

(
Xn+1/2

i −
∇ψ(Xn+1/2

i)

|∇ψ(Xn+1/2
i)|2

ψ(Xn+1/2
i)

)
, (3)

where χ(Xn+1/2
i) is 1 if Xn+1/2

i is placed outside of the boundary; otherwise 0.
Step 6. Repeat Step 3–5 until the level of the total movement of nodes is less than a given tolerance.

Mathematics 2020, 8, 1020 4 of 13

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

(a) (b)
-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

(c)

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

(d) (e)
-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

(f)

Figure 2. Schematic illustration of generating the distmesh. (a) Generated random nodes in the domain.
(b) Signed distance function ψ in bounding box. The boundary of domain is regarded as the zero-level
set. (c) Net force F in current triangulation. (d) Arrangement of nodes via ∆tF. (e) Projection of the
nodes located outside ψ > 0 into the boundary ψ ≈ 0 using Equation (3). (f) Final result of unstructured
mesh by using the distmesh algorithm.

Using the distmesh algorithm, triangular mesh generation can be performed nonuniformly on
domain of various shapes. The following Figure 3 is an example of such generated mesh.

Figure 3. Example of nonuniformly generated mesh: the airfoil.

2.2. Proposed Algorithm for Network Visualization

The proposed algorithm for network visualization seeks to find {X1, X2, . . . , XN} that minimize
the objective function

E =
N

∑
i<j

wij||Xi − Xj| − dij|2, (4)

Mathematics 2020, 8, 1020 5 of 13

where wij and dij are the weighting value and the desired distance between nodes Xi
and Xj, respectively. The proposed algorithm is based on distmesh [22], which is a simple
unstructured triangular mesh generator for geometries represented by a signed distance function.
Let {Xn

1 , Xn
2 , . . . , Xn

N} be given node positions at iteration n. For simplicity of exposition, we assume
0 ≤ wij ≤ 1. We then propose the following distance function:

dij = d(wij) =
1

wp
ij

, for wij > 0, (5)

where p is a constant. Let minW be the minimum positive value of wij, i.e.,

minW = min
1≤i,j≤N

wij>0

wij.

As shown in Figure 4, by setting the minimum distance minD = 1 when wij = 1 and the maximum
distance maxD when wij = minW, we obtain

p = − ln(maxD)

ln(minW)
. (6)

Figure 4. Illustration of distance function dij related to weighting value wij. minD = 1 and maxD are
set to appear when wij = 1 and wij = minW, respectively.

Figure 5a,b show repulsive and attractive forces at nodes Xn
i and Xn

j when |Xn
i − Xn

j | < dij and
|Xn

i − Xn
j | > dij, respectively.

(a) (b)

Figure 5. Two possible forces at nodes Xn
i and Xn

j : (a) repulsive force and (b) attractive force.

We loop over all the line segments connecting two nodes and compute the net force vector Fn
i at

each node point Xn
i :

Fn
i =

N

∑
j=1, j 6=i

wij>0

(|Xn
i − Xn

j | − dij)
Xn

j − Xn
i

|Xn
j − Xn

i |
.

Mathematics 2020, 8, 1020 6 of 13

Then, we update the position of the node points as

Xn+1
i = Xn

i + ∆tFn
i , for 1 ≤ i ≤ N, (7)

where ∆t is an artificial time step. Upon updating the position of the node points, the network diagram
is drawn automatically. The iterative algorithm has reached an equilibrium state if√√√√ 1

N

N

∑
i=1
|Fk

i |2 < tol1 (8)

after k iterations.
As a concrete example, we consider three points X1, X2, and X3. Assume that the weighting

matrix between Xi and Xj is given as

W =

 0 2 4
2 0 1
4 1 0

 .

We scale the matrix W by dividing the elements by the maximum value among elements and
redefine W as

W =

 0 0.5 1
0.5 0 0.25
1 0.25 0

 .

Let X0
1 = (3

4 , 3
√

3
4), X0

2 = (0, 0), and X0
3 = (3

2 , 0), where the superscript 0 denotes the starting index.
Here, we use ∆t = 0.3, minD= 1, maxD= 2, minW= 0.25, and tol1 = 0.01. Consequently, we get
p = 0.5 and  d12 d13

d21 d23

d31 d32

 =


√

2 1√
2 2

1 2

 .

Figure 6a indicates the position of the three points with red markers, and the non-zero elements of
W are represented by gray lines. In particular, the values of each element is expressed by the thickness
of the line. The red arrows are net force vectors F0

1, F0
2 and F0

3. Using these net force vectors, we update
the positions as

X1
1 = X0

1 + ∆tF0
1, X1

2 = X0
2 + ∆tF0

2, X1
3 = X0

3 + ∆tF0
3,

which are shown in Figure 6b. Figure 6c–e show the network diagrams after 2, 3, and 6 iterations,
respectively. The equilibrium state of the network diagram is obtained after 10 iterations as shown in
Figure 6f. Even though the nodes are initially arranged in an equilateral triangle with sides of length
1.5, the network diagram in equilibrium is drawn according to the given weights.

Mathematics 2020, 8, 1020 7 of 13

(a) (b)

(c) (d)

(e) (f)

Figure 6. Schematic of the proposed algorithm. (a) initial condition, (b) after 1 iteration, (c) after
2 iterations, (d) after 3 iterations, (e) after 6 iterations, and (f) equilibrium state after 10 iterations.

3. Numerical Results

In this section, we present the generation of a network diagram with more data to confirm the
efficiency and robustness of the proposed method. Specifically, we select 19 nodes and 19× 19 matrix
W, which are given in Appendix A. The matrix is created based on the dialogue between the characters
in William Shakespeare’s play, ‘The Venice Merchant’. Each element wij of the matrix is the cumulative
number of conversations between person i and person j. The parameters used are ∆t = 0.01, minD = 1,
maxD = 2, and tol1 = 0.01. The value of p is then approximately 0.1879. Figure 7 shows process of
the network visualization by our proposed method. The equilibrium state of the network diagram
appears after 1985 iterations.

After 1985 iterations, each node is appropriately located according to the weights between the
nodes in the network. This means that even if the nodes are initially randomly arranged, the network
diagram is well drawn by our distance function. While the network plot is drawn, we can see that the
objective function E is decreasing. As shown in Figure 8, E decreases and converges as time goes by.
This shows that our proposed method has a mathematical basis for drawing the network diagram.

Mathematics 2020, 8, 1020 8 of 13

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

(a)

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

(b)

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

(c)

1

2
3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

(d)

Figure 7. Snapshots of the network visualization process for ‘The Venice Merchant’: (a) initial condition,
(b) after 20 iteration, (c) after 40 iterations, and (d) equilibrium state after 1985 iterations.

Figure 8. E decreases and converges while each node is moving.

However, the equilibrium state network diagram is not visually good. This is due to the nodes
(9, 13, 15, 16, 17, 18) that have only one connection. Therefore, we further update the location of the
nodes that have only one connection while fixing the other nodes. Let Ωs be the index set of the nodes
having only one connection. We compute the net force vector Fn

i at each node point i ∈ Ωs as follows:

Fn
i =

N

∑
j=1, j 6=i

wij>0

Xn
i − Xn

j

|Xn
i − Xn

j |
.

Mathematics 2020, 8, 1020 9 of 13

Then, we temporally update the node points as

X∗i = Xn
i + ∆tFn

i for i ∈ Ωs, (9)

where ∆t = 10 is used. Finally, we set

Xn+1
i = Xn

j + dij
X∗i − Xn

j

|X∗i − Xn
j |

for i ∈ Ωs and Xn+1
i = Xn

i for i /∈ Ωs, (10)

where Xn
j is the unique node connecting X∗i . We define that the equilibrium state of the second step

has been attained if √
1
|Ωs| ∑

i∈Ωs

|Xk+1
i − Xk

i |2 < tol2 (11)

after k iterations, where |Ωs| is the counting measure. Here, tol2 = 0.002 is used. Therefore, the second
step effectively rotates the node that has only one connection around the connecting node so that the
overall distribution of the nodes is scattered.

Figure 9 illustrates the process of updating the position of nodes (red makers) that have only one
connection. Figure 9a–d shows the network in the equilibrium state of the first step, after 1 iteration of
the second step, after 2 iterations of the second step, and in the equilibrium state of the second step
after 75 iterations.

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

9

13

15

16

17

18

(a)

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

9

1315

16

17

18

(b)

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

9

13

15

16

17

18

(c)

1

2 3

4

5

6

7
8

9

10

11

12

13

1415

16

17

18

19

1

2 3

4

5

6

7
8

9

10

11

12

13

1415

16

17

18

19

9
13

15

16

17

18

(d)

Figure 9. Updating the position of nodes with only one connection: (a) Equilibrium state of the
first step, (b) after 1 iteration, (c) after 2 iterations, and (d) equilibrium state of the second step after
75 iterations.

Next, we consider another example ‘Romeo and Juliet’ which is a play written by William
Shakespeare. Matrix W is defined by counting the number of conversations between 27 characters.
The parameters used are minD = 1, maxD = 3, and tol1 = tol2 = 0.002, and then the value of p is
approximately 0.2493. In particular, time step ∆t = 0.2 and ∆t = 10 are used in the first step and the

Mathematics 2020, 8, 1020 10 of 13

second step, respectively. Figure 10a–c illustrate the character network at the initial condition, after the
first step, and after the second step, respectively. From the results, we can find the main characters and
relatively small parts.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1819 20

21

22

23

24

25

26

27

(a)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

(b)

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

(c)

Figure 10. Snapshots of network visualization for ‘Romeo and Juliet’: (a) the initial condition, (b) after
230 iterations of the first step, and (c) after 20 iterations of the second step.

4. Conclusions

In this paper, we have proposed a simple method based on distmesh for network visualization.
We have demonstrated the good performance of the proposed algorithm through network visualization
examples. We can provide the MATLAB source code of this method for the interested readers. In future
work, we plan to investigate effective network diagrams for character networks from novels and movies.
We may further speed up the computation of the proposed method by using a Gauss–Newton–secant
type method [23].

Author Contributions: All authors contributed equally to this work; J.P., S.Y., C.L. and J.K. critically reviewed the
manuscript. All authors have read and agree to the published version of the manuscript.

Funding: The corresponding author (J. Kim) expresses thanks for the support from the BK21 PLUS program.

Acknowledgments: The authors thank the editor and the reviewers for their constructive and helpful comments
on the revision of this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix, we provide the MATLAB source codes for network visualization. The following
code is for ‘The Merchant of Venice’. The code for ‘Romeo and Juliet’ is available on the following website:

http://elie.korea.ac.kr/~cfdkim/codes/

http://elie.korea.ac.kr/~cfdkim/codes/

Mathematics 2020, 8, 1020 11 of 13

Listing A1: Matlab Code for the network visualization.

% The f i r s t s tep
c l e a r ;

W=[0 21 24 16 0 0 0 2 0 7 4 5 0 0 0 0 0 0 1
21 0 27 32 0 0 0 0 0 2 0 11 2 3 2 0 0 0 0
24 27 0 40 0 0 7 0 12 6 0 2 0 5 0 0 0 0 2
16 32 40 0 36 3 0 7 0 0 0 10 0 0 0 3 13 2 0
0 0 0 36 0 2 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 3 2 0 15 0 0 0 0 4 0 0 0 0 0 0 0
0 0 7 0 0 15 0 0 0 0 0 0 0 3 0 0 0 0 0
2 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 2 6 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0
5 11 2 10 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 5 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] ;
N= s i z e (W, 1) ; rand (" seed " , 3 7 7 3) ; t =rand (N, 1) ;
xy =[cos (2∗ pi∗ t) , s in (2∗ pi∗ t)] ; W=W/max(max(W)) ;
minW=min (min (W(W>0))) ; minD=1; maxD=2; p=−log (maxD) /log (minW) ;
f o r i =1:N
f o r j =1 :N
i f W(i , j) >0
d (i , j) =1/W(i , j) ^p ;
end
end
end
dt = 0 . 0 1 ; t o l = 0 . 0 1 ; n=0; e r r o r =2∗ t o l ;
while e r r o r ≥ t o l
n=n+1; F = zeros (N, 2) ;
f o r i =1 :N
f o r j = i +1:N
i f W(i , j) >0
vt = xy (j , :)−xy (i , :) ;
F (i , :) = F (i , :) + (norm (vt)−d (i , j)) ∗vt/norm (vt) ;
F (j , :) = F (j , :) − (norm (vt)−d (i , j)) ∗vt/norm (vt) ;
end
end
end
xy = xy + dt∗F ; e r r o r =norm (F) / s q r t (N) ;
i f n==1 || mod(n , 1 0) ==0 || error < t o l
f i g u r e (1) ; DrawNetwork (xy ,W) ; pause (0 . 1)
end
end

% The second step
z=f ind (sum(W>0) ==1) ; M=length (z) ;
f o r k =1:M
s (k) =f ind (W(z (k) , :) >0) ;

Mathematics 2020, 8, 1020 12 of 13

end
xy0=xy ; n=0; dt = 1 0 . 0 ; t o l = 0 . 0 0 2 ; e r r o r =2∗ t o l ;
while e r r o r ≥ t o l
n=n+1; F = zeros (N, 2) ;
f o r k =1:M
v=[0 0] ;
f o r j =1 :N
vt = xy (z (k) , :)−xy (j , :) ;
i f norm (vt) >0
v=v+vt/norm (vt) ;
end
end
F (z (k) , :) =v/norm (v) ;
end
xy = xy + dt∗F ;
e r r o r =0;
f o r k =1:M
v=xy (z (k) , :)−xy (s (k) , :) ;
xy (z (k) , :) =xy (s (k) , :) +d (z (k) , s (k)) ∗v/norm (v) ;
e r r o r = e r r o r +norm (xy (z (k) , :)−xy0 (z (k) , :)) ^2 ;
end
e r r o r = s q r t (e r r o r /M) ; xy0=xy ;
f i g u r e (2) ; DrawNetwork (xy ,W) ; pause (0 . 1)
end

Listing A2: Function code for DrawNetwork.

func t ion DrawNetwork (xy ,W)
N=length (xy) ; c l f ; hold on
f o r i =1:N
f o r j = i +1:N
i f W(i , j) >0
p l o t (xy ([i , j] , 1) , xy ([i , j] , 2) , " b " , " l inewidth " ,15∗W(i , j) ^2+1) ;
end
end
end
s c a t t e r (xy (: , 1) , xy (: , 2) , 4 0 0 , " g " , " f i l l e d ") ;
f o r i = 1 :N
t e x t (xy (i , 1) −0.04 , xy (i , 2) , num2str (i)) ;
end
a x i s o f f ; a x i s image ;
end

References

1. Heer, J.; Card, S.K.; Landay, J.A. Prefuse: A toolkit for interactive information visualization. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005;
pp. 421–430.

2. Keim, D.A. Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graph. 2002, 8, 1–8.
[CrossRef]

3. McGuffin, M.J. Simple algorithms for network visualization: A tutorial. Tsinghua Sci. Technol. 2012, 17,
383–398. [CrossRef]

http://dx.doi.org/10.1109/2945.981847
http://dx.doi.org/10.1109/TST.2012.6297585

Mathematics 2020, 8, 1020 13 of 13

4. Van Wijk, J.J.; Van de Wetering, H. Cushion treemaps: Visualization of hierarchical information.
In Proceedings of the 1999 IEEE Symposium on Information Visualization (InfoVis’ 99), San Francisco,
CA, USA, 24–29 October 1999; pp. 73–78.

5. Herman, I.; Melançon, G.; Marshall, M.S. Graph visualization and navigation in information visualization:
A survey. IEEE Trans. Vis. Comput. Graph. 2000, 6, 24–43. [CrossRef]

6. Adar, E. GUESS: A language and interface for graph exploration. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, Montréal, QC, Cananda, 22–27 April 2006; pp. 791–800.

7. Bostock, M.; Heer, J. Protovis: A graphical toolkit for visualization. IEEE Trans. Vis. Comput. Graph. 2009, 15,
1121–1128. [CrossRef] [PubMed]

8. Wylie, B.; Baumes, J. A unified toolkit for information and scientific visualization. In Visualization and Data
Analysis 2009; SPIE: San Jose, CA, USA, 2009; p. 72430H.

9. McCarty, C.; Molina, J.L.; Aguilar, C.; Rota, L. A comparison of social network mapping and personal
network visualization. Field Methods 2007, 19, 145–162. [CrossRef]

10. Nüesch, E.; Häuser, W.; Bernardy, K.; Barth, J.; Jüni, P. Comparative efficacy of pharmacological and
non-pharmacological interventions in fibromyalgia syndrome: Network meta-analysis. Ann. Rheum. Dis.
2013, 72, 955–962. [CrossRef] [PubMed]

11. Wu, L.; Li, M.; Wang, J.X.; Wu, F.X. Controllability and Its Applications to Biological Networks. J. Comput.
Sci. Technol. 2019, 34, 16–34. [CrossRef]

12. Xia, M.; Wang, J.; He, Y. BrainNet Viewer: A network visualization tool for human brain connectomics.
PLoS ONE 2013, 8, e68910. [CrossRef] [PubMed]

13. Dolfin, M.; Knopoff, D.; Limosani, M.; Xibilia, M.G. Credit Risk Contagion and Systemic Risk on Networks.
Mathematics 2019, 7, 713. [CrossRef]

14. Pueyo, O.; Pueyo, X.; Patow, G. An overview of generalization techniques for street networks. Graph. Models
2019, 106, 101049. [CrossRef]

15. Chaimani, A.; Higgins, J.P.; Mavridis, D.; Spyridonos, P.; Salanti, G. Graphical tools for network meta-analysis
in STATA. PLoS ONE 2013, 8, e76654. [CrossRef] [PubMed]

16. Eades, P. A heuristic for graph drawing. Congr. Numer. 1984, 42, 149–160.
17. Kamada, T.; Kawai, S. An algorithm for drawing general undirected graphs. Inf. Process. Lett. 1989, 31, 7–15.

[CrossRef]
18. Hall, K.M. An r-dimensional quadratic placement algorithm. Manag. Sci. 1970, 17, 219–229. [CrossRef]
19. Spielman, D. Spectral Graph Theory. In Combinatorial Scientific Computing (No. 18); CRC Press: Boca Raton,

FL, USA, 2012.
20. Rücker, G.; Schwarzer, G. Automated drawing of network plots in network meta-analysis. Res. Synth.

Methods 2016, 7, 94–107. [CrossRef] [PubMed]
21. Gansner, E.R.; Koren, Y.; North, S. Graph drawing by stress majorization. In International Symposium on

Graph Drawing; Springer: Berlin/Heidelberg, Germany, 2004; pp. 239–250.
22. Persson, P.O.; Strang, G. A simple mesh generator in MATLAB. SIAM Rev. Soc. Ind. Appl. Math. 2004, 46,

329–345. [CrossRef]
23. Argyros, I.; Shakhno, S.; Shunkin, Y. Improved Convergence Analysis of Gauss-Newton-Secant Method for

Solving Nonlinear Least Squares Problems. Mathematics 2019, 7, 99. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/2945.841119
http://dx.doi.org/10.1109/TVCG.2009.174
http://www.ncbi.nlm.nih.gov/pubmed/19834180
http://dx.doi.org/10.1177/1525822X06298592
http://dx.doi.org/10.1136/annrheumdis-2011-201249
http://www.ncbi.nlm.nih.gov/pubmed/22739992
http://dx.doi.org/10.1007/s11390-019-1896-x
http://dx.doi.org/10.1371/journal.pone.0068910
http://www.ncbi.nlm.nih.gov/pubmed/23861951
http://dx.doi.org/10.3390/math7080713
http://dx.doi.org/10.1016/j.gmod.2019.101049
http://dx.doi.org/10.1371/journal.pone.0076654
http://www.ncbi.nlm.nih.gov/pubmed/24098547
http://dx.doi.org/10.1016/0020-0190(89)90102-6
http://dx.doi.org/10.1287/mnsc.17.3.219
http://dx.doi.org/10.1002/jrsm.1143
http://www.ncbi.nlm.nih.gov/pubmed/26060934
http://dx.doi.org/10.1137/S0036144503429121
http://dx.doi.org/10.3390/math7010099
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Numerical Algorithm
	Distmesh Algorithm
	Proposed Algorithm for Network Visualization

	Numerical Results
	Conclusions
	
	References

